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Hidden Markov models
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Figure: Graph representation of a general hidden Markov model.

(Xt): initial µθ, transition fθ. (Yt) given (Xt): measurement gθ.
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Hidden Markov models

How to estimate/predict the latent process (Xt) given the
observations (Yt) and a fixed parameter θ?

How to estimate the parameter θ?
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Example: Hidden Autoregressive

Hidden process Xt = AXt−1 + εt, where εt ∼ Nd(0, I),
X0 ∼ Nd(0, I).

Aij = θ|i−j|+1 for i, j ∈ 1 : d.

Observations Yt = Xt + ηt, where ηt ∼ Nd(0, I).

taken from Guarniero, Johansen & Lee, 2015.
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Example: Phytoplankton–Zooplankton
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Figure: A time series of 365 observations generated according to a
phytoplankton–zooplankton model.
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Example: Phytoplankton–Zooplankton

Hidden process (Xt) = (αt, pt, zt).

At each (integer) time, αt ∼ N (µα, σ2
α).

Given αt,

dpt
dt

= αtpt − cptzt,

dzt
dt

= ecptzt −mlzt −mqz
2
t .

Observations: log Yt ∼ N (log pt, σ2
y).

Initial distribution: (log p0, log z0) ∼ N (µ0, σ
2
0).

Unknown parameters: θ = (µ0, σ0, µα, σα, σy, c, e,ml,mq).
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Particle filter
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Particle filter

At step t = 0,

1 Sample xk0 ∼ µθ(dx0), for all k ∈ 1 : N .

2 Set wk0 = N−1, for all k ∈ 1 : N .

At step t ≥ 1,

1 Sample ancestors a1:N
t ∼ r(da1:N | w1:N

t−1). ← resampling

2 Sample xkt ∼ fθ(dxt | x
ak

t
t−1), for all k ∈ 1 : N .

3 Compute wkt = gθ(yt | xkt ), for all k ∈ 1 : N .
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Particle filter, rewritten

At step t = 0,

1 Sample UkM , compute xk0 = M(UkM , θ), for all k ∈ 1 : N .

2 Set wk0 = N−1, for all k ∈ 1 : N .

At step t ≥ 1,

1 Sample ancestors a1:N
t ∼ r(da1:N | w1:N

t−1). ← resampling

2 Sample UkF,t, compute xkt = F (xa
k
t
t−1, U

k
F,t, θ), for all k ∈ 1 : N .

3 Compute wkt = gθ(yt | xkt ), for all k ∈ 1 : N .
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Output

Approximation of the filtering distributions

∀t ∈ {1, . . . , T} p(dxt|y1:t, θ)

by

∀t ∈ {1, . . . , T} pN (dxt|y1:t, θ) =
N∑
k=1

wkt δxk
t
(dxt).

Approximation of the likelihood function L(θ) = p(y1:T |θ)
by

pN (y1:T |θ) =
T∏
t=1

1
N

N∑
k=1

wkt .
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Idea

Particle filters are increasingly used as parts of
encompassing algorithms.
e.g. Particle MCMC, Iterated Filtering

Some of these algorithms compare the outputs of multiple
particle filters.

Better algorithms can be obtained by correlating particle
filters.

i.e. correlation helps comparison.
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Example: approximation of the likelihood
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Figure: Estimates of the log-likelihood obtained by particle filters, in a
hidden auto-regressive model, T = 100 observations, N = 64 particles.

See Pitt & Malik, 2011, Lee 2008.
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Example: finite difference

A simple estimator of ∇`(θ) = ∇ logL(θ) is:

∇̂`(θ) = log p̂N (y1:T | θ + h)− log p̂N (y1:T | θ − h)
2h .

The two log-likelihood estimators can be obtained using
independent particle filters given θ + h and θ − h. . .

. . . but if we could positively correlate the two log-likelihood
estimators, the variance of ∇̂`(θ) would be smaller.
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Example: finite difference
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Figure: Standard deviation of ∇̂`(θ), for some θ, in a hidden
auto-regressive model, T = 100 observations, N = 128 particles.
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Example: finite difference
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Figure: Same but in dimension 5.
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Example: finite difference
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Figure: Same but in dimension 10.
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Example: Metropolis-Hastings

Assume we can compute the target density π(θ|y1:T ) pointwise.

1: Set some θ(1).
2: for i = 2 to M do
3: Propose θ? ∼ q(·|θ(i−1)).
4: Compute the ratio:

α = min
(

1, π(θ?)p(y1:T |θ?)
π(θ(i−1))p(y1:T |θ(i−1))

q(θ(i−1)|θ?)
q(θ?|θ(i−1))

)
.

5: Set θ(i) = θ? with probability α, otherwise set θ(i) = θ(i−1).
6: end for
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Example: particle Metropolis-Hastings

Assume we can run a particle filter to get pN (y1:T |θ).

1: Set some θ(1) and sample pN (y1:T |θ(1)).
2: for i = 2 to M do
3: Propose θ? ∼ q(·|θ(i−1)) and sample pN (y1:T |θ?).
4: Compute the ratio:

α = min
(

1, π(θ?)pN (y1:T |θ?)
π(θ(i−1))pN (y1:T |θ(i−1))

q(θ(i−1)|θ?)
q(θ?|θ(i−1))

)
.

5: Set θ(i) = θ? with probability α, otherwise set θ(i) = θ(i−1).
6: end for

Andrieu, Doucet & Holenstein, 2010.
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Example: particle Metropolis-Hastings

The acceptance ratio involves a ratio of particle filter
estimators:

α = min
(

1, π(θ?)pN (y1:T |θ?)
π(θ(i−1))pN (y1:T |θ(i−1))

q(θ(i−1)|θ?)
q(θ?|θ(i−1))

)
.

If we positively correlate pN (y1:T |θ?) and pN (y1:T |θ(i−1)),
the ratio of estimators becomes more precise.

Deligiannidis, Doucet, Pitt & Kohn, 2015: epic improvements
for the case large T / small N .
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Outline

1 Motivation for coupling particle filters

2 How to couple two particle filters

3 A new smoothing algorithm
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Coupled particle filter

By coupled particle filters we mean . . .

two particle systems, (wkt , xkt )Nk=1 and (w̃kt , x̃kt )Nk=1,

conditioned on θ and θ̃ respectively,

using common random numbers UM and UF for the initial
and propagation steps.

One still has the freedom to choose a “coupled resampling”
scheme.
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Coupled particle filter
At step t = 0,

1 Sample UkM , and compute, for all k ∈ 1 : N ,

xk0 = M(UkM , θ) and x̃k0 = M(UkM , θ̃).

2 Set wk0 = N−1 and w̃k0 = N−1, for all k ∈ 1 : N .
At step t ≥ 1,

1 Sample ancestors:

(at, ãt) ∼ r̄(·|w1:N
t−1 , w̃

1:N
t−1). ← coupled resampling

2 Sample UkF,t, and compute, for all k ∈ 1 : N ,

xkt = F (xa
k
t
t−1, U

k
F,t, θ) and x̃kt = F (x̃ã

k
t
t−1, U

k
F,t, θ̃).

3 Compute wkt = g(yt | xkt , θ) and w̃kt = g(yt | x̃kt , θ̃).
Pierre E. Jacob Coupling Particle Systems 21/ 56



Coupled resampling

Given two particle systems, (wk, xk)Nk=1 and (w̃k, x̃k)Nk=1. . .

We want (?) to sample a1:N and ã1:N in {1, . . . , N}N such
that

∀k ∀j P(ak = j) = wj and P(ãk = j) = w̃j .

Equivalently, we want to sample (ak, ãk)Nk=1 from a
probability matrix P such that

P1 = w and P T1 = w̃.

Independent resampling corresponds to P = w w̃T . What else?

Pierre E. Jacob Coupling Particle Systems 22/ 56



Transport resampling

Suppose that we want to sample a couple (a, ã), from some
probability matrix P , such that the resampled particles, xa
and x̃ã, are as similar as possible.

Similarity can be encoded by a distance d on the space of x.

The expected distance between xa and x̃ã, conditional
upon the particles, is given by

E
[
d(xa, x̃ã)

]
=

N∑
i=1

N∑
j=1

Pij d(xi, x̃j).

Pierre E. Jacob Coupling Particle Systems 23/ 56



Transport resampling

Introduce J (w, w̃), the set of matrices satisfying

P1 = w and P T1 = w̃.

Compute D = (d(xi, x̃j))Ni,j=1, for a cost of O(N2).

Optimal transport problem: solving

P ? = inf
P∈J (w,w̃)

N∑
i=1

N∑
j=1

PijDij .
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Transport resampling

Sampling from the optimal P ? minimizes the expected
distance between the two sets of particles, under the
marginal constraint.

(Which is not exactly the same as maximizing the
correlation between e.g. likelihood estimators).

Computing P ? requires O(N3) operations, but efficient
approximations have been proposed (Cuturi 2013 and
following work) in O(N2).

The cost is linear in the dimension of x, and independent of
the model.
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Index-matching resampling

At the initial step,

xk0 = M(UkM , θ) and x̃k0 = M(UkM , θ̃).

so that particles with the same index are similar (if M is
continuous in θ).

At subsequent steps, the same random numbers UkF are
used to propagate xak and x̃ã

k .

Standard resampling breaks the correspondence between
similarity and indices: xak and x̃ã

k might not be similar.
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Index-matching resampling

To preserve the correspondence between indices, we want
to maximize the probability of drawing couples of ancestors
such that a = ã.
. . . i.e. we want P in J (w, w̃) with maximum trace.
We can define:

P = diag(min{w, w̃}) + (1− α)r r̃T ,
with

α =
N∑
k=1

min{wk, w̃k},

r = (w −min{w, w̃})/(1− α),
r̃ = (w̃ −min{w, w̃})/(1− α).

P has maximum trace in J (w, w̃): we cannot augment its
diagonal without violating the marginal constraints.
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Index-matching resampling
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Index-matching resampling

Distance between 1, 000 pairs of particles, sampled
independently and then propagated with common random
numbers.
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Hidden AR, θ = 0.30, θ̃ = 0.31.
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Index-matching resampling

Distance between 1, 000 pairs of particles, sampled
independently and then propagated with common random
numbers.
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Hidden AR, θ = 0.30, θ̃ = 0.40.
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Sorting and resampling

Univariate setting: x is of dimension 1.

Sort the two systems (xk)Nk=1 and (x̃k)Nk=1.

Perform e.g. systematic resampling on each sorted system,
using the same random numbers.

Thus if ak selects xj in the first system, ãk is likely to
select a x̃i close to xj .

This can be extended to multivariate settings by sorting the
particles according to the Hilbert space-filling curve.
See Deligiannidis, Doucet, Pitt & Kohn, 2015, and Pitt &
Malik, 2011, Gerber & Chopin, 2015.
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Who cares about unbiased estimators?

Coupled resampling leads to a practical unbiased estimator
Hu of the smoothing quantity∫

h(x0:T ) p(dx0:T |y1:T , θ),

for a test function h (for fixed θ).

Computing H(1)
u , . . . ,H

(R)
u in parallel, we obtain

H̄u = 1
R

R∑
r=1

H(r)
u ,

along with a CLT-based error estimate.

By contrast, for existing smoothing techniques, parallelism
is not trivial, nor is the construction of error estimates.
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Proposed estimator

Use Rhee & Glynn (2014) trick to turn a Conditional
Particle Filter kernel into an unbiased estimator of
smoothing functionals.

Coupled resampling schemes are instrumental in this
construction.

Instead of two particle systems given θ and θ̃, we consider
two particle systems with same θ but different “reference
trajectories”.
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Trajectories from particle filters

Upon running a particle filter, we get trajectories x1:N
0:T with

weights w1:N
T .
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Figure: Hidden auto-regressive model, T = 100 observations, N = 128.
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Conditional particle filter

Input: a trajectory x̌0:T .
At step t = 0,

1 Sample xk0 ∼ µθ(dx0), for all k ∈ 1 : N − 1, set xN0 = x̌0.

2 Set wk0 = N−1, for all k ∈ 1 : N .

At step t ≥ 1,

1 Sample ancestors a1:N−1
t ∼ r(da1:N−1 | w1:N

t−1), set aNt = N .

2 Sample xkt ∼ fθ(dxt | x
ak

t
t−1), for all k ∈ 1 : N − 1, set

xNt = x̌t.

3 Compute wkt = gθ(yt | xkt ), for all k ∈ 1 : N .
Output: sample a trajectory, xk0:T with probability wkT .
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Conditional particle filter

−2.5

0.0

2.5

0 25 50 75 100
time

pa
th

s

Figure: M = 100 paths, for the hidden auto-regressive model, T = 100
observations, N = 128.
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Conditional particle Filter

−1

0

1

0 25 50 75 100
iteration

x 0

Figure: M = 100 samples for x0, for the hidden auto-regressive model,
T = 100 observations, N = 128.
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Conditional particle Filter
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Figure: M = 100 samples for x100, for the hidden auto-regressive
model, T = 100 observations, N = 128.
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Unbiased estimators
Von Neumann & Ulam (∼ 1950), Kuti (∼ 1980), Rychlik
(∼ 1990), McLeish (∼ 2010), Rhee & Glynn
(2012, 2013, 2014).
Introduce

a sequence of random variables (H(n)) with

E[H(n)] −−−→
n→∞

∫
h(x0:T ) p(dx0:T |y1:T , θ),

e.g. H(n) = h(X(n)), with (X(n)) generated by CPF,
a sequence (∆(n)) such that

E[∆(n)] = E[H(n) −H(n−1)],

E
[ ∞∑
n=0
|∆(n)|

]
<∞,

with H(−1) = 0 by convention.
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Unbiased estimators

Then

E
∞∑
n=0

∆(n) =
∞∑
n=0

E[∆(n)] =
∞∑
n=0

E[H(n) −H(n−1)]

= lim
n→∞

E[H(n)] =
∫
h(x0:T ) p(dx0:T |y1:T , θ).

Thus, consider

Hu =
K∑
n=0

∆(n)

P (K ≥ n) ,

where K is an integer-valued random variable. Then

E[Hu] = E[
∞∑
n=0

∆(n)1(K ≥ n)
P (K ≥ n) ] =

∫
h(x0:T ) p(dx0:T |y1:T , θ).
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Unbiased estimators

Idea from Rhee & Glynn, 2014. Write

X(n) = ϕn(X(n−1)) = ϕn ◦ ϕn−1 ◦ . . . ◦ ϕ1(X(0)).

Introduce

X̃(0) ∆= X(0), X̃(1) = ϕ2(X̃(0)), . . . , X̃(n) = ϕn+1◦. . .◦ϕ2(X(0)).

Then ∆(n) = h(X(n))− h(X̃(n−1)) is such that

E[∆(n)] = E[H(n) −H(n−1)]

and we might have

E
[ ∞∑
n=0
|∆(n)|

]
<∞.
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Unbiased estimators based on CPF chains

Start from X(0) and X̃(0) generated by two particle filters.

Apply one step of CPF kernel to X(0), to get X(1).

For n ≥ 2, apply the CPF kernel to both X(n−1) and
X̃(n−2), with the same random numbers, to get X(n) and
X̃(n−1).

We can see each step as a joint CPF acting on pairs of
trajectories, and use coupled resampling ideas.

Can we expect ∆(n) = h(X(n))− h(X̃(n−1)) to decrease to
zero in average?
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Norm of ∆(n) with independent resampling
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Hidden auto-regressive model, T = 20 observations, N = 32.
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Norm of ∆(n) with independent resampling
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T = 100 observations, N = 128.
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Norm of ∆(n) with index-matching resampling
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T = 20 observations, N = 32.
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Norm of ∆(n) with index-matching resampling
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T = 100 observations, N = 128.
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Coupled conditional particle Filter

We consider coupled conditional particle filters, acting on
pairs of trajectories:

(X(n), X̃(n−1)) = ϕ̄n(X(n−1), X̃(n−2))

A coupled CPF kernel uses common random numbers for
both systems, and a coupled resampling scheme.
We focus on index-matching resampling.
We see that after a number of coupled CPF steps,
X(n) = X̃(n) exactly, and thus ∆(n) = 0.
We can thus stop early in the computation of

Hu =
K∑
n=0

∆(n)

P (K ≥ n) .
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Proposed estimator

Case h = Id: we estimate the smoothing means.
Sample an integer-valued random variable K.
Sample ϕ1, draw X(0) and set X(1) = ϕ1(X(0)).
Compute ∆(0) = X(0), set Hu ← ∆(0).

Sample X̃(0) ∆= X(0), compute ∆(1) = X(1) − X̃(0).
Set Hu ← Hu + ∆(1)/P(K ≥ 1).
For n = 2, . . . ,K,

Sample ϕ̄n, set (X(n), X̃(n−1)) = ϕ̄n(X(n−1), X̃(n−2)).
Compute ∆(n) = X(n) − X̃(n−1).
Stop if ∆(n) = 0.
Set Hu ← Hu + ∆(n)/P(K ≥ n).

Return Hu.
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Example: Phytoplankton–Zooplankton
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Figure: Phytoplankton–Zooplankton model, T = 365, N = 1, 024,
R = 1, 000 estimators, with a Geometric truncation with mean 100.
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Example: Phytoplankton–Zooplankton
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Figure: Smoothing means of P , T = 365, N = 1, 024, R = 1, 000
estimators, with a Geometric truncation with mean 100.

The bars represent ±2σ around the estimated means. The blue
line is obtained from a long CPF run.
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Example: Phytoplankton–Zooplankton
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Figure: Smoothing means of Z, T = 365, N = 1, 024, R = 1, 000
estimators, with a Geometric truncation with mean 100.

The bars represent ±2σ around the estimated means. The blue
line is obtained from a long CPF run.
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Example: Phytoplankton–Zooplankton
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Figure: Smoothing means of Z, first 65/365 time steps, N = 1, 024,
R = 1, 000 estimators, with a Geometric truncation with mean 100.
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Example: Phytoplankton–Zooplankton
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Figure: Smoothing means of Z, last 65/365 time steps, N = 1, 024,
R = 1, 000 estimators, with a Geometric truncation with mean 100.
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Example: Phytoplankton–Zooplankton
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Figure: Trace of relative variance of the smoothing mean estimator,
T = 365, N = 1, 024, R = 1, 000 estimators, with a Geometric
truncation with mean 100.
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Discussion

Coupled resampling schemes can be used to improve a
variety of particle-based algorithms.
New estimator of smoothing functionals, easy to parallelize
and with error estimates.
Benefits greatly from ancestor sampling:
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The End

Thank you for listening!

Soon on arXiv. . .
PJ, Fredrik Lindsten, Thomas Schön, Coupling Particle Filters.

Pitt & Malik, 2011, Particle filters for continuous likelihood
evaluation and maximisation, J. of Econometrics.

Rhee & Glynn, 2014, Exact estimation for markov chain
equilibrium expectations, arXiv.

Deligiannidis, Doucet, Pitt & Kohn, 2015, The correlated
pseudo-marginal method, arXiv.
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