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Part I

Unnormalised statistical models



Unnormalised statistical models

I �Unnormalised� statistical models: models with an intractable

normalisation constant in the likelihood.

I Example: Ising model for binary vectors y ∈ {0, 1}m

p(y|a,Q) ∝ exp
(
aty + ytQy

)
I Very popular in Machine Learning, Computer Vision (deep

learning), neuroscience.

I Creates computational di�culties (�doubly intractable

problems� in Bayesian context).



Unnormalised sequential models

I Markov sequence y0, . . . , yn where the transition kernel is

de�ned up to a constant.

I Example: sequential Ising

p(yt |yt−1, a,Q,R) ∝ exp
(
atyt + ytQyt + ytRyt−1

)
I Nastier than IID version: n normalisation constants missing.



Current strategies for inference

I Classical estimation: MCMC-MLE, contrastive divergence

(Bengio and Delalleau, 2009), noise-contrastive divergence

(Gutmann and Hyvärinen, 2012).

I Bayesian: exchange algorithm (Murray et al., 2006), ABC,

russian roulette (Girolami et al., 2013).

I I do not know of methods for sequential unnormalised models.



Our contribution

I Poisson transform shows you can treat the missing

normalisation constant as just another parameter. Gives you

an alternative likelihood function.

I Applies to sequential problems as well.

I Noise-contrastive divergence is an approximation of the

Poisson transform and we can now extend it to the sequential

setting.

I Sequential estimation can be turned into a semiparametric

logistic regression problem.



Part II

The Poisson transform



Poisson point processes

I Poisson processes are distributions over countable subsets of a

domain Ω (e.g., Ω = R for a temporal point process).

I Let S be a realisation from a PP. For all (measurable) A ⊆ Ω,

the number of points of S in A follows a Poisson distribution

with parameter

λA = E (|S ∩ A|) =

ˆ
A
λ (y) dy

where λ (y) is the intensity function.



Poisson point processes (II)

Let's assume that
´

Ω λ (y) dy <∞, then

I The cardinal of S is Poisson, with parameter
´

Ω λ (y) dy <∞;

I conditional on |S | = k , the elements of S are IID with density

∝ exp {λ(y)} .



Likelihood of a Poisson process

log p (S |λ) =
∑
yi∈S

log λ (yi )−
ˆ

Ω
λ (y) dy



The Poisson transform

I Generalisation of the Poisson-Multinomial transform (Baker,

1994)

I For estimation purposes, you can treat IID data in just about

any space as coming from a Poisson process.

I New likelihood function: no loss of information, one extra

latent parameter.



Theorem statement (I)

Data: y1, . . . , yn ∈ Ω, density p(y|θ) ∝ exp {fθ(y)}, so
log-likelihood is

L(θ) =
n∑

i=1

fθ(yi )− n log

ˆ
Ω
exp {fθ (y)} dy.

Poisson log-likelihood:

M (θ, ν) =
n∑

i=1

{fθ(yi ) + ν} − n

ˆ
Ω
exp {fθ (y) + ν} dy

i.e. log-likelihood of a PP with intensity λ(y) = fθ(y) + ν.
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Theorem statement (II)

Theorem

Let θ? = argmax
θ∈Θ

L (θ) and
(
θ̃, ν?

)
= argmax

θ∈Θ,ν∈R
M (θ, ν). Then

θ̃ = θ? and ν? = − log
(´

exp {fθ? (y)} dy
)
.

In other words, the MLE can be computed by maximisingM (θ, ν)
in both variables. There is no loss of information. Also, asymptotic

con�dence intervals for θ are the same. The latent variable ν
�estimates� the normalisation constant.



Proof

For �xed θ, maximiseM (θ, ν) wrt ν leads to:

ν?(θ) = − log

(ˆ
exp {fθ? (y)} dy

)
and

M(θ, ν?(θ)) = L(θ)− n.



Poisson vs. standard likelihood

Running example: truncated exponential distribution:

y ∈ [0, 1], p(y |θ) ∝ exp (θy)



Extension to sequential models

The same logic can be applied to sequential models:

pθ(yt |yt−1) ∝ exp {fθ(yt , yt−1)}

We will apply the Poisson transform to each conditional

distribution.



Extension to sequential models

I Original log-likelihood of sequence:

L(θ) =
n∑

t=1

[
fθ(yt ; yt−1)− log

(ˆ
Ω
exp {fθ (y; yt−1)} dy

)]

I Poisson-transformed log-likelihood:

M (θ,ν) =
n∑

t=1

{fθ(yt ; yt−1) + νt−1}−
ˆ

Ω

n∑
t=1

exp {fθ (y; yt−1) + νt−1} dy

We have introduced one latent variable νt per observation. Sum of

integrals becomes integral of a sum.
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Extension to sequential models

Maximising the Poisson-transformed likelihood wrt (θ,ν), gives the
MLE for θ, and

ν?t−1 (θ?) = − log

(ˆ
exp {fθ? (y; yt−1)} dy

)
,

i.e. minus the log-marginalisation constant for the conditional

p(y|yt−1,θ?) ∝ exp {fθ?(y; yt−1)} .



From parametric to semi-parametric inference

The value of the latent variables at the mode are a function of

yt−1 :

ν?t−1 (θ?) = − log

(ˆ
exp {fθ? (y; yt−1)} dy

)
= χ(yt−1).

If yt , yt′ are close, νt , νt−1 should be close as well, i.e., χ (y) is

(hopefully) smooth.

⇒ Do inference over χ: e.g. if you have n points but χ is well

captured by a spline basis with k � n components, use spline basis

instead. Poisson likelihood becomes:

M(θ, χ) =
n∑

t=1

{
fθ(yt ; yt−1) + χ(y t−1)

}
−
ˆ

Ω

n∑
t=1

exp
{
fθ (y; yt−1) + χ(y t−1)

}
dy



From parametric to semi-parametric inference

The value of the latent variables at the mode are a function of
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t=1

{
fθ(yt ; yt−1) + χ(y t−1)

}
−
ˆ

Ω

n∑
t=1

exp
{
fθ (y; yt−1) + χ(y t−1)

}
dy



Using the Poisson transform in practice

Back to the IID case: Poisson-transformed likelihood still involves

an intractable integral

M (θ, ν) =
n∑

i=1

{fθ(yi ) + ν} − n

ˆ
Ω
exp {fθ (y) + ν} dy

which we need to approximate.

Several ways, but an interesting one is to go through logistic

regression.
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Stochastic gradient descent

Before we go to logistic regression, note that another approach

would be to use Monte Carlo (importance sampling) to obtain an

unbiased estimate of the gradient:

1

n

∂

∂θ
M (θ, ν) =

1

n

n∑
i=1

∂

∂θ
f (yi ;θ)−

ˆ
Ω

∂

∂θ
f (yi ;θ)exp (fθ (y) + ν) dy

1

n

∂

∂ν
M (θ, ν) = 1−

ˆ
Ω
exp (fθ (y) + ν) dy

The we could use SGD (stochastic gradient descent) to maximise

M (θ, ν).



Part III

The logistic trick & noise-contrastive

divergence



The logistic trick

I Idea: reduce an estimation problem to a classi�cation problem.

I Several versions:

I Logistic regression for density estimation: Hastie et al. (2003),
intensity estimation: Baddeley et al. (2010).

I Logistic regression for normalisation constants: Geyer (1994).
I Logistic regression for estimation in unnormalised models:

Gutmann and Hyvärinen (2012).

I The last one is called �noise-contrastive divergence� by the

authors.



The logistic trick

We have n random points from distributions p(y) and n points

from q(y). We note zi = 1 if the i-th point is from p, zi = 0

otherwise. Logistic regression models the log-odds ratio:

η(y) = log
p(z = 1|y)

p(z = 0|y)
.

We have that:

η(y) = log
p(y)

q(y)

⇒ provided q(y) is known, we can �rst estimate η (doing some

form of logistic regression), and then recover p(y) from η(y).



From the logistic trick to noise-contrastive divergence

If we have a normalised model pθ(y) then we can run a logistic

regression with the following model for the log-odds:

η (y ;θ) = log pθ(y)− log q (y) .

If the model is unnormalised, pθ(y) ∝ exp {fθ(y)}, we introduce an

intercept in the logistic regression

η (y ;θ) = fθ(y) + ν − log q (y) .

This is the noise-contrastive divergence (NCD) technique of

Gutmann and Hyvärinen (2012).
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Truncated exponential

Recall the truncated exponential model:

p(y |θ) ∝ exp (θy)

We produce reference samples from U(0, 1), so that the logistic

model for NCD is just:

η (y ; θ) = θy + ν

Fitting in R:

m <- glm(z~y+offset(logratio),data=df,family=binomial)



Summary

I Logistic trick: get a logistic classi�er to discriminate true data

from random reference data (from a known distribution). It

implicitly learns a model for the true data

I NCD: in unnormalised models, introduce an intercept for the

missing normalisation constant

I Our interpretation: NCD is an approximation of the

Poisson-transformed likelihood



NCD approximates the Poisson transform

I In NCD, you can introduce as many reference points (points

simulated from q) as you like.

I Parametrise the log-odds by

η (y) = fθ(y) + ν + log
n

m
− log q(y)

where m is the number of reference points.

I Theorem: as m→ +∞, the logistic log-likelihood Rm(θ, ν)
tends to the Poisson log-likelihoodM (θ, ν) (pointwise).



NCD approximates the Poisson transform

To sum up: take your true n datapoints, add m random reference

datapoints, and estimate the model

pθ(y|θ) ∝ exp {fθ(y)}

using a logistic regression with log-odds

η (y) = fθ(y) + ν + log
n

m
− log q(y)

The intercept will be used to estimate the missing normalisation

constant. The technique is e�ectively a practical way of

approximating a Poisson-transformed likelihood.



NCD for sequential models

The relationship between the Poisson transform and NCD shows

directly how to adapt NCD to sequential models: apply NCD to

each conditional distribution (the transition kernels)

I Reference density q(y) becomes a reference kernel q (yt |yt−1)

I Include an intercept νt per conditional distribution
p(yt |yt−1,θ)



Truncated exponential, revisited

We turn our previous example into a Markov chain:

p(yt |yt−1, θ) ∝ exp (θytyt−1)
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Truncated exponential, revisited

Consider the NCD approximation for �xed yt−1. The model for the

log-odds will take the form:

η (yt) = θytyt−1 + νt−1 + log
n

m
− log q(yt |yt−1)

This leads to a linear logistic regression with ytyt−1 as a covariate.



Parametric vs. semi-parametric model

It is wasteful to �t a separate intercept per time-point. As in the

semi-parametric version of the Poisson transform, we can use:

η (yt) = θytyt−1 + χ (yt−1) + log
n

nr
− log q(yt |yt−1)

where χ (yt−1) will be �tted using splines.



In practice (I)

Positive examples are given by:
Value at time t − 1 Value at time t Label

y1 y2 1

y2 y3 1
...

...
...

yn−1 yn 1
While negative examples are given by:
Value at time t − 1 Value at time t Label

y1 r2 0

y2 r3 0
...

...
...

yn−1 rn 0



In practice (II)

We can �t the (semi-parametric) model via:

m <- gam(label ~ I(y_t*y_tminusone)+s(y_tminusone),data=df,family="binomial")

The fully parametric model corresponds to:

m <- gam(label ~ I(y_t*y_tminusone)+as.factor(y_tminusone),data=df,family="binomial")



Parametric vs. semi-parametric model
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Part IV

Application: LATKES



Data

Figure : A sequence of eye movements extracted from the dataset of
Kienzle et al. (2009). Fixation locations are in red and successive
locations are linked by a straight line.

Eye movements recorded while 14 subjects where exploring a set of

photographs (Fig. 1); each contributing between 600 and 2,000

datapoints.



LATKES

LATKES: Log-Additive Transition Kernels. A class of spatial

Markov chain models, with applications to eye movement data:

p(yt |yt−1, . . . , yt−k) ∝ exp
{∑

βivi (yt) + g(yt , yt−1, . . . , yt−k)
}

where y1 . . . yt are spatial locations (e.g. on a screen), vi (y) are

spatial covariates, g(...) is an interaction kernel.



Fitting LATKES using logistic regression

I Transition kernel only speci�ed up to normalisation constant.

I Can use sequential version of NCD to turn the problem into

(semiparametric) logistic regression.

I Standard packages can be used (mgcv, INLA).



Example

We �t the model:

p(yt |yt−1) ∝ exp {b(||yt ||) + rdist (||yt − yt−1||) + rang (∠ (yt − yt−1))}

where:

I b(||yt ||) should re�ect a centrality bias;

I rdist (||yt − yt−1||) should re�ect the fact that successive

�xations are close together;

I rang (∠ (yt − yt−1)) should re�ect a tendency for making

movements along the cardinal axes (vertical and horizontal).



Note on NCD implementation

I We �tted functions b, rdist and rang (plus the log-normalising

constant χ, as already explained) using smoothing splines.

(Extension of NCD to smoothing splines is direct: simply add

appropriate penalty to log-likelihood).

I We used R package mgcv (Wood, 2006).

I Reference points were sampled from an Uniform distribution

(over the screen); 20 reference datapoints per datapoint.

I Requires one line of code of R, took about 5 minutes.



Results
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Figure : The di�erent panels display the estimated e�ects of saccade
angle (rang ), distance to previous �xation (rdist) and centrality bias (s).
Individual subjects are in gray, and the group average is in blue.



Conclusion

I Poisson transform: you can treat any data as coming from a

Poisson point process in the appropriate space, and infer the

intensity rather than the density.

I It is OK to treat the normalisation constant as a free

parameter!

I NCD e�ectively approximates the Poisson transform via

logistic regression

I Inference for unnormalised sequential models can be turned

into semi-parametric logistic regression

I True as well for unnormalised models with covariates

I See paper on arxiv (1406.2839) and soon in Statistics and

Computing.
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