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Overview of talk

I PART I:
Zero Variance MCMC for intractable problems

I PART II:
Reduced Variance MCMC for doubly intractable problems
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Monte Carlo Integration

Let µg be the expected value of a function g : Rd → R, under π:

µg := Eπ [g(X )] =

∫
Rd g(X )π(x)dx∫

Rd π(x)dx

and let X1, ...,XN be a sequence of iid draws from π.
An unbiased estimator of µg is:

µ̂g :=
1

N

N∑
i=1

g(Xi )

with variance

V (µ̂g ) =
1

N
σ2
g

where σ2
g is the variance of g under π.

Therefore if g has finite variance, µ̂g is a consistent estimator of µg

If drawing iid from π is difficult, build an ergodic Markov chain
{Xn}, stationary wrt π



Intractable likelihoods Control variates

MCMC Integration

Theorem (Tierney 1996). Suppose the ergodic Markov chain {Xn}, with stationary
distribution π and a real valued function g , satisfy one of the following conditions:

I The chain is uniformly ergodic and Eπ
[
g(X )2

]
<∞

I The chain is geometrically ergodic and Eπ
[
|g(X )|2+ε

]
<∞ for some ε > 0

Then

limN→∞NV (µ̂g ) = Eπ
[
(g(X0)− µg )2

]
+ 2

+∞∑
k=1

Eπ [(g(Xk )− µg ) (g(X0)− µg )]

= σ2
g [1 + 2

+∞∑
k=1

ρg (k)] = σ2
g τg = V (g ,P)

is well defined, non-negative and finite, and

√
N (µ̂g − µg )

L−→ N (0, σ2
g τg )

I Delayed rejection strategy −→ reduce τg −→ by modifying P

I Zero variance strategy −→ reduce σ2
g −→ by modifying g
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Control Variate Method in MC

In MC simulation, control variate are used to reduce the variance of MC estimators.
Assume Z is a random variable with known mean, and correlated with g(X ):

E(Z) = 0

Cov(g(X ),Z) = σg,Z 6= 0

By exploiting the correlation of g(X ) and Z , we can build new unbiased estimators of
µg , with lower variances. Let’s define:

g̃(X ) := g(X ) + aZ

where a ∈ R. Obviously

µg̃ := E [g̃(X )] = µg

σ2
g̃ = σ2

g + a2σ2
Z + 2aσg,Z
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Control Variate Method in MC

By minimizing σ2
g̃ w.r.t. a, it can be shown that the optimal choice of a is

a = −
σg,Z

σ2
z

that reduces the variance of σ2
g̃ to

(
1− ρ2

g,Z

)
σ2
g . Therefore

µ̂g̃ :=
1

N

N∑
i=1

g̃(Xi )

is a new unbiased estimator of µg , with variance

V
(
µ̂g̃
)

=
1

N
σ2
g̃ =

1

N

(
1− ρ2

g,Z

)
σ2
g ≤

1

N
σ2
g = V (µ̂g )
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First order ZV for MCMC

Under regularity conditions, the score has zero mean

z(x) := −1

2
∇ lnπ(x)

Use it as a control variate!
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First order ZV for MCMC

g̃(X ) = g(X ) + ∆x [P(x)] +∇x [P(x)] · z(x)
where P(x) is polynomial in x
If P(x) is a first degree polynomial:

g̃(X ) = g(X ) + aT z(x)

The optimal value of a is:

a = −Σ−1
zz σzg , where Σzz = E(zzT ), σzg = E(zg)

The optimal a is estimated using the existing MCMC simulation
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Second order ZV for MCMC
If P(x) is a second degree polynomial:

g̃(X ) = g(X )− 1
2 tr(B) + (a + Bx)T z = g(X ) + gT y

where g and y are column vectors with 1
2 d(d + 3) elements:

I g := [aT bT cT ]T : where b := diag(B), and c is a column
vector with 1

2 d(d − 1) elements; The element ij of matrix B
(for i ∈ {2, ..., d}, and j < i), is the element
1
2 (2d − j)(j − 1) + (i − j) of vector c .

I y := [zT uT vT ]T : where
u := x ∗ z − 1

2 i (where “∗” = Hadamard product, and i =
vector of ones), and
v is a column vector with 1

2 d(d − 1) elements;
xizj + xjzi (for i ∈ {2, ..., d}, and j < i), is the element
1
2 (2d − j)(j − 1) + (i − j) of vector v

With a polynomial of order 2 we have d(d+3)
2 control variates

With a polynomial of order p, we get
(d+p

p

)
− 1 control variates
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Probit Model

yi |xi ∼ B(1, pi ), pi = Φ(xTi β)

where β ∈ Rd is the vector of parameters of the model.

The likelihood function is:

l(β|y,X) ∝
n∏

i=1

[
Φ(xTi β)

]yi [
1− Φ(xTi β)

]1−yi

With flat priors the Bayesian estimator of each parameter, βd , is
Eπ[βk |y,X], k = 1, 2, · · · , d
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We have:

g̃k(β) = gk(β) +
d∑

j=1

aj ,kzj where zj = −1

2

n∑
i=1

xij
φ(xTi β)

Φ(xTi β)

Existence of MLE implies unbiasedness of the ZVMCMC estimator.
The bank dataset from Flury and Riedwyl (1988), contains the
measurements of 4 variables on 200 Swiss banknotes (100 genuine
and 100 counterfeit).

The four measured variables xi (i = 1, 2, 3, 4), are the length of the
bill, the width of the left and the right edge, and the bottom
margin width.

These variables are used in a probit model as the regressors, and
the type of the banknote yi , as the response variable (0 for genuine
and 1 for counterfeit)
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Zero-Variance MCMC
In the first stage (2000 steps), we run an MCMC simulation
to estimate the optimal coefficients of the polynomial

In the second stage (2000 steps), we run another MCMC simulation, independent of
the first one, to estimate µ̂g̃ using the estimated coefficients obtained in the first stage

We use the Albert and Chib Gibbs sampler
We try both first and second order ZV

To compare performance: compute the ratio of Sokal’s estimates of variances of the
ordinary MCMC and ZV-MCMC.
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Ordinary MCMC
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Ordinary and ZV-MCMC: 1st degree P(x)

Variance Reduction Ratios: 25-100
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Ordinary and ZV-MCMC: 2nd degree P(x)

Variance Reduction Ratios: 25000-90000
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Ordinary and ZV-MCMC: A Monte Carlo Study

Ordinary MCMC estimates (1)
First order ZV-MCMC estimates (2)
Second order ZV-MCMC estimates (3)
+ 95% confidence region obtained by an ordinary MCMC of length 108 (green)
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Logit Model

yi |xi ∼ B(1, pi ), pi =
exp(xTi β)

1 + exp(xTi β)

where β ∈ Rd is the vector of parameters of the model.

With flat priors the Bayesian estimator of each parameter, βd , is
Eπ[βk |y,X] k = 1, 2, · · · , d

We have:

g̃k(β) = gk(β) +
d∑

j=1

aj ,kzj where zj =
1

2

n∑
i=1

xij
exp(xTi β)

1 + exp(xTi β)

Existence of MLE implies finiteness of 2 + ε-th moment of the
control variates and thus a CLT
Example: we use the same Swiss banknotes dataset
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Ordinary MCMC

Ordinary MCMC
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Ordinary and ZV-MCMC: 1st degree P(x)

Variance Reduction Ratios: 10-40
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Ordinary and ZV-MCMC: 2nd degree P(x)

Variance Reduction Ratios: 2000-6000
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Ordinary and ZV-MCMC: A Monte Carlo Study

Ordinary MCMC estimates (1)
First order-MCMC estimates (2)
Second order ZV-MCMC estimates (3)
+ 95% confidence region obtained by an ordinary MCMC of length 108 (green)
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GARCH Model

Let St be the price of an asset at time t and let the daily returns rt be:

rt =
St − St−1

St
.

The Normal-GARCH(1, 1) can be formulated as:

rt+1|Ft ∼ N (0, h2
t+1)

h2
t+1 = ω + αr2

t + βh2
t

where x := (ω, α, β) are the parameters of the model, and ω > 0, α ≥ 0, and β ≥ 0.
Using non informative independent priors for parameters, the posterior is:

π (ω, α, β|r) ∝ exp

[
−

1

2

(
ω2

σ2
ω

+
α2

σ2
α

+
β2

σ2
β

)](
T∏
t=1

ht

)− 1
2

exp

(
−

1

2

T∑
t=1

r2
t

ht

)
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The Bayesian estimators of the GARCH parameters are Eπ[ω|r], Eπ[α|r] and Eπ[β|r].
The control variates are:

zj = −
1

2

∂ lnπ

∂xj
=

xj

2σ2
xj

+
1

4

T∑
t=1

1

ht

∂ht

∂xj
−

1

4

T∑
t=1

r2
t

h2
t

∂ht

∂xj
for j = 1, 2, 3

(where x1 = ω, x2 = α, and x3 = β.), and:

∂ht

∂x1
=
∂ht

∂ω
=

1− βt−1

1− β

∂ht

∂x2
=
∂ht

∂α
=

{
0 t = 1

r2
t−1 + β

∂ht−1

∂α
t > 1

∂ht

∂x3
=
∂ht

∂β
=

{
0 t = 1

ht−1 + β
∂ht−1

∂β
t > 1
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Example: We fit a Normal-GARCH(1, 1) to the daily returns of the Deutsche Mark vs
British Pound (DEM/GBP) exchange rates from Jan. 1985, to Dec. 1987 (750 obs)
We have used the MH algorithm for estimating GARCH models proposed in Ardia D.,
Financial Risk Management with Bayesian Estimation of GARCH Models r to estimate
the optimal parameters of the polynomial.
In the second stage we run an independent MCMC simulation and compute g̃j (x).

Estimates of Parameters:

Method ω̂ α̂ β̂
MLE 0.0445 0.2104 0.6541

MCMC 0.0568 0.2494 0.5873

Variance Reduction:

(Sokal estimate of std. error of MC estimator)2 / (Sokal estimate of std. error of ZV-MC estimator)2

ω̂ α̂ β̂
1st Degree P(x) 9 20 12

2nd Degree P(x) 2,070 12,785 11,097
3rd Degree P(x) 28,442 70,325 30,281
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Ordinary MCMC
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Ordinary and ZV-MCMC: 1st degree P(x)
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Ordinary and ZV-MCMC: 2nd degree P(x)
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Ordinary and ZV-MCMC: 3rd degree P(x)
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Ordinary and ZV-MCMC: A Monte Carlo Study

Ordinary MCMC estimates (1)
First, second, third order ZV-MCMC estimates (2, 3, 4)
+ 95% confidence region obtained by an ordinary MCMC of length 108 (green)
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ZV - HMCMC

The ZV strategy is efficiently combined with Hamiltonian MC,
MALA and variations by Girolami et al. without exceeding the
computational requirements since its main ingredient (the score
function) is exploited twice:

I to guide the MC towards relevant portion of the state space
via a clever proposal, that exploits the geometry of the target
and achieves convergence in fewer iterations

I to post-process the MC to reduce the variance of the resulting
estimators

Zero Variance Differential Geometric MCMC, BA, 2014,
Papamarkou, Mira, and Girolami
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Conclusions - PART I

I Conditions for unbiasedness and CLT for ZV estimators

I Significant variance reduction

I Negligible additional computational costs

I Can control the variance only of the observables of real
interest

I ZV is efficiently combined with Differential Geometric MCMC
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Overview PART II

I Statistical models with intractable likelihood functions
abound.

I It is possible to significantly reduce the Monte Carlo variance
of resulting Bayesian estimators.

I Our methodology is compatible with many existing algorithms
to carry out Bayesian inference for intractable LHD models
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Bayesian inference with Intractable likelihoods

I Suppose we have data y , and a likelihood function f with
parameters θ:

π(θ|y)∝f (y |θ)p(θ)

I However it turns out that there are many statistical models
for which the likelihood function cannot be evaluated.

π(θ|y)∝ f (y |θ)p(θ).

I This extra level of intractability is sometimes due to the
complicated dependency in the data, or even due to the sheer
volume of the data.
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Bayesian inference with Intractable likelihoods

I Suppose we have data y , and a likelihood function f with
parameters θ:

π(θ|y)∝f (y |θ)p(θ)

I However it turns out that there are many statistical models
for which the likelihood function cannot be evaluated.

π(θ|y)∝ f (y |θ)p(θ).

I This extra level of intractability is sometimes due to the
complicated dependency in the data, or even due to the sheer
volume of the data.
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Bayesian inference with Intractable likelihoods

I Suppose we have data y , and a likelihood function f with
parameters θ:

π(θ|y)∝f (y |θ)p(θ)

I However it turns out that there are many statistical models
for which the likelihood function cannot be evaluated.

π(θ|y)∝ f (y |θ)p(θ).

I This extra level of intractability is sometimes due to the
complicated dependency in the data, or even due to the sheer
volume of the data.
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The predominant sources of intractability can be classified as
follows:

Type I: The need to compute a normalisation
constant z(θ) =

∫
qθ(y ′)dy ′ that depends on

parameters θ, where f (y |θ) = qθ(y)/z(θ)

Type II: The need to marginalise over latent variables
x , such that f (y |θ) =

∫
p(y |x , θ)p(x |θ)dx .

Bayesian estimation in either of these settings is extremely
challenging as many established techniques are incompatible with
intractable likelihoods.
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Type I intractability

Here we focus on Gibbs random fields where data y arise from the
model,

f (y|θ) =
qθ(y)

z(θ)
=

exp{θT s(y)}
z(θ)

such that the partition function

z(θ) =

∫
exp{θT s(y)}dy

is intractable.
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Example: Spatial statistics – Ising model

I Defined on a lattice y = {y1, . . . , yn}.
I Lattice points yi take values {−1, 1}.
I

f (y |θ) ∝ qθ(y) = exp

1

2
θ1

∑
i∼j

yiyj

 .

Here ∼ means “is a neighbour of”.

I The normalising constant

z(θ) =
∑
y1

· · ·
∑
yn

qθ(y).

is intractable for moderately small n.
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Metropolis-Hastings algorithm

Doubly-intractable posterior:

π(θ|y) ∝ f (y |θ)p(θ)

for i = 1, . . . , I do1

Draw θ′ ∼ h(θ′|θ(i)) ;2

With probability3

min

(
1,

qθ′(y)

qθ(i)(y)

p(θ′)

p(θ(i))
× z(θ(i))

z(θ′)

)

set θ(i+1) = θ′, otherwise set θ(i+1) = θ(i) ;
end4
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Exchange algorithm

Augmented posterior distribution:

π(θ′, y ′, θ|y) ∝ f (y |θ)p(θ)h(θ′|θ)f (y ′|θ′)

for i = 1, . . . , I do1

Draw θ′ ∼ h(θ′|θ(i)) ;2

Draw y ′ ∼ f (·|θ′);3

With probability4

min

(
1,

qθ′(y)

qθ(i)(y)

p(θ′)

p(θ(i))

qθ(i)(y ′)

qθ′(y ′)
× z(θ(i))

z(θ′)

z(θ′)

z(θ(i))

)

set θ(i+1) = θ′, otherwise set θ(i+1) = θ(i) ;
end5
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Type II intractability

Type II intractability arises from the need to marginalise over
latent variables x such that the marginal likelihood

p(y|θ) =

∫
p(y|x,θ)p(x|θ)dx

is unavailable in closed form.
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Type II intractability
Example: Hidden Markov model

In a hidden Markov model the parameters θ that specify a Markov
chain may be of interest, whilst the latent sample path {xn}Nn=0 of
the Markov chain that gives rise to observations {y}Nn=0 may not
be of interest and must be marginalised.

Even in discrete cases where xn ∈ X for a finite state space X , the
number of possible samples paths {xn}Nn=0 grows exponentially
quickly in N and this renders the marginalisation

p({y}Nn=0|θ) =
∑

x0,...,xN∈X
p({y}Nn=0|{xn}Nn=0,θ)p({xn}Nn=0|θ)

computationally intractable.
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Type II intractability

I A popular approach to inference under Type II intractability is
the pseudo-marginal MCMC of Andrieu and Roberts (2009)

I This replaces the marginal likelihood p(y|θ) in the Metropolis
acceptance ratio with an unbiased estimate

I The unbiased estimator of p(y|θ) can either be obtained by
forward-simulation from p(x|θ), or using importance sampling
techniques.
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Reduced variance estimation with intractable likelihoods

Problem of interest:

Estimate the posterior expectation µ = Eθ|y [g(θ)] for some known
function g : Θ→ R where data y arises from an intractable
likelihood of either Type I or Type II.

We focus on reducing in the Monte Carlo variance of the estimate
of µ through the use of control variates.
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Control variates

The approach involves constructing a function

g̃(θ) = g(θ) + h(θ)

that satisfies

Eθ|y [g̃(θ)] = Eθ|y [g(θ)]

and so

Eθ|y [h(θ)] = 0.



Intractable likelihoods Control variates

Control variates

In many cases it is possible to choose h(θ) such that the variance
Vθ|y [g̃(θ)] < Vθ|y [g(θ)], leading to a reduced variance MC
estimator

µ̂ :=
1

n

n∑
i=1

g̃(θ(i)) (1)

where θ(1), . . . , θ(n) are samples from π(θ|y).

In classical literature h(θ) is formed as a sum
φ1h1(θ) + . . . φmhm(θ) where the hi (θ) have zero mean under
π(θ|y) and are known as “control variates”, whilst φi are
coefficients that must be specified.
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Control variates

In many cases it is possible to choose h(θ) such that the variance
Vθ|y [g̃(θ)] < Vθ|y [g(θ)], leading to a reduced variance MC
estimator

µ̂ :=
1

n

n∑
i=1

g̃(θ(i)) (1)

where θ(1), . . . , θ(n) are samples from π(θ|y).

In classical literature h(θ) is formed as a sum
φ1h1(θ) + . . . φmhm(θ) where the hi (θ) have zero mean under
π(θ|y) and are known as “control variates”, whilst φi are
coefficients that must be specified.



Intractable likelihoods Control variates

Control variates

We focus on control variates expressed as functions of the score of
the posterior

u(θ) = ∇θ log π(θ|y).

Further, we propose,

h(θ) = ∆θ[P(θ)] +∇θ[P(θ)] · u(θ)

where P(θ) belongs to the family of polynomials in θ.
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Control variates

We focus on control variates expressed as functions of the score of
the posterior

u(θ) = ∇θ log π(θ|y).

Further, we propose,

h(θ) = ∆θ[P(θ)] +∇θ[P(θ)] · u(θ)

where P(θ) belongs to the family of polynomials in θ.
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Type I intractability:

log π(θ|y) = θT s(y)− log z(θ) + log p(θ) + C

where C is a constant in θ, yielding

u(θ|y) = s(y)−∇θ log z(θ) +∇θ log p(θ).

Although, u(θ|y) is unavailable, since z(θ) is intractable, we can
estimate it via Monte Carlo simulation.
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Type I intractability:

log π(θ|y) = θT s(y)− log z(θ) + log p(θ) + C

where C is a constant in θ, yielding

u(θ|y) = s(y)−∇θ log z(θ) +∇θ log p(θ).

Although, u(θ|y) is unavailable, since z(θ) is intractable, we can
estimate it via Monte Carlo simulation.
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Estimating the score

Type I intractability:

An unbiased estimate for u(θ|y) can be computed as follows:

∇θ log z(θ) =
1

z(θ)
∇θz(θ)

=
1

z(θ)
∇θ
∫

exp(θT s(y))dy

=
1

z(θ)

∫
s(y) exp(θT s(y))dy

= EY |θ[s(Y )].

We estimate the score function by exploiting multiple
forward-simulations

û(θ|y) := s(y)− 1

K

K∑
k=1

s(Yk) +∇θ log p(θ)

where the Y1, . . . ,YK are independent simulations from p(y |θ).
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Estimating the score

Type I intractability:

An unbiased estimate for u(θ|y) can be computed as follows:

∇θ log z(θ) =
1

z(θ)
∇θz(θ)

=
1

z(θ)
∇θ
∫

exp(θT s(y))dy

=
1

z(θ)

∫
s(y) exp(θT s(y))dy

= EY |θ[s(Y )].

We estimate the score function by exploiting multiple
forward-simulations

û(θ|y) := s(y)− 1

K

K∑
k=1

s(Yk) +∇θ log p(θ)

where the Y1, . . . ,YK are independent simulations from p(y |θ).
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Type II intractability:

Similarly the score function

u(θ|y) = ∇θ log

∫
p(y , x |θ)p(x |θ)dx +∇θ log p(θ).

is unavailable, but again it can be estimated unbiased.
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Estimating the score

Type II:

u(θ|y) = ∇θ log π(θ|y) =
∇θp(θ|y)

p(θ|y)

=
1

p(θ|y)
∇θ

∫
p(θ, x|y)dx

=

∫
[∇θp(θ, x|y)]

p(θ, x|y)

p(θ, x|y)

p(θ|y)
dx

=

∫
[∇θ log p(θ, x|y)]p(x|θ, y)dx

= EX|θ,y[u(θ,X)]

yielding a simulation-based estimator

û(θ|y) :=
1

K

K∑
k=1

u(θ,Xk)

where Xi are independent from the posterior conditional p(x |θ, y)
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Estimating the score

Type II:

u(θ|y) = ∇θ log π(θ|y) =
∇θp(θ|y)

p(θ|y)

=
1

p(θ|y)
∇θ

∫
p(θ, x|y)dx

=

∫
[∇θp(θ, x|y)]

p(θ, x|y)

p(θ, x|y)

p(θ|y)
dx

=

∫
[∇θ log p(θ, x|y)]p(x|θ, y)dx

= EX|θ,y[u(θ,X)]

yielding a simulation-based estimator

û(θ|y) :=
1

K

K∑
k=1

u(θ,Xk)

where Xi are independent from the posterior conditional p(x |θ, y)
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Control variates for intractable likelihoods

Reduced-variance control variates are then constructed using

ĥ(θ|y) := ∆θ[P(θ)] +∇θ[P(θ)] · û(θ|y),

where again P ∈ P is a polynomial.

We require that Eθ,Y1,...,YK |y [ĥ(θ|y)] = 0.

This is guaranteed under mild assumptions
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Optimising the tuning parameters

Our proposed estimator has two tuning parameters:
(i) the polynomial coefficients φ
(ii) the number K of forward-simulations from Y |θ

Optimality is defined as maximising the variance reduction factor

R :=
Vθ,Y1,...,YK |y [g(θ)]

Vθ,Y1,...,YK |y [g(θ) + ĥ(θ|y)]
.
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Optimal polynomial coefficients φ

For general degree polynomials P(θ|φ) with coefficients φ we can
write ĥ(θ|y) = φTm(θ, û), where in the case of, eg, degree-one
polynomials m(θ, û) = û

Lemma
The variance reduction factor R is maximised over all possible
coefficients φ by the choice

φ∗(y) := −V−1
θ,Y1,...,YK |y [m(θ, û)]Eθ,Y1,...,YK |y [g(θ)m(θ, û)]

and at the optimal value φ = φ∗ we have

R−1 = 1− ρ(K )2

where ρ(K ) = Corrθ,Y1,...,YK |y [g(θ), ĥ(θ|y)].
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Choosing the number of forward-simulations K

Our main results here may be concisely summarised as follows: For
a fixed computational cost,

1. For serial computation, choose K = 1. (This typically requires
no additional computation since one forward-simulation Y is
generated as part of the exchange algorithm or
pseudo-marginal algorithm.)

2. For parallel computation, choose K = K0 equal to the number
of available cores.
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Application: Ising model (Type I intractability)

I Defined on a lattice y = {y1, . . . , yn}.
I Lattice points yi take values {−1, 1}.
I

f (y |θ) ∝ qθ(y) = exp

1

2
θ1

∑
i∼j

yiyj

 .

Here ∼ means “is a neighbour of”.

I With intractable normalising constant

z(θ) =
∑
y1

· · ·
∑
yn

qθ(y).

Experiment: Data were simulated from an Ising model defined on
a 16× 16 lattice which is sufficiently small to allow a very accurate
estimate of Eπθ.
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Application: Ising model
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As the number of forward-simulations, K , increases, the precision
of the controlled estimate of Eθ|y (θ) improves
The degree-2 polynomial yields improved precision compared to the
degree-1 polynomial, particularly for larger K
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Application: Exponential random graph models (Type I )

I Consider a graph {yij} defined on n nodes.

I yij = 1, if nodes i and j are connected by an edge.
Otherwise, yij = 0.

I

f (y |θ1, θ2) ∝ exp {θ1s1(y) + θ2s2(y)}

where
s1(y) =

∑
i<j

yij and s2(y) =
∑

i<j<k

yikyjk

I The normalising constant

z(θ) =
∑

all possible graphs

exp{θts(y)}

I 2(n
2) possible undirected graphs of n nodes

I Calculation of z(θ) is infeasible for non-trivially small graphs
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Exponential random graph models (Type I intractability)
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Gamaneg graph: The vertices represent 16 sub-tribes of the
Eastern central highlands of New Guinea and edges represent an
antagonistic relationship between two sub-tribes
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I Goal: estimate the posterior mean Eθ|y[θi ], for i = 1, 2

I The exchange algorithm was run for I = 11, 000 iterations,
where at each iteration K = 500 forward-simulations were
used to estimate the score.
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Figure: ERGM: A variance reduction of about 20 times is possible using a
degree-two polynomial for each of the two parameters
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Application: Nonlinear SDE (Type II)

Goal: Bayesian inference for a system of nonlinear SDEs:

dX(t) = α(X(t);θ)dt + β1/2(X(t);θ)dW(t), X(0) = X0

I X(t) is a stochastic process taking values in Rd ,

I α : X ×Θ→ X is a drift function,

I β : X ×Θ→ X ×X is a diffusion function,

I W(t) is a d-dimensional Weiner process,

I θ ∈ Θ are unknown model parameters

I X0 ∈ X is a known initial state
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Application: Nonlinear SDE

Introduce a fine discretisation t1, . . . , tT of time with mesh size δt.
Write Xi = X(ti ). Use Euler approximation to the SDE likelihood:

p(X|θ) ∝
T∏
i=2

N (Xi |Xi−1 + αiδt,βiδt)

where αi = α(Xi−1;θ) and βi = β(Xi−1;θ).

Partition X = [Xo Xu] such that y = Xo are observed (for
simplicity without noise) and x = Xu are unobserved. Estimate the
score using
∇θ log π(θ|y) ≈ 1

K

∑K
k=1∇θ log p(θ, x(k)|y)

where x(k) are samples from p(x|θ, y) obtained using a
Metropolis-Hastings sampler with “diffusion bridge” proposals
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Application: Nonlinear stochastic differential equations

Consider the specific example of the susceptible-infected-recovered
(SIR) model from epidemiology, which has a stochastic
representation given by

α(X;θ) =

[
−θ1X1X2

θ1X1X2 − θ2X2

]
,

β(X;θ) =
1

N

[
θ1X1X2 −θ1X1X2

−θ1X1X2 θ1X1X2 + θ2X2

]
where N = 1, 000 is a fixed population size and the rates θ are
unknown
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Application: Nonlinear stochastic differential equations

I We estimate the posterior mean of θ, taking g(θ) = θj for
j = 1, 2, 3.

I Here each θj was assigned an independent Gamma prior with
shape and scale parameters equal to 2.

I Data were generated using the initial condition
X0 = [0.99, 0.01] and parameters θ = [0.5, 0.25].

I Observations were made at 20 evenly spaced intervals in the
period from t = 0 to t = 35.

I Five latent data points were introduced between each
observed data point, so that the latent process has dimension
2× (20− 1)× 5 = 190.

I At each Monte Carlo iteration we sampled K = 100
realisations of the latent data process Xu using MCMC.
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Figure: The top row: trace plot for θ1 and θ2 in uncontrolled (blue) and
controlled (red/green) versions for a degree-one polynomial. Bottom row
is similar but for a degree-two polynomial
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Conclusions - PART II

I Exploit simulation from the LHD to achieve reduced-variance
estimation in models that have intractable LHD

I K = 1 forward-simulation provides the optimal variance
reduction per unit (serial) computation

I When multi-core processing architectures are available,
additional variance reduction can be achieved

I Reduced-variance estimator can leverage the simulation stage
of the exchange algorithm, or the sampling stage of the
pseudo-marginal algorithm, to achieve approx ZV with
essentially no additional computational effort
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