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Problem statement

I Task: Estimate the parameters θ of a parametric model p(.|θ)
of a d dimensional random vector x

I Given: Data X = (x1, . . . , xn) (iid)

I Given: Unnormalized model φ(.|θ)∫
ξ
φ(ξ;θ) dξ = Z (θ) 6= 1 p(x;θ) =

φ(x;θ)

Z (θ)
(1)

Normalizing partition function Z (θ) not known / computable.
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Why does the partition function matter?

I Consider p(x ; θ) = φ(x ;θ)
Z(θ) =

exp
(
−θ x2

2

)
√

2π/θ

I Log-likelihood function for precision θ ≥ 0

`(θ) = −n log

√
2π

θ
−θ

n∑
i=1

x2
i

2
(2)

I Data-dependent (blue) and
independent part (red)
balance each other.

I If Z (θ) is intractable, `(θ)
is intractable.
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Why is the partition function hard to compute?

Z (θ) =
∫
ξ
φ(ξ;θ) dξ

I Integrals can generally not be solved in closed form.

I In low dimensions, Z (θ) can be approximated to high
accuracy.

I Curse of dimensionality: Solutions feasible in low dimensions
become quickly computationally prohibitive as the dimension
d increases.
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Why are unnormalized models important?

I Unnormalized models are widely used.
I Examples:

I models of images (Markov random fields)
I models of text (neural probabilistic language models)
I models in physics (Ising model)
I . . .

I Advantage: Specifying unnormalized models is often easier
than specifying normalized models.

I Disadvantage: Likelihood function is generally intractable.
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Intuition behind noise-contrastive estimation

I Formulate the estimation problem as a classification problem:
observed data vs. auxiliary “noise” (with known properties)

I Successful classification ≡ learn the differences between the
data and the noise

I differences + known noise properties ⇒ properties of the data

I Unsupervised learning by
supervised learning

I We used (nonlinear) logistic
regression for classification

Data Noise

Data or noise ?
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Logistic regression (1/2)

I Let Y = (y1, . . . ym) be a sample from a random variable y
with known (auxiliary) distribution py.

I Introduce labels and form regression function:

P(C = 1|u;θ) =
1

1 + G (u;θ)
G (u;θ) ≥ 0 (3)

I Determine the parameters θ
such that P(C = 1|u;θ) is

I large for most xi
I small for most yi .

Data: class 1 Noise: class 0

Class 1 or 0?
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Logistic regression (2/2)

I Maximize (rescaled) conditional log-likelihood using the
labeled data {(x1, 1), . . . , (xn, 1), (y1, 0), . . . , (ym, 0)},

JNCE
n (θ) =

1

n

(
n∑

i=1

logP(C = 1|xi ;θ) +
m∑
i=1

log [P(C = 0|yi ;θ)]

)

I For large sample sizes n and m, θ̂ satisfying

G (u; θ̂) =
m

n

py(u)

px(u)
(4)

is maximizing JNCE
n (θ). Without any normalization

constraints. (proof in appendix)
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Noise-contrastive estimation

(Gutmann and Hyvärinen, 2010; 2012)

I Assume unnormalized model φ(.|θ) is parametrized such that
its scale can vary freely.

θ → (θ; c) φ(u;θ)→ exp(c)φ(u;θ) (5)

I Noise-contrastive estimation:

1. Choose py
2. Generate auxiliary data Y
3. Estimate θ via logistic regression with

G (u;θ) =
m

n

py(u)

φ(u;θ)
. (6)

I G (u;θ)→ m
n

py(u)
px(u) ⇒ φ(u;θ)→ px(u)
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Example

I Unnormalized Gaussian:

φ(u;θ) = exp (θ2) exp

(
−θ1

u2

2

)
, θ1 > 0, θ2 ∈ R, (7)

I Parameters: θ1 (precision), θ2 ≡ c (scaling parameter)

Contour plot of JNCE
n (θ) :

I Gaussian noise with
ν = m/n = 10

I True precision θ?1 = 1

I Black: normalized models
Green: optimization paths
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Statistical properties

(Gutmann and Hyvärinen, 2012)

I Assume px = p(.|θ?)

I Consistency: As n increases,

θ̂n = argmaxθJ
NCE
n (θ), (8)

converges in probability to θ?.

I Efficiency: As ν = m/n increases, for any valid choice of py,
noise-contrastive estimation tends to “perform as well” as
MLE (it is asymptotically Fisher efficient).
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Validating the statistical properties with toy data

I Let the data follow the ICA model x = As with 4 sources.

log p(x;θ?) = −
4∑

i=1

√
2|b?i x|+ c? (9)

with c? = log |detB?| − 4
2 log 2 and B? = A−1.

I To validate the method, estimate the unnormalized model

log φ(x;θ) = −
4∑

i=1

√
2|bix|+ c (10)

with parameters θ = (b1, . . . ,b4, c).

I Contrastive noise py: Gaussian with the same covariance as
the data.
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Validating the statistical properties with toy data

I Results for 500 estimation problems with random A, for
ν ∈ {0.01, 0.1, 1, 10, 100}.

I MLE results: with properly normalized model
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Computational aspects

I The estimation accuracy improves as m increases.

I Trade-off between computational and statistical performance.

I Example: ICA model as before but with 10 sources. n = 8000,
ν ∈ {1, 2, 5, 10, 20, 50, 100, 200, 400, 1000}.
Performance for 100 random estimation problems:
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Computational aspects

How good is the trade-off? Compare with

1. MLE where partition function is evaluated with importance
sampling. Maximization of

JIS(θ) =
1

n

n∑
i=1

log φ(xi ;θ)− log

(
1

m

m∑
i=1

φ(yi ;θ)

py(yi )

)
(11)

2. Score matching: minimization of

JSM(θ) =
1

n

n∑
i=1

10∑
j=1

1

2
Ψ2

j (xi ;θ) + Ψ′j(xi ;θ) (12)

with Ψj(x;θ) = ∂ log φ(x;θ)
∂xj

(here: smoothing needed!)

(see Gutmann and Hyvärinen, 2012, for more comparisons)
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Computational aspects

I NCE is less sensitive to the mismatch of data and noise
distribution than importance sampling.

I Score matching does not perform well if the data distribution
is not sufficiently smooth.
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Application to natural image statistics

I Natural images ≡ images which we see in our environment
I Understanding their properties is important

I for modern image processing
I for understanding biological visual systems
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Human visual object recognition

I Rapid object recognition by
feed-forward processing

I Computations in middle
layers poorly understood

I Our approach: learn the
computations from data

I Idea: the units indicate how
probable an input image is.
(up to normalization)

? ? ?

? ? ?

???

????

??

??

(Adapted from Koh and Poggio, 
Neural Computation, 2008)

High-level
vision

Simple 
features
(edges, ...)

Faces,
objects, ... 

Low-level
vision

(Gutmann and Hyvärinen, 2013)
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Unnormalized model of natural images

I Three processing layers (> 2 · 105 parameters)
I Fit to natural image data (d = 1024, n = 70 · 106)
I Learned computations: detection of curvatures, longer

contours, and texture.

Curvature Contours Texture

Response
to local 
gratings

Strongly
activating
inputs

(Gutmann and Hyvärinen, 2013)
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Bregman divergence between two vectors a and b
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dΨ(a, b) = 0⇔ a = b dΨ(a, b) > 0 if a 6= b
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Bregman divergence between two functions f and g

I Compute dΨ(f (u), g(u)) for all u in their domain; take
weighted average

d̃Ψ(f , g) =

∫
dΨ(f (u), g(u))dµ(u) (13)

=

∫
Ψ(f )−

[
Ψ(g) + Ψ′(g)(f − g)

]
dµ (14)

I Zero iff f = g (a.e.); no normalization condition on f or g

I Fix f , omit terms not depending on g ,

J(g) =

∫ [
−Ψ(g) + Ψ′(g)g −Ψ′(g)f

]
dµ (15)
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Estimation of unnormalized models

J(g) =
∫ [

− Ψ(g) + Ψ′(g)g − Ψ′(g)f
]
dµ

I Idea: Choose f , g , and µ so that we obtain a computable cost
function for consistent estimation of unnormalized models.

I Choose f = T (px) and g = T (φ) such that

f = g ⇒ px = φ (16)

Examples:
I f = px, g = φ
I f = px

νpy
, g = φ

νpy
I . . .

I Choose µ such that the integral can either be computed in
closed form or approximated as sample average.

(Gutmann and Hirayama, 2011)
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Estimation of unnormalized models

(Gutmann and Hirayama, 2011)

I Several estimation methods for unnormalized models are part
of the framework

I Noise-contrastive estimation
I Poisson-transform (Barthelmé and Chopin, 2015)
I Score matching (Hyvärinen, 2005)
I Pseudo-likelihood (Besag, 1975)
I . . .

I Noise-contrastive estimation:

Ψ(u) = u log u − (1 + u) log(1 + u) (17)

f (u) =
νpy(u)

px(u)
dµ(u) = px(u)du (18)

(proof in appendix)
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Conclusions

I Point estimation for parametric models with intractable
partition functions (unnormalized models)

I Noise contrastive estimation
I Estimate the model by learning to classify between data and

noise
I Consistent estimator, has MLE as limit
I Applicable to large-scale problems

I Bregman divergence as general framework to estimate
unnormalized models.
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Proof of Equation (4)

For large sample sizes n and m, θ̂ satisfying

G (u; θ̂) =
m

n

py(u)

px(u)

is maximizing JNCE
n (θ),

JNCE
n (θ) =

1

n

(
n∑

i=1

logP(C = 1|xi ;θ) +
m∑
i=1

log [P(C = 0|yi ;θ)]

)

without any normalization constraints.
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Proof of Equation (4)

JNCE
n (θ) =

1

n

(
n∑

i=1

logP(C = 1|xi ;θ) +
m∑
i=1

log [P(C = 0|yi ;θ)]

)

=
1

n

n∑
t=1

logP(C = 1|xi ;θ) +
m

n

1

m

m∑
t=1

log [P(C = 0|yi ;θ)]

Fix the ratio m/n = ν and let n→∞ and m→∞. By law of
large numbers, JNCE

n converges to JNCE,

JNCE(θ) = Ex (logP(C = 1|x;θ)) + νEy (logP(C = 0|y;θ)) (19)

With P(C = 1|x;θ) = 1
1+G(x;θ) and P(C = 0|y;θ) = G(y;θ)

1+G(y;θ) ...
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... we have

JNCE(θ) =− Ex log(1 + G (x;θ)) + νEy logG (y;θ)−
νEy log (1 + G (y;θ)) (20)

Consider the objective JNCE(θ) as a function of G rather than θ,

J NCE(G ) =− Ex log(1 + G (x)) + νEy logG (y)− νEy log (1 + G (y))

=−
∫

px(ξ) log(1 + G (ξ))dξ+

ν

∫
py(ξ) (logG (ξ)− log(1 + G (ξ)))

Compute functional derivative δJ NCE/δG ,

δJ NCE(G )

δG
= − px(ξ)

1 + G (ξ)
+ νpy(ξ)

(
1

G (ξ)
− 1

1 + G (ξ)

)
(21)
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δJ NCE(G )

δG
= − px(ξ)

1 + G (ξ)
+ νpy(ξ)

(
1

G (ξ)
− 1

1 + G (ξ)

)
(22)

= − px(ξ)

1 + G (ξ)
+ νpy(ξ)

1

G (ξ)(1 + G (ξ))
(23)

!
= 0 (24)

We obtain

px(ξ)

1 + G ∗(ξ)
= νpy(ξ)

1

G ∗(ξ)(1 + G ∗(ξ))
(25)

G ∗(ξ)px(ξ) = νpy(ξ) (26)

G ∗(ξ) = ν
py(ξ)

px(ξ)
(27)

=
m

n

py(ξ)

px(ξ)
(28)

Evaluating ∂2J NCE/∂G 2 at G ∗ shows that G ∗ is a maximizer.
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Proof

In noise-contrastive estimation, we maximize

JNCE
n (θ) =

1

n

(
n∑

i=1

logP(C = 1|xi ;θ) +
m∑
i=1

log [P(C = 0|yi ;θ)]

)

Sample version of

JNCE(θ) = Ex (logP(C = 1|x;θ)) + νEy (logP(C = 0|y;θ))

With

P(C = 1|u;θ) =
1

1 + G (u;θ)
P(C = 0|u;θ) =

1

1 + 1/G (u;θ)

JNCE(θ) = −Ex log(1 + G (x;θ))− νEy log(1 + 1/G (y;θ)) (29)

where G (u;θ) =
νpy(u)
φ(u;θ) .
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The general cost function in the Bregman framework is

J(g) =

∫ [
−Ψ(g) + Ψ′(g)g −Ψ′(g)f

]
dµ (30)

With

Ψ(g) = g log(g)− (1 + g) log(1 + g) (31)

Ψ′(g) = log(g)− log(1 + g) (32)

we have

J(g) =

∫ [
− g log(g) + (1 + g) log(1 + g)

+ log(g)g − log(1 + g)g

− log(g)f + log(1 + g)f
]
dµ (33)
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J(g) =

∫ [
log(1 + g)− log(g)f + log(1 + g)f

]
dµ (34)

=

∫ [
log(1 + g) + log(1 + 1/g)f

]
dµ (35)

With

f (u) =
νpy(u)

px(u)
g(u) = G (u;θ) dµ(u) = px(u)du (36)

we have

J(G (.;θ)) =

∫
px(u) log(1 + G (u;θ))du

+ νpy(u) log(1 + 1/G (u;θ))du (37)

=− JNCE(θ) (38)
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