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What is an Ising model?

An Ising model is a probability distribution on {−1, 1}n.

The probability mass function of the Ising model is given by

Pn(X = x) = e
β
2
x′Anx−Fn .

Here An is a symmetric n× n matrix with 0 on the diagonals,
and β > 0 is a one dimensional parameter usually referred to
as inverse temperature.

Fn is the log partition function, which will be the main focus
of this talk.
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Applications of Ising model

Ferromagnetism: Ising model was introduced by Wilhelm Lenz
in 1920 to study orientation of configurations of electrons in
Ferromagnetic materials. The idea is that if most of the
electrons are oriented in the same direction, we observe
magnetism.

Lattice gas: Ising models have been used to model motion of
atoms of gas, by partitioning space into a lattice. Each
position is either 1 or −1 depending on whether an atom is
present or absent.

Neuroscience: Ising models have been used to study neuron
activity in our brains. Here each neuron is +1 if active, and
−1 if inactive.

A generalization of the Ising model for more than two states
(Potts model) has been used to study Protein folding and
Image Processing.
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Commonly studied Ising models

Ferromagnetic Ising model on generals graphs: An is the
adjacency matrix of a finite graph (scaled by the average
degree):

Lattice graphs: Original paper by Ising (1925) considered the
one dimensional lattice, subsequent focus has been on higher
dimensional lattices;

Curie-Weiss Model: Complete graph;

Random Graphs: Erdős-Rényi, random regular, etc.

Sherrington-Kirkpatrick: An is a matrix of i.i.d. N (0, 1/n).

Hopfield model of neural networks: where An = 1
nBnB

′
n, with

Bn a matrix of i.i.d. random matrix taking values ±1 with
probability 1

2 .
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Why is the log partition function important?

The log partition function gives information about the
moments of the distribution. For e.g.

∂Fn
∂An(i, j)

= E(XiXj).

Similar statements holds for higher derivatives.

The partition function gives information about the stable
configurations under the model.

The uniform distribution on the space of q colorings of a
graph is a (limiting) Potts model, and the partition function is
the number of q colorings of the graph.

Many estimation techniques in Statistics require the
knowledge, or good estimates of the partition function.
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Mean field technique of Statistical Physics

Let D(·||·) denote the Kullback-Leibler divergence.

Then for any probability measure Qn on {−1, 1}n, D(Qn||Pn)
equals ∑

x∈{−1,1}n
Qn(x) log

Qn(x)

Pn(x)

=
∑

x∈{−1,1}n
Qn(x) logQn(x)−

∑
x∈{−1,1}n

Qn logPn(x)

=
∑

x∈{−1,1}n
Qn(x) logQn(x)− β

2

∑
x∈{−1,1}n

Qn(x)x′Anx

+
∑

x∈{−1,1}n
Qn(x)Fn

=EQn

{
logQn(X)− β

2
X ′AnX

}
+ Fn.
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Mean field technique of Statistical Physics

Since D(Qn||Pn) ≥ 0 with equality iff Qn = Pn, we have

Fn ≥ EQn

{β
2
X ′AnX − logQn(X)

}
,

with equality iff Qn = Pn.

Equivalently,

Fn = sup
Qn

EQn

{β
2
X ′AnX − logQn(X)

}
,

where the sup is over all probability measures on {−1, 1}n.
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Mean field technique of Statistical Physics

Instead, if we restrict the sup over product measures Qn, we
get a lower bound

Fn ≥ sup
Qn

EQn

{β
2
X ′AnX − logQn(X)

}
. (1)

Under a product measure Qn, each Xi is independently
distributed with mean mi ∈ [−1, 1], say.

Then Xi takes the value {1,−1} with probabilities 1+mi
2 and

1−mi
2 respectively.

Also Qn(x) becomes
∏n
i=1Qn,i(xi), which on taking

expectation gives

EQn logQn(X) =

n∑
i=1

E logQn,i(Xi)
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Mean field technique of Statistical Physics

=

n∑
i=1

[1 +mi

2
log

1 +mi

2
+

1−mi

2
log

1−mi

2

]

Thus the RHS of (1) on the last slide becomes

β

2
m′Anm +

n∑
i=1

I(mi),

where I(x) = −1+x
2 log 1+x

2 −
1−x
2 log 1−x

2 is the Binary
entropy function.

Combining we have Fn ≥Mn, where

Mn = supm∈[−1,1]n
{
β
2m
′Anm +

∑n
i=1 I(mi)

}
.

This lower bound to the log partition function is referred to as
mean field prediction.

Sumit Mukherjee Mean field Ising models 8 / 46



Mean field technique of Statistical Physics

=

n∑
i=1

[1 +mi

2
log

1 +mi

2
+

1−mi

2
log

1−mi

2

]
Thus the RHS of (1) on the last slide becomes

β

2
m′Anm +

n∑
i=1

I(mi),

where I(x) = −1+x
2 log 1+x

2 −
1−x
2 log 1−x

2 is the Binary
entropy function.

Combining we have Fn ≥Mn, where

Mn = supm∈[−1,1]n
{
β
2m
′Anm +

∑n
i=1 I(mi)

}
.

This lower bound to the log partition function is referred to as
mean field prediction.

Sumit Mukherjee Mean field Ising models 8 / 46



Mean field technique of Statistical Physics

=

n∑
i=1

[1 +mi

2
log

1 +mi

2
+

1−mi

2
log

1−mi

2

]
Thus the RHS of (1) on the last slide becomes

β

2
m′Anm +

n∑
i=1

I(mi),

where I(x) = −1+x
2 log 1+x

2 −
1−x
2 log 1−x

2 is the Binary
entropy function.

Combining we have Fn ≥Mn, where

Mn = supm∈[−1,1]n
{
β
2m
′Anm +

∑n
i=1 I(mi)

}
.

This lower bound to the log partition function is referred to as
mean field prediction.

Sumit Mukherjee Mean field Ising models 8 / 46



Mean field technique of Statistical Physics

=

n∑
i=1

[1 +mi

2
log

1 +mi

2
+

1−mi

2
log

1−mi

2

]
Thus the RHS of (1) on the last slide becomes

β

2
m′Anm +

n∑
i=1

I(mi),

where I(x) = −1+x
2 log 1+x

2 −
1−x
2 log 1−x

2 is the Binary
entropy function.

Combining we have Fn ≥Mn, where

Mn = supm∈[−1,1]n
{
β
2m
′Anm +

∑n
i=1 I(mi)

}
.

This lower bound to the log partition function is referred to as
mean field prediction.

Sumit Mukherjee Mean field Ising models 8 / 46



Eg: Mean field prediction for Regular graphs

For a regular graph with degree dn the matrix An(i, j) is
taken to be 1

dn
if i ∼ j, and 0 otherwise.

This scaling ensures that the resulting Ising model is non
trivial, for all values of dn.

By our scaling, each row sum of An equals 1.
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Upper bound for Mn

Thus Perron Frobenius theorem gives λ∞(An) = 1.

This gives

Mn ≤ sup
m∈[−1,1]n

{β
2
m′m +

n∑
i=1

I(mi)
}

= sup
m∈[−1,1]n

{β
2

n∑
i=1

m2
i + I(mi)

}
=

n∑
i=1

sup
mi∈[−1,1]

{β
2
m2
i + I(mi)

}
=n sup

m∈[−1,1]

{β
2
m2 + I(m)

}
.
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Lower bound for Mn
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Solving the optimization

Consider the optimization of the function m 7→ β
2m

2 + I(m)
on [−1, 1].

Differentiating with respect to m gives the equation
m = tanh(βm).

If β ≤ 1 then this equation has a unique solution m = 0.

If β > 1 then this equation has three solutions,
{0,mβ,−mβ}.

Of these 0 is a local minimizer, and ±mβ are glolal
maximizers.
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So?

For any sequence of dn regular graphs, we have

lim inf
n→∞

1

n
Fn ≥ sup

m∈[−1,1]

{β
2
m2 + I(m)

}
.

If the graph happens to be a complete graph (dn = n− 1),
then using large deviation arguments for i.i.d. random
variables one can show the limit is tight.

It is also known that equality does not hold in the above limit
if the graph happens to be a random dn regular graph with
dn = d fixed.

This raises the natural question: “For which sequence of
regular graphs is the above limit tight?”
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Regular graphs continued

In a regular graph the scaled adjacency matrix has maximum
eigenvalue 1, with eigenvector 1√

n
1.

Assume that all other eigenvalues are on(1).

Thus we have λ∞
(
An − 1

n11
′
)

= on(1).

For any x ∈ {−1, 1}n, this gives

x′
(
An −

1

n
11′
)
x ≈ on(1)x′x = o(n)

⇒ x′Anx =
1

n
(

n∑
i=1

xi)
2 + o(n)

=
1

n
[n+

∑
i 6=j

xixj ] + o(n)
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Regular graphs continued

Summing over x ∈ {−1, 1}n we have∑
x∈{−1,1}n

e
β
2
x′Anx ≈ eo(n)

∑
x∈{−1,1}n

e
β
2n

∑
i 6=j xixj .

Upto a o(n) term, the RHS above is exactly the partition
function of the Curie Weiss model.

Thus using the Curie Weiss solution we readily get

lim
n→∞

Fn
n

= sup
m∈[−1,1]

{β
2
m2 + I(m)

}
.

The above heuristic is rigorous, and so we get the same
asymptotics for any regular graph, as soon as the matrix An
has only one dominant eigenvalue, i.e. there is a spectral gap.
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Example: Erdős-Renyi graphs

Suppose Gn is the adjacency matrix of an Erdős-Renyi graph
on n vertices with parameter pn.

In this case we choose An to be Gn scaled by npn, which is
the average degree.

If pn � logn
n then λ∞(Gn) ≈ npn (Krivelevich-Sudakov ’03), and

λ∞

(
Gn − pn11′

)
= Op(

√
npn)(Feige Ofek ’05).

Thus λ∞
(
An − 1

n11
′
)

= Op

(
1√
npn

)
= on(1), as

npn � log n.
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Example: Erdős-Renyi graphs

Thus it follows that

lim
n→∞

Fn
n

= sup
m∈[−1,1]

{β
2
m2 + I(m)

}
.

If pn � logn
n then estimates for λ1(Gn) and λ∞(Gn − p11′)

are not as nice.

Also we know mean field prediction does not hold when npn is
constant.

Thus a natural question is where does the mean field
approximation break down.
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Example: Random dn regular graphs

Suppose Gn is the adjacency matrix of a random dn regular
graph, and An is Gn scaled by dn.

In this case λ1(Gn) = dn, and λ2(Gn) = o(dn) as soon as
dn ≥ (log n)γ for some γ (Chung-Lu-Vu ’03, Coja-Oghlan-Lanka

’09).

Thus a similar argument goes through, proving that mean
field prediction is asymptotically correct if dn ≥ (log n)γ .

Again there is a question of how far one can stretch this
result. It is known that the mean field prediction is not correct
if dn = d is fixed.
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What is the underlying picture?

If the random graph is dense enough, then the mean field
prediction is expected to hold via dominant eigenvalue
argument.

How dense is dense enough depends on the underlying model.

None of the results mentioned above applies for a specific
sequence of non random graphs.

However, the mean field prediction has this very nice form for
any regular graph.
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Example: The Hypercube

Suppose Gn is the adjacency matrix of a d dimensional
hypercube {0, 1}d.

In this case the number of vertices is n = 2d.

Gn has eigenvalues d− 2i with multiplicity
(
d
i

)
, for 0 ≤ i ≤ d.

Thus the eigenvalues of Gn range between [−d, d], and there
is no dominant eigenvalue.
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Example: The Hypercube (d = 50)
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Figure: Histogram of eigenvalues of the hypercube with d = 50.Sumit Mukherjee Mean field Ising models 21 / 46



Example: The hypercube

In this case d = dn = log2 n, which is somewhere between
sparse and dense graphs.

There is essentially no spectral gap, and hence dominant
eigenvalue argument fails.

Thus it is not clear even at a heuristic level whether the mean
field prediction should be correct.
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A more general question

More generally, for a general sequence of matrices An (not
necessarily an adjacency matrix), we pose the question of
when is the mean field prediction tight.

Thus we look for sufficient condition on the sequence of
matrices An such that

lim
n→∞

1

n
(Fn −Mn) = 0.

If this holds, then we are able to reduce the asymptotics of Fn
to the asymptotics of Mn.

A follow up question is how to solve the optimization problem
in Mn. As we checked, the optimization problem is easy for
regular graphs.
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The proposed solution

We claim that a sufficient condition for the mean field
prediction to hold is

n∑
i,j=1

An(i, j)2 = tr(A2
n) =

n∑
i=1

λ2i = o(n).

This basically says that the empirical eigenvalue distribution
converges to 0 in L2.

One way to think about this claim is that in this case most of
the eigenvalues are o(1).

Thus the number of dominant eigenvalues is o(n).
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Example: Ising models on graphs

In this case An is the adjacency matrix of Gn scaled by the
average degree 2E(Gn)

n .

Thus we have

n∑
i,j=1

A2
n(i, j) =

n2

4E(Gn)2

n∑
i,j=1

1{i ∼ j} =
n2

2E(Gn)
.

The RHS is o(n) iff E(Gn)� n.

Thus mean field prediction holds as soon as the graph has
super linear edges.
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Example: Erdős-Renyi graphs

In this case 2E(Gn) ≈ n2pn.

This is super linear as soon as npn →∞.

Also if npn = c is fixed, then mean field prediction does not
hold.

This gives a complete picture for Erdős-Renyi graphs.
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Sumit Mukherjee Mean field Ising models 26 / 46



Example: Regular graphs

In this case 2E(Gn) = ndn.

This is super linear, as soon as dn →∞.

Thus mean field prediction holds for any sequence of dn
regular graphs, as soon as dn →∞.

In particular this covers
the hypercube, as dn = log2 n.

For dn = d fixed mean field prediction does not hold.
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Sanity check: SK Model

In this case An(i, j) = 1√
n
Z(i, j), where

{Z(i, j), 1 ≤ i < j ≤ n} i.i.d.∼ N (0, 1).

This gives

1

n

n∑
i,j=1

An(i, j)2 =
1

n2

n∑
i,j=1

Z(i, j)2
p→ 1.

Thus we have
∑n

i,j=1An(i, j)2 = Θp(n), and so mean field
condition does not hold.

This is what should be the case, as the mean field prediction
does not hold for the SK Model.
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Comments about our results

Our results allow for the presence of an external magnetic
field term of the form B

∑n
i=1 xi in the Ising model.

Our results apply for Potts model as well, where we have q
states instead of 2.

There is a technical condition required on the matrix An,
which is

sup
x∈[−1,1]n

n∑
i=1

∣∣∣ n∑
j=1

xiAn(i, j)
∣∣∣ = O(n).

We don’t know of a single model in the literature which
violates this assumption, be it mean field or otherwise

(Ising
model on all graphs, SK Model, Hopfield Model).
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What about the optimization problem?

Our general sufficient condition gives a wide class of graphs
for which the mean field prediction holds.

This means that for Ising models on such graphs we have
limn→∞

1
n(Fn −Mn) = 0.

Recall that

Mn = sup
m∈[−1,1]n

{1

2
m′Anm +

n∑
i=1

I(mi)
}
.

Solving this for regular graphs was easy.

What can we say
about other graphs?
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Approximately regular graphs

Suppose all the degrees di are approximately close to d̄, with
d̄→∞.

Then one expects the same asymptotics for Fn as in the
regular graph case.

We show this is the case under the assumption that the
empirical distribution

∑n
i=1

1
nδ di

d̄

w→ δ1.

As a by product of our analysis, we show that X̄ has the same
large deviation for all approximately regular graphs in the
Ferro-magnetic domain (β > 0), as soon as the average
degree goes to +∞.
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Ising model on bi-regular bi-partite graphs

Let Gn be a sequence of bi-regular bi-partite graphs with
bipartition sizes an and bn.

Thus we have an + bn = n, the total number of vertices.

Assume that limn→∞
1
nan = p ∈ (0, 1).

This removes the possibility that one of the partitions
dominate.
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Ising model on bi-regular bi-partite graphs

Assume that each bi-partition has constant degree cn and dn
respectively.

Then we must have ancn = bndn, which equals the total
number of edges.

Thus for E(Gn) to be super linear, we need
cn( or equivalently dn) to go to +∞.
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Ising model on bi-regular bi-partite graphs

Choose An to be the adjacency matrix of Gn scaled by 1
cn+dn

.

The asymptotics of Fn
n is given by

sup
m1,m2∈[−1,1]

{βp(1− p)m1m2 + pI(m1) + (1− p)I(m2)}.

Thus again the asymptotics is universal for any sequence of
bi-regular bi-partite graphs, as soon as the average degree
goes to +∞.

Differentiating with respect to m1,m2 we get the equations
m1 = tanh(β(1− p)m2), m2 = tanh(βpm1).
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Ising model on bi-regular bi-partite graphs

If |β| ≤ 1√
p(1−p)

then there is a unique solution

(m1,m2) = (0, 0).

If β > 1√
p(1−p)

, then there are two solutions (xβ,p, yβ,p) and

(−xβ,p,−yβ,p).

If β < − 1√
p(1−p)

, then there are again two solutions

(xβ,p,−yβ,p) and (−xβ,p, yβ,p).
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Difference between Kn and Kn/2,n/2

Consider Ising model on two graphs, the complete graph and
the complete bi-partite graph.

If β > 0 then both the models show same asymtotic behavior.

In particular, there is a phase transition in β.

If β < 0 then the two models behave differently.

Ising model on the complete bi-partite graph shows a phase
transition, whereas that on the complete graph does not.
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Graphs converging in cut metric

Given a graph Gn on n vertices, one can define a function
WGn on the unit square as follows:

Partition the unit square into n2 squares each of equal size.

Define WGn to be equal to 1 on the (i, j)th box if (i, j) is an
edge in Gn, and 0 otherwise.

Thus we have WGn is a function on the unit square, with´
[0,1]2 |WGn(x, y)|dxdy = 2E(Gn)

n2 .
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Graphs converging in cut metric

To proceed in a manner which works across edge densities,
scale the function WGn by 2E(Gn)

n2 and call the resulting

function by W̃Gn .

Thus after scaling we have
´
[0,1]2 |W̃Gn(x, y)|dxdy = 1.

Consider the space of symmetric measurable functions
W ∈ L1[0, 1]2, to be henceforth referred as graphons.

For any graphon W , define the cut norm
||W ||� = supS,T⊂[0,1] |

´
S×T W (x, y)dxdy|.
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Graphs converging in cut metric

We will say a sequence of graphs Gn converge in cut metric
to W , if the functions W̃Gn converge in cut norm to W .

As example, the complete graph converges to W1 ≡ 1.

It follows from (Borgs et. al ’14) that if a sequence of graphs Gn
converge W in cut metric, then |E(Gn)| � n.

Thus the mean field condition holds in this case, and so it
suffices to consider the asymptotics of Mn.
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Graphs converging in cut metric

By a simple analysis of Mn, the limiting log partition function
is

sup
m(.)

{ˆ
[0,1]2

β

2
m(x)m(y)W (x, y)dxdy +

ˆ
[0,1]

I(m(x))dx
}
.

Here the supremum is over all measurable functions
m : [0, 1] 7→ [−1, 1].

This result was already proved in (Borgs et. al ’14).

In our paper we re-derive this result as a consequence of mean
field prediction, to illustrate the flexibility of this approach.

As an immediate application, we obtain the phase transition
point for such Ising models, which is β = 1

λ1(W ) ≈
1

λ1(An)
.
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Proof Strategy

The main tool for proving the mean field prediction is a large
deviation estimate for binary variables (Chatterjee-Dembo ’14).

They give a general technique to prove mean field type
predictions in exponential families of the form ef(x) on binary
random variables x ∈ {−1, 1}n.

The idea is that if the gradient of the function ∇f(x) can be
expressed in o(n) bits, then mean field prediction works.

In our case f(x) = 1
2x
′Anx for a symmetric matrix An.
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E.g. Ising model on Complete graph

For a specific example take f(x) = 1
n

∑
1≤i<j≤n

xixj .

This is the Curie-Weiss Ising model on the complete graph.

A direct calculation gives

∂f

∂xi
(x) =

1

n

∑
j 6=i

xj = x̄− xi
n
.

This is approximately x̄, and so every component of ∇f(x)
can be expressed by one bit of information x̄.
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E.g. Ising model on Z1

For an example of a model that is not mean field, take

f(x) =
n−1∑
i=1

xixi+1.

This is the Ising model on the one dimensional integer lattice.

In this case we have

∂f

∂xi
(x) = xi−1 + xi+1

for 2 ≤ i ≤ n− 1.

This vector is no longer expressable in terms of o(n) many
quantities.

Thus Ising model on complete graph is mean field, whereas
Ising model on Z1 is not.
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Extending to general matrices

In general if f(x) = 1
2x
′Anx then ∇f(x) = Anx.

Assume An has spectral decomposition
∑n

i=1 λipip
′
i

Recall that our mean field assumption is 1
n

∑n
i=1 λ

2
i = o(n),

which says most eigenvalues are o(1).

Thus Ax ≈
∑K

i=1 λipip
′
ix with K = o(n).

This is expressable using at most K bits of information
{p′ix}Ki=1, which is why the resulting model is mean field.
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Open questions?

Extend the argument to other exponential families, such as
ERGMs.

Think of edges in graphs as binary random variables.

Find for what values of parameters the mean field prediction is
tight.

Partially addressed in Chatterjee-Dembo, results are almost
sharp.

Solve optimization problem for more graph ensembles.
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