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Example set up

Imagine:

y data;
x parameters of a model (interest);
v auxiliary (latent) variables (nuisance)
p(y |x , v) = p(y |v , x)pV (dv |x) model
π0(x) prior

Ideally we’d use the Metropolis-Hastings (MH) algorithm to target

π(x) ∝ π0(x)p(y |x) = π0(x)

∫
p(y |x , v)pV (dv |x),

but the integral is intractable.

We can, however create a non-negative, unbiased estimator of
p(y |x), for example

p̂(y |x ,V ) := p(y |x ,V ) where V ∼ pV (dv |x).
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The PMMH algorithm

Now, let p̂(y |x ,V ) ≥ 0 be any unbiased estimator of p(y |x), where
V ∼ pV (dv |x) are auxiliary variables (e.g. from importance
sampling; particle filter; Rhee/Glynn). Then

π̂(x ;V ) = π0(x)p̂(y |x ,V )

is an unbiased estimator of π(x) up to some fixed constant.

Given a current value, x and a realisation π̂ = π̂(x ; v), one
iteration of the PMMH algorithm is:

PMMH Algorithm

1 Sample x ′ from some density q(x , x ′).

2 Sample π̂′ from unbiased estimator, π̂(x ′;V ′) of π(x ′).

3 Let

α = 1 ∧ π̂
′q(x ′, x)

π̂q(x , x ′)
.

4 W.p. α set x ← x ′ and π̂ ← π̂′ else keep x and π̂ unchanged.
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Averages of estimators

Instead of a single realisation, π̂(x ; v), of an unbiased estimator,
we could create m such realisations, π̂(x ; v1), . . . , π̂(x ; vm). Their
average

π̂m =
1

m

m∑
j=1

π̂(x ; vj)

is a realisation from a new unbiased estimator, which could be
used in a PMMH algorithm.

Is this worth doing?
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The normalised weight, W

The PMMH algorithm creates a Markov chain on (x , v); the
stationary distribution is: pV (x , dv)π̂(x ; v)dx .

Let W := π̂(x ;V )/π(x) ∈W, so (WLOG) E[W ] = 1. The PMMH
creates a Markov chain on (x ,w); the stationary distribution is:

π̃(dx , dw) := π(x)dxq1(x , dw)w .

Given a current value, x and a realisation π̂ = π(x)w , one iteration
of the PMMH algorithm is:

PMMH Algorithm

1 Sample x ′ from some density q(x , x ′).

2 Sample w ′ from q(x ′, dw ′).

3 Let

α = 1 ∧ π(x ′)w ′q(x ′, x)

π(x)wq(x , x ′)
= 1 ∧ r(x , x ′)

w ′

w
.

4 W.p. α set x ← x ′ and w ← w ′ else keep x and w unchanged.
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Vector of normalised weights, W

Alternatively we could sample a vector of m estimates, W from

q(x , dw) :=
m∏
j=1

q1(x , dwj).

1
m

∑m
j=1 wj represents a realisation from a new unbiased

estimator. The stationary distribution is

π̃(dx , dw) := π(x)dxq(x , dw)
1

m

m∑
j=1

wj .

Denote the kernels by P1(x ,w ; dx ′, dw ′) and Pm(x ,w ; dx ′, dw ′).
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Measures of interest

Conditional acceptance probability:

α(x , x ′|P) :=

∫
q(x , dw)wq(x ′, dw ′)

[
1 ∧ r(x , x ′)

w ′

w

]
Dirichlet form:

EP(f ) :=
1

2

∫
π(x)dxq(x , x ′)dx ′

∫
q(x , dw)wq(x ′, dw ′)[

1 ∧ r(x , x ′)
w ′

w

] [
f (x ,w)− f (x ′,w ′)

]2
.

Spectral gap:
inf

f ∈L20(π̃),〈f ,f 〉=1
EP(f ).

Asymptotic variance:

Var(f ,P) := lim
n→∞

Var

(
n−1/2

n∑
i=1

f (Xi )

)
.
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Andrieu and Vihola, 2015.

AV2015: Theorem 10 + Corollary 31

1 For any x , x ′ ∈ X the conditional acceptance rates satisfy
α∗(x , x ′|Pm) ≥ α∗(x , x ′|P1).

2 For any f : X→ R, the Dirichlet forms satisfy
EPm(f ) ≥ EP1(f ).

3 Gap(Pm) ≥ Gap(P1).

4 For any f : X→ R with Varπ (f ) <∞, the asymptotic
variances satisfy Var(f ,Pm) ≤ Var(f ,P1).

Does not require independence; W must arise from an
exchangeable distribution.

How much better is Pm than P1? Does it justify the extra
computational effort?
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Heuristics

Andrieu and Vihola (2016): PMMH is never as good as ideal MH.
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Suppose sampling W1, . . .Wm takes m times the computational
effort of sampling W1. For a given computational budget, #
iterations reduced by a factor of m, so we need
mVar(f ,Pm) < Var(f ,P1) for averaging to be worthwhile.
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Previous work

Sherlock, Thiery, Roberts and Rosenthal (2013) [ArXiv vn 1 of
2015 paper] examines the PMRWM as d →∞.

Empirically: if Wj ∼ Gam(a, a) iid, mVar(f ,Pm) ≥ Var(f ,P1).
Same for Wj = (a, b) w.p. (1− p, p) iid (with a(1− p) + bp = 1).

Bornn, Pillai, Smith and Woodard (2014): ABC-MCMC with a
uniform error window and assumption that Pm is non-negative
definite then (2m − 1)Var(f ,Pm) ≥ Var(f ,P1).
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Our result

Theorem 1

1 For any x , x ′ ∈ X the conditional acceptance rates satisfy
α∗(x , x ′|Pm) ≤ mα∗(x , x ′|P1).

2 For any f : X→ R, the Dirichlet forms satisfy
EPm(f ) ≤ mEP1(f ).

3 For any f : X→ R with Varπ (f ) <∞,
mVar(f ,Pm) ≥ Var(f ,P1)− (m − 1)Varπ (f ).

Does not require independence; W must arise from an
exchangeable distribution (two proofs).

If Pm is non-negative definite, then
(2m − 1)Var(f ,Pm) ≥ Var(f ,P1).
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Direct proof: key tools (1)

Consider an extended statespace (X×Wm × K), where
K = {1, 2, . . . ,m}.
Let r = r(x , x ′) = π(x ′)q(x ′, x)/(π(x)q(x , x ′)). Define
Q1(x ,w , k; dx ′, dw ′, k ′) as

q(x , x ′)q(x ′, dw ′)q1(w ′, k ′)α1(x ,w , k ; x ′,w ′, k ′)

+ (1− α1(x ,w , k))δ((x ′,w ′, k ′)− (x ,w , k)),

where α1(x ,w , k) is acc. prob from (x ,w , k) and

q1(w ; k) =

{
1
m k ∈ K
0 otherwise,

, α1(x ,w , k ; x ′,w ′, k ′) = 1∧
[
r
w ′k ′

wk

]

Lemma: {(Xt ,Wt,Kt )}∞t=1 under Q1 is
D
= {(Xt ,Wt)}∞t=1 under P1.
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Direct proof: key tools (2)

Define Qm(x ,w , k ; dx ′, dw ′, k ′) as

q(x , x ′)q(x ′, dw ′)qm(w ′, k ′)αm(x ,w , k ; x ′,w ′, k ′)

+ (1− αm(x ,w , k))δ((x ′,w ′, k ′)− (x ,w , k)),

where αm(x ,w , k) is acc. prob from (x ,w , k) and

qm(w ; k) =

{
wk∑m
j=1 wj

k ∈ K

0 otw.
, αm(x ,w , k; x ′,w ′, k ′) = 1∧

[
r

∑m
j=1 w

′
j∑m

j=1 wj

]

Lemma: the joint distribution of {(Xt ,
∑m

j=1Wt,j)}∞t=1 is the same
under Qm and Pm.
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Key Steps

Proposition

Q1 and Qm both have an invariant distribution of

π̃m(x ,w , k) := π(x)q(x ;w)q1(w ; k)wk .

Proposition

q1(w ′, k ′)α1(x ,w , k ; x ′,w ′, k ′) ≥ 1

m
qm(w ′, k ′)αm(x ,w , k ; x ′,w ′, k ′).

This leads directly to our results on α∗(x , x ′) and E . Our result for
Var follows from a simple (but neat!) Lemma in Andrieu, Lee and
Vihola (2015).
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A tighter result?

We have: mVar(f ,Pm) ≥ Var(f ,P1)− (m − 1)Varπ (f ).

Qn: mVar(f ,Pm) ≥ Var(f ,P1) would be better! Is it true?

Counter example

X = {1, 2}, q(1, 2) = c1, q(2, 1) = c2, π = (0.5, 0.5).
m = 2, W = {0, 2}

q(x , (0, 2)) = q(x , (2, 0)) = 0.5, q(x , (0, 0)) = q(x , (2, 2)) = 0.

f (x) = 2x − 1.
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Counter example: plot

The ratio Var(f ,P1)/Var(f ,P2) as a function of (c1, c2).
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Tighter result?

Qn: mVar(f ,Pm) ≥ Var(f ,P1) would be better! Is it true?
A1: Not for general exchangeable weights.

Qn What if the weights are independent?

Consider the kernels on the extended statespace:

mVar(f ,Qm)− Var(f ,Q1) = 〈f ,Af 〉

where

A := 2m(I − Qm)−1 − 2(I − Q1)−1 − (m − 1)I .

Qn: Does A have any negative eigenvalues?
A: Yes, for some (c1, c2), and some independent W distributions.

So ∃ functions f (x ,w , k) for which mVar(f ,Qm) < Var(f ,Q1).
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Tighter result?

Qn: mVar(f ,Pm) ≥ Var(f ,P1) would be better! Is it true?
A1: Not for general exchangeable weights.
A2: Not with independent weights for f : X×Wm × K→ R.

Qn: What about functions f (x) and with independent weights?

A: ??? - we have not been able to find a counter example.
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Simulation study

Gaussian-process logistic regression.

1. Independence sampler.
2. RWM with scaling optimal for the marginal algorithm.

Graphs showing
1

m
ESS.
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Simulation study: ESS/m
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Qn: Never worth taking an average?
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Simulation study: ESS/T

Graphs show ESS/Tcpu.
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Qn: Worth taking an average?
A: Yes, when there is a set-up cost.
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Summary

We provide upper bounds on the efficiency of the PMMH when
using the average of m exchangeable unbiased estimators
compared to using just 1 of the estimators.

If there is no start-up cost then there is little gain in using m > 1.

This is entirely different from the choice of the number of particles
in particle-marginal MH: choose m such that Varq (logW ) = O(1).

Thank you for your attention!
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