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Spatial analysis of dead pixels

Julia Brettschneider, John Thornby, Tom E Nichols, Wilfrid S Kendall

Abstract

Considering a rectangular panel of pixels arranged in a grid, we introduce a tax-
onomy of damages based on spatial arrangements of dysfunctional pixels. We detect
these different types of damage in experimental data obtained from a detector from an
X-ray machine used for additive layer manufacturing object visualisation. We model
the spatial distribution of dysfunctional pixels using point pattern analysis including
intensity estimation and checking for CSR. As a practical application, we propose a
protocol for performance monitoring for detector panels.

1 Introduction

Digital flat detector panels are used, for example, in computed tomography. Introductory
references about this application are [4] and [2] The signals are detected by pixels arranged
in a rectangular grid. With time of usage, some pixels become dysfunctional compromising
the quality of the resulting images. Eventually, the detector needs to be refurbished or
replaced at high cost. The aim of this study is to shed light on the kinds of dysfunctionality
occurring in detector pixels and to model their spatial distribution.

The first task consists in providing a rigorous statistical definition for pixel behaviour
that should be considered as dysfunctional. The panel manufacturer PerkinElmer has
provided a set of criteria to identify what they call underperforming pixels. X-ray machines
manufactured by Nikon (at their site at Tring, UK) include a protocol to create a bad pixel
map, which actually consists of a collection of a number of test images and their statistical
summaries as well as a list of bad pixel locations determined by the an evaluation of the
images. We review these routines and conventions in Section 2.

We then analyse a collection of bad pixel maps taken on the same detector over a
period of seven months (see Section 2). An initial round of exploratory data analysis in
Section 3 sheds light on the different types of dysfunctionality that can be encountered
for pixels and it guides our choice of spatial models in Section 4. Practical applications
are discussed in Section 7. In the concluding Section 6 we discuss the findings and suggest
future work.

2 Technology, conventions and data

The data used in this paper was collected with the XRD 1621 detector manufactured by
PerkinElmer for use in X-ray machines. As detailed in the manual [6], it consists of a
sensor and its electronics, with the latter placed on the perimeter of the active sensor,
out of direct path of the beam. The user needs to block the radiation by lead shielding
to avoid damage of the electronics and to adjust the field of view (FOV). The flat panel
sensor of the detector is fabricated using thin film technology based on amorphous silicon
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technology which detects visible light. The incident X-rays are converted by the scintillator
material to visible light which generates electron hole pairs in the biased photodiode. The
charge carriers are stored in the capacity of the photodiode. By pulsing the gates of a
TFT line within the matrix, the charges of all columns are transferred in parallel to the
signal outputs.

The detector is divided into two rows of 16 subpanels each, also called read out groups
(ROG), divided by a midline. The upper and lower part are electrically separated. The
data stream is detailed in Figure 1.
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5.5.3 Sorting�schemes�overview�
The�XISL�sorts�the�data�in�an�internal�buffer�with�highly�optimized�routines�written�in�machine�
code.�Figure�10�shows�the�read�out�scheme�of�the�XRD�1621�sensor.��
�

�

Figure�10� Sorting�scheme�of�the�XRD�1621�

The�sensor�is�divided�into�an�upper�and�a�lower�part.�Both�sections�are�electrically�separated.�The�
data�of�each�section�is�transferred�by�32�“read�out�groups”�(ROG).�Each�ROG�has�128�channels�for�
the�detector.�The�upper�groups�scan�the�sensor�columns�from�left�to�right.�The�lower�groups�scan�
from�right�to�left.�The�upper�groups�are�transferred�first,�followed�by�the�lower�groups.�The�upper�
groups�start�read�out�from�the�upper�row.�The�lower�groups�start�read�out�from�the�last�row.�
The�following�Table�20�displays�the�data�stream�for�XRD�1621:�
�
data�stream�no.� sensor�pixel�(row,�column)� ROG�no.�

1� (1,1)� 1�

2� (1,129)� 2�

3� (1,257)� 3�

4� (1,385)� 4�

5� (1,513)� 5�

6� …� �

15� (1,1793)� 15�

16� (1,1921)� 16�

17� (2048,�128)� 18�

18� (2048,�256)� 17�

19� (2048,�384)� 20�

20� (2048,�512)� 19�

…� …� …�

Table�20� Sorting�scheme�of�the�XRD�1621�

�
Figure 1: Sorting scheme of the XRD 1621 detector. Each read out group has 128
channels for the detector. The upper groups scan the sensor columns from left to right.
The lower groups scan from right to left. The upper groups are transferred first. The
upper groups start read out from the upper row. The lower groups start read out from
the last row.

In the literature, dysfunctional pixels are referred to by many names including bad,
dead, erratic, stuck, hot, defective, broken and underperforming, and a variety of concep-
tions is associated with them.

Let n1 and n2 be the number of pixels in the horizontal and the vertical directions,
respectively. An image taken by the detector in a fixed time point is denoted by Z =
(Zi)i∈I , where Zi is the value of the pixel i in the grid I = [1, . . . , n2] × [1, . . . , n2]. Let
Z = median{Zi| i ∈ I} be the median of the pixel values across the whole grid and
σ(Z) = SD{Zi| i ∈ I} be their SD.

For a sequence (Zi(j))i∈I (j = 1, . . . ,m) of m such images we define, pixel wise, the
median image and the SD image:

Zi = median{Zi(j)| j = 1, . . . ,m} (i ∈ I), (1)

σ(Z)i = SD{Xi(j)| j = 1, . . . ,m} (i ∈ I). (2)

We define summaries of these images across the whole grid: Z = median{Zi| i ∈ I} is the
median of the median image, σ(Z) = SD{Zi| i ∈ I} is the SD of the median image, and
σ = median{σ(Z)i| i ∈ I} is the median of the SD image.
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The detector manufacturer PerkinElmer performs a final quality test and creates an
underperforming pixel map to be delivered with the detector. They use a number of criteria
to classify a pixel as underperforming based on signal intensities, noise levels, uniformity
and lag. We summarise the criteria below and refer to the detector manual [6] for further
details.

All tests are accomplished in the Timing 0 (133.2ms; ES: T0 = 66.6ms), 200µm and at
1 pF capacity, unless otherwise indicated. The bright image has a nominal value of roughly
30,000 units.

Signal sensitivity: Three types of underperforming pixels are detected through unusual
response in a bright offset corrected image at three different X-ray energies at first free
running timing.

• Underperforming bright pixel: value is greater than 150% of the median bright

• No gain pixel: dark pixel with no light response

• Underperforming dark pixel: value is below 45% of the median bright

Bright noise: A sequence (Xi(j))i∈I(j = 1, . . . ,m) of m = 100 bright images in the first
free running timing T0 is acquired. Pixel i is called underperforming bright noise pixel if
σ(Z)i > 6σ.

Dark noise: A sequence (Zi(j))i∈I(j = 1, . . . ,m) of m = 100 dark images in two free
running timings T0 and T1 is acquired. Pixel i is called underperforming dark noise pixel
if σ(Z)i > 6σ.

Uniformity: These criteria address maximum allowed deviations from overall means and
from nearest neighbours. Let (Zi)i∈I be an image acquired at T0, corrected with gain?
and offset? images also acquired at T0. Pixel i is called underperforming (with respect to
global uniformity), if

Zi/Z > 1.02 OR Zi/Z < 0.98. (3)

Pixel i is called underperforming (with respect to local uniformity), if

Zi/Xi3×3 > 1.01 OR Zi/Zi3×3 < 0.99. (4)

Lag: The detector is set to an integration time of 2 s (triggered mode). Three offset
corrected frames are acquired: Image Z(1) is irradiated during the gap after the readout
time of the detector of up to 30, 000units, and Z(2) and Z(3) are the following two dark
images (first frame after exposure and second frame after exposure). A pixel i is marked
as underperforming, if

Z
(2)
i /Z

(1)
i > α1 OR Z

(3)
i /Z

(1)
i > α2 (5)

with thresholds α1 = 0.08 and α1 = 0.04 in the standard option (or α1 = 0.1 and α1 = 0.05
in the CsI option).

For detectors built into their X-ray machines, Nikon uses a monitoring protocol to
create bad pixel maps. Each bad pixel map actually consists of a collection of ten data
files:
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1. mean white image containing the pixel wise means of the intensities of 100 white
acquisitions, as well as images of the corresponding SDs, minima and maxima,

2. mean black image containing the pixel wise means of the intensities of 100 black
acquisitions, as well as images of the corresponding SDs, minima and maxima,

3. a mean grey image containing the pixel wise means of the intensities of 100 images
acquisitions (standard deviations, minima and maxima are not included),

4. list of bad pixel locations stored in an .xlm file.

Bad pixel maps in X-ray machines are routinely taken after a new detector is installed
or an old one is reinstalled after refurbishment. Operators also have the option to take
them at times of their convenience. In practice, they usually do so if they feel there “may
be something wrong” with the detector.

The data set analysed in this paper comes from a collection of ten bad pixel maps
taken between June 2013 and January 2014 on a X-ray machine with a PerkinElmer
digital X-Ray Detector XRD 1621 AN/CN by the Warwick Manufacturing Group. Our
analysis is based on the first six acquisitions, because the last four contain binned pixels,
which implies that some of the information is lost making them less interesting for the
analysis. The detector was refurbished between the fourth and the fifth acquisition. For
more details see Figure 2.

Preliminary data set

Total of 100 images that contain some information     

10 bad pixel maps, regular and binned

Image dimensions and dates
              Timestamp WhiteX WhiteY GreyX GreyY BlackX BlackY
A_0 2013-06-13 13.31.51   2000   2000  2000  2000   2000   2000
B_0 2013-07-01 11.49.29   2000   2000  2000  2000   2000   2000
C_0 2013-10-02 13.41.00   1600   2000  1600  2000   1600   2000
E_0 2013-11-22 10.54.30   1600   2000  1600  2000   1600   2000
F_0 2014-01-28 11.48.00   2000   2000  2000  2000   2000   2000
G_0 2014-01-28 15.14.02   2000   2000  2000  2000   2000   2000
A_1 2013-06-13 16.14.34   1000   1000  1000  1000   1000   1000
D_1 2013-10-15 09.29.43    800   1000   800  1000    800   1000
F_1 2014-01-28 11.58.23   1000   1000  1000  1000   1000   1000
G_1 2014-01-28 15.19.30   1000   1000  1000  1000   1000   1000

Figure 2: Bad pixel maps. Test data collected by Warwick Manufacturing Group 2013-
14 including acquisition date and x and y coordinate dimensions for each of the three parts:
white image, grey image and black image. The last four of them contain binned images,
that is, pixels are merged in pairs resulting in smaller images. The dimensions vary as
a result of the binning and also because the images were cropped after an excess of bad
pixels was detected near the edges.

3 Exploratory data analysis of bad pixel maps

The most obvious artefact in many of the images are parallel lines of different lengths,
one end meeting the midline at an orthogonal angle and the other end at what seems a
random location somewhere in the grid on either side of the midline. Figure 3 shows a
part of the grey image of A 0 displaying the phenomenon.
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Local defects: Dead lines

Lines on bad pixel images

Also visible on white, grey and sometimes black images

Going from centre vertical line outwards 

A_0: White image
Figure 3: Lines between clusters and midline. Left part of grey image of A 0
shown after 90 degree anticlockwise rotation. Horizontal midline (shown here as vertical
line) divides upper row (shown on the left) from lower row (shown on the right). It shows
parallel lines connected to the midline from both sides. There is also visible inhomogeneity
of intensity, with darker areas near the corners.

Our systematic assessment of the spatial locations of bad pixels is based on bad pixel
lists. Our tool for this are bad pixel images, that is, an image created from the list of
bad pixel coordinates (stored in an .xml file as part of the bad pixel map, see Section 2
for details) as coloured squares in their original location in a grid. As colour code we use
beige for bad pixels and red for others. (Printed in grey scale, the bad pixels are displayed
as bright on a dark background.)

3.1 A taxonomy for bad pixel arrangements

Visual inspection of all the bad pixel images in our data set revealed several types of
spatial arrangements of bad pixels. We have classified them into six categories listed
below. Nearest neighbour of a pixel refers to the pixels on the left, right, top or bottom
of the pixel; the pixels touching it only at corners (diagonal) are not included. A corner
piece consists of three neighbouring pixels that are not in a line.

1. Singletons. Individual bad pixels.

2. Doubles. Two neighbouring bad pixels.

3. Small clusters. Three or more neighbouring bad pixels including at least one corner
piece.

4. Lines to midline. Three or more bad pixels arranged in a line leading up to the
midline that divides the upper from the lower row of subpannels.

5. High density regions. Areas with visibly higher concentration of single bad pixels.

6. Corner damage. Massively damaged area in a corner amounting to connected areas
of damage as shown in Figure 5.

The examples below illustrate these types. The bad pixel images areas shown in
Figure 4 illustrate the first five types of spatial arrangements of bad pixels. Usually, small
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clusters and lines occur together. However, there are instances of lines of bad pixels that
are connected to the midline on one end, but do that do not end in a cluster on the other
end (bottom left in Figure 4), and there are also instances of small clusters that are not
connected to a line. Figure 5 shows the four corner areas of the bad pixel image for B 0,
all heavily damaged.

Figure 4: Spatial arrangements of bad pixels. Selected areas from bad pixel images
A 0 to F 0. The two areas in the upper left row shows singletons, doubles and corner
pieces. Three of the other four areas on the left show small clusters with consequent lines
as well as one line with no cluster. The big area on the right is a region of high density of
bad pixels.

The black and white plots in Figure 6 show the locations of bad pixels for the six regular
bad pixel maps in our data set (not the binned ones). There are many dysfunctional lines
going up and down from the midline in the first four images. After that, the detector
was refurbished and the last two images demonstrate that most of the lines have now
disappeared. However, both of these images have areas with high bad pixel intensity that
were not present in previous images.

3.2 A closer look on dysfunctional lines

The acquisitions that produced the largest number of lines are C 0 and E 0 with 9 dys-
functional lines in the upper row of subpanels and 8 lines in the lower row. A 0 has 7 and
5 and B 0 has 7 and 8, usually in the same locations as C 0 and E 0, though length may
vary. F 0 and G 0 were obtained after refurbishment of the panel and only have one line
in the upper row and one line in the lower row.

All the lines are just one pixel wide. (Hence they can not be seen in the binned images
A 1, D 1 , F 1 and G 1.) With one exception, one end of the line always reaches the
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Local defects: Corners

Figure 5: Corner damage. Corner areas of bad pixel images for B 0. All four corner
areas are seriously damaged.

horizontal midline. The exception is a line in column 744 in F 0, which ends 4 pixels
before it reaches the midline. For the other end there are three possibilities: ending in
just one pixel, running all the way to the other side of the sub panel, or ending somewhere
in a small cluster. The last two options are the most frequent ones. The clusters have some
commonalities. Broadly speaking they are 1 to 3 doubled up bad pixels to the right of the
line. To illustrate this in more detail, here is a list of the types of all the 17 non-midline
ends in C 0 with their frequency

1. line ends in one pixel somewhere in the sub panel: 1

2. line runs to the other side of the sub panel: 4

3. line ends in a small cluster: 12, of which

• endpoint of the line has another bad pixel adjacent to it on the right: 7

• last two pixels of the line have bad pixels adjacent to it on the right: 4 (in one
case there is an extra bad pixel to the left, too)

• last three pixels of the line have bad pixels adjacent to it on the right: 1 (on
top of that, there is an extra bad pixel above these adjacent pixels)

Andrew Ramsey from Nikon has suggested that the lines are not all themselves bad
pixels. Instead, only the cluster consists of bad pixels, but they block the signal transmis-
sion of all subsequent pixels in the same line. The occurrence of lines connecting some a
pixel located somewhere in a (sub-)panel with the border of a sub panel (here the midline)
has also been documented in forums of the photography and astronomy community, under
the term hot pixel lines: see for example
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Figure 6: Bad pixel images. Bad pixels are plotted in black against white background.
The image in the top row show very noticeable damage, especially in the regions close to
the corners and edges. The middle row is taken after the image has been cropped. The
acquisitions in the bottom row were taking after refurbishment of the detector.
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www.ls.eso.org/lasilla/Telescopes/3p6/efosc/docs/BADPIXMASK/Ccd40Cosmetics.html,

www.astro-wise.org/portal/howtos/man_howto_hot/man_howto_hot.shtml.

It has been suggested that dysfunctional pixels destroy the value of all pixels behind the
broken pixel as charge is moved through it during the read-out process. In the analysis of
the lines, we will therefore focus on the locations and shapes of the endpoints rather than
the modelling the occurrence of complete lines.

4 Spatial models and analysis

Our models for the spatial distribution of dysfunctional pixels is based on random point
patterns. An overview of these models and methods can be found, for example, in [5] and
[1], with the latter emphasising on R-implementation using packages such as spatstat, sp

and dependencies. Once the data has been imported into a ppp-object, it is straight
forward to plot images of the point pattern highlighting the events by out-of-scale plotting
characters. Figure 7 shows such images of the detector before and after refurbishment.

Point pattern B_0 Point pattern F_0

Figure 7: Point patterns. B 0 and F 0 straight from raw data showing the difference
before and after refurbishment.

There are two perspectives leading to different mathematical descriptions of the de-
tector and its dysfunctional pixels. In the previous sections, we recorded the state of the
detector at one moment in time as a random field indexed by the two-dimensional grid
I = [1, . . . , n2] × [1, . . . , n2]. The values of the random field can be numeric to describe
the actual value of the pixel or they can be binary indicating its dysfunctional versus
functional status. The latter can also be extended to taking categorical values accounting
for different types of dysfunctionality.

Consider now that our main interest is in the dysfunctional locations, with the rest of
the panel acting as background only. The essential information can be represented as a
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spatial point process X with values xk in the rectangle S = [0, n2]×[0, n2], with finite total
intensity. Points correspond to the event that the pixel centred there is dysfunctional. For
any A ⊆ S, the number of points in A is denoted by N(A), and N = N(S) is the total
number of points.

To build appropriate spatial point pattern models we briefly return to our taxonomy
of damages from Section 3. We first exclude two of the damage types from modelling.

Firstly, we do not include the whole dysfunctional lines, but restrict ourselves to mod-
elling the small clusters at the end far off the midline. (In the rare case where there is
no cluster, we only use the endpoint.) This is necessary, because even very few short
lines quickly dominate calculations testing for CSR making it impossible to detect what
goes on in the rest of the image. This is illustrated by simulations in Figure 9, using the
descriptive functional statistics known as G-, F-, and K-functions, described for example
in [3]. The simulations show how sensitively these react to even just one or two short lines
for point densities slightly higher than in our images. The effect on G and K is particularly
sharp with obvious changes in r = 1 caused by the sudden huge increase in the number of
adjacent bad pixels. It gets more pronounced for lower densities and less pronounced for
higher densities; see Figures 14 and 15 in the appendix.

Secondly, the corner damages are rather peculiar and not well suitable for modelling.
Since they are located at the margins of the images, restricting models to a cropped image
is an appropriate strategy and reflects the common practice of reducing the FOV of the
detectors after issue have been detected near the edges. C 0 and E 0 were already cropped
by 200 rows both on top and bottom during acquisition. Based on visual inspection we
cropped an additional 50 rows on these and accordingly cropped A 0 and B 0 by 250 rows
both on top and bottom. The images acquired after refurbishment of the projector, F 0
and G 0, were cropped by 5 pixels all around to exclude artefacts on the edges. Figure 8
shows the point patterns after removal of lines and illustrates the relevance for cropping.

We now study fundamental properties of the spatial point patterns including complete
spatial randomness (CSR), homogeneity and intensity estimation as described for example
in [3].

The G-, F-, and K-Functions for our data have been calculated based on 100 Monte
Carlo simulations under CSR. Default confidence intervals of 96% are used. For each of
the images, the G-Function in Figure 10 indicates aggregation for short ranges, while they
seem to behave more randomly at larger distances. A 0, B 0 and C 0 show a jump like
increase in r = 1, but little further increase beyond. In contrast, E 0, F 0 and G 0 increase
about equally strongly, but more smoothly for small r. This is most likely related to the
existence of a small area of high density of bad pixels in the last three images, but not the
first three. In turn, the deviations from CSR in the first three images are the result of an
unusually high amount of doubles and very small clusters (see last column in Table 13).
The behaviour of the F-Functions in Figure 11 confirms this, with aggregation particularly
pronounced in the last two images.

The normed K-Functions in Figure 12 give the same picture. There is strong evidence
for aggregation with respect to small distances, especially very ones. For images A 0, B 0
and C 0 this almost exclusively driven by r = 1, in other words, by adjacent bad pixels.
They correspond to doubles and small clusters. In fact, between 12.6% and 14.9% of the
pixels locations are actually of this kind (see Figure 13.) In images E 0, F 0 and G 0 there
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Point pattern w/o lines A_0 Point pattern w/o lines B_0

Point pattern w/o lines C_0 Point pattern w/o lines E_0

Point pattern w/o lines F_0 Point pattern w/o lines G_0

Figure 8: Point patterns without lines. Defective pixels in first six images after
removal of dysfunctional lines except their outer end points. Plotting characters are ran-
domly assigned to better distinguish points in close proximity and they are bigger than
the original pixels. A 0 and B 0 are marked with horizontal lines indicating potential
cropping of the image at y coordinates 100 and 1900 (red), or 200 and 1800 (green), or
250 and 1750 (blue). All four corner areas are seriously damaged. C 0 and E 0 are already
cropped by 200 on both top and bottom, and we indicate cropping by an additional 50
more rows on both top and bottom by the blue line.
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Figure 9: Sensitivity to lines. Simulations of random scatters of 1000 points (medium
intensity) on a 2000 x 2000 grid with no, one or two lines of length 500 added to it. G-, F-,
and K-Function estimates are calculated based on 49 CSR simulations. Scales on x-axes
are standardised across images, but scales on y-axes are not.
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Figure 10: G-Function. G-Functions for all images (suitably cropped as described
above) with upper and lower confidence bounds bordering the grey area. Scales on x-axes
are standardised across images, but scales on y-axes are not.
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Figure 11: F-Function. F-Functions for all images (suitably cropped as described above)
with upper and lower confidence bounds bordering the grey area. Scales on x-axes are
standardised across images, but scales on y-axes are not.
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Figure 12: K-Function. K-Functions for all images (suitably cropped as described
above) with upper and lower confidence bounds bordering the grey area. Scales on x-axes
are standardised across images, but scales on y-axes are not.
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are additional small range interactions from the areas with increased density of bad pixels
(see Figure 8).

The observed intensities are summarised in Table 13. The assumption of homogeneity
seems suitable for the first four images (after suitable cropping of corners and edges).
For the last two images a homogeneity assumption seems wrong, given each of them has
a quite well defined area with an strongly increased density of bad pixels. The obvious
alternative is to consider inhomogeneous models. However, the areas of high intensity of
bad pixels may be the result of somewhat arbitrary cut-offs in the definition of bad pixels.
A sensitivity analysis based on varying these cut-offs is recommended.

Areas Number of 
bad pixels Intensities Small clusters 

in selected area

A_0 [0,2000]x[0,2000] 
  [0,2000]x[250,1750]

625
127

 15.625
  4.233

NA
16 [12.6%]

B_0 [0,2000]x[0,2000] 
  [0,2000]x[250,1750] 

7053
 175

176.325
  5.833

NA
26 [14.9%]

C_0 [0,2000]x[0,1600]
  [0,2000]x[250,1750]

219
180

  6.843
  6.000

NA
25 [13.9%]

E_0 [0,2000]x[0,1600]
  [0,2000]x[250,1750]

427
362

 13.344
 12.067

NA
21 [ 5.8%]

F_0 [0,2000]x[0,2000]
[5,1995]x[5,1995]

1412
 694

 35.300
 17.437

NA
31 [ 4.5%]

G_0 [0,2000]x[0,2000]
[5,1995]x[5,1995]

576
352

 14.400
  8.844

NA
31 [ 8.8%]

Figure 13: Bad pixel counts and intensities. For each image, bad pixel counts for
both original image and suitably cropped image (as explained above) are given and corre-
sponding intensities (multiplied with the factor 100,000) under homogeneity assumption.
The last column shows the number of doubles. (For E 0 and G 0 the counts of doubles
exclude the areas of high intensity of bad pixels.

5 Applications to detector performance monitoring

Based on the models introduced in the last section we suggest the following basic protocol
for detector performance monitoring. The emphasis of the protocol is on the spatial
distribution of dysfunctional pixels. This protocol can be used to establish benchmarks
for detector performance, more specifically, for objectives including the following:

• Determining sufficiently functional FOV;

• Determining need for refurbishment;

• Comparing performance of different types of detectors;
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• Detecting performance differences between subpanels;

• Linking defects to problems in the detector manufacturing process or usage.

The protocol can be carried out employing some of the diagnostic tools used in the
previous sections. The starting point for the analysis is the list of bad pixel locations.

1. View. Visualise the location of the bad pixels by plotting them in their original
locations in a square. Diagnostic tools: Plots as in Figure 7 give a quick impression.

2. Classify. Make a frequency table of all types of spatial arrangements of bad pixels
in the data set. This is to confirm whether the panel has the types of defects known
from previously studied panels and potentially adds new types to the list. Diagnostic
tools: Plots as in Figure 6 are suited to view details. It may be necessary to zoom
in, because individual pixels are very small.

3. Crop. Based on visual inspection using the plots from the first two steps, reduce
image by cropping marginal rows and/or columns as appropriate, to exclude corner
or edge issues currently not addressed by modelling.

4. Model. Fit a spatial point pattern model.

(a) If lines occur in the bad pixel map image, keep only the endpoint far the middle
line in the bad pixel list.

(b) Examine whether the remaining pattern is random in the sense of complete
spatial randomness (CSR). If it is not random, determine whether there may
be regularity or aggregation. Determine which point distances drive these be-
haviours. Diagnostic tools: Study the graphs of the G-, F- and K-Functions, as
shown in Figures 10, 11 and 12.

(c) Estimate the intensity under homogeneity assumptions, as appropriate. Oth-
erwise consider fitting a heterogeneous density. However, since the definition
of bad pixel is based on thresholds and the scanning has been performed under
not necessarily universal parameters, back this up with sensitivity analysis.

5. Subpanels. Perform the model fit sketched above separately for the different sub-
panels. Check whether there are systematic differences between the subpanel that
could potentially be linked to the manufacturing process or modes of usage. Diag-
nostic tools: As in previous steps. In addition, plot of the bad pixel locations on the
panel can be overlaid with a grid showing the subpanel division for visual examina-
tion of subpanel related artefact. A χ2-test for independence can be performed on
the counts of bad pixels on the subpanels.

6 Discussion, conclusions and future work

The analysis in the report focusses on the spatial distribution of bad pixels as stored in
the bad pixel list of flat screen X-ray detectors. It is based on a series of bad pixel maps
collected before and after a refurbishment of a detector. Informed by an initial step of
exploratory data analysis the test images, we propose a taxonomy for pixel damage by
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their spatial arrangements: Singletons, doubles, small clusters, high density patches, lines
and corner damage.

The last two types of damages are treated differently than the others. Corner damages
are related to known physical causes such as increased stress related to mounting and
more rigidity of the material closer to the corners. The damage caused by them can be
controlled by adjusting the FOV of the detector. We therefore exclude corner damages
from the modelling. Dysfunctional lines can start in any location and, with the notable
exception of one in this data set, end at the midline. The most common explanation is
that they are the result of a data stream interruption due to a single or, more typically,
small cluster of bad pixels on one end. We therefore restrict the spatial analysis to the
non-midline endpoints of the dead lines.

The occurrence of singletons, doubles and small clusters of bad pixels has been studied
using models for spatial point patterns. Using G-, F- and K-functions, we found that all
the six images deviate from the CSR assumption due to aggregation on small ranges, even
very ones. There are two obvious potential reasons for these deviation, and it is likely that
what remains after their removal would actually fulfil the CSR assumptions.

The first reason are small areas of high density as found in E 0, F 0 and G 0. They
could be excluded from the model like the corners. Or they could be modelled using non-
homogeneous processes. However, they typically have quite clear boundaries potentially
leading to an intensity function with high gradients.

The second reason are unusually high numbers of doubles and very small clusters that
are not matched by comparable aggregation at bigger ranges. The unexpected frequency
of doubles and small clusters was one of the bigger surprises in this data analysis. Asking
for the reason brings us back to the original set-up of the spatial point pattern model.
In our models, we have identified points with the event that an individual grid pixel is
dysfunctional. It can be argued, though, that the elementary event of interest is a kind
of damage that can extend to one, two or a small cluster of pixels as part of the same
mathematical event. This is a very intuitive approach for the scenario where damage is
caused by an external force that may hit the panel in a small location covering some
amount of pixels up to a small cluster. Hence, an alternative set-up for the spatial point
process models would be to identify points with dysfunctional locations of the size up to
small clusters counting them as one only.

Translating this intuition into a formal model has to overcome two hurdles. Firstly,
the definition of what a small cluster is, as opposed to say several adjacent clusters or
a small region of high density, will remain somewhat arbitrary. Secondly, clusters may
contain pixels with different types of dysfunctionality, making it complicated to assign a
mark for the points representing these events.

Furthermore, our perspective is blind to the original arrangement of the pixels in a
grid. There, the vertical and the horizontal direction are distinguished, reflecting the
physical structure of the panel. Another investigation would be to pay special attention
to the behaviour along both of these directions. In other words, the spatial point process
perspective could be supplemented by one-dimensional analysis.

Labelling a pixel as bad is not absolute. The classification depends on scanning pa-
rameters set during the acquisition of the image and on thresholds in the definitions used
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to create the bad pixel map. The more characteristic damages at the corners and edges,
and the isolated singleton, doubles and small clusters, may persist independent of these
settings. However, it has been suggested by users that some of the patches with high bad
pixels density are sensitive to these settings.

We have focused on spatial arrangement of pixels classified as bad according to the
bad pixel map protocol of the kind used by Nikon. Future work should extend the current
discussing including also the temporal evolution of pixel dysfunctionality. A collection of
test images taken at regular intervals over an extended period of time should be assembled.
An initial step of temporal modelling includes determining potential stages until a pixel
is fully dead, analyse how long pixels typically stay in these stages and find out whether
they can move between them. Combining this with results from spatial analysis, spatio-
temporal models for pixel damage should be fitted.

In terms of the models used, different types of dysfunctionality can be accounted for
by extending this set-up to a marked spatial point process. For example, marks could
be assigned to distinguish ends of lines from isolated small damages, or to label pixels
according to different criteria for underperformance listed in Section 2.

The methods presented here have practical applications to the monitoring, refurbish-
ment and manufacturing of detectors. A toolbox of statistical techniques is presented and
can be put to use as needed by users of the detectors. For example, comparing the dam-
age intensity across subpanels determines whether some of them need to be exchanged.
Spatial patterns of bad pixels may give clues to the causes of the damage related to either
the manufacturing or the time or modes of use.
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Figure 14: Sensitivity to lines. Simulations of random scatters of 100 points (low
intensity) on a 2000 x 2000 grid with no, one or two lines of length 500 added to it. The
G-, F-, and K-Function estimates are calculated based on 49 CSR simulations. Scales on
x-axis are standardised across images, but scales on y-axis are not.
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Figure 15: Sensitivity to lines. Simulations of random scatters of 1000 points (high
intensity) on a 2000 x 2000 grid with no, one or two lines of length 500 added to it. The
G-, F-, and K-Function estimates are calculated based on 39 CSR simulations. Scales on
x-axis are standardised across images, but scales on y-axis are not.
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