Pseudo-marginal MH using averages of unbiased estimators Joint work with Alex Thiery (NUS)

Chris Sherlock

Department of Mathematics and Statistics Lancaster University

April 2016

Example set up

Imagine:

$$
\begin{array}{ll}
y & \text { data; } \\
x & \text { parameters of a model (interest); } \\
v & \text { auxiliary (latent) variables (nuisance) } \\
p(y \mid x, v)=p(y \mid v, x) p_{v}(\mathrm{~d} v \mid x) & \text { model } \\
\pi_{0}(x) & \text { prior }
\end{array}
$$

Ideally we'd use the Metropolis-Hastings (MH) algorithm to target

$$
\pi(x) \propto \pi_{0}(x) p(y \mid x)=\pi_{0}(x) \int p(y \mid x, v) p_{V}(\mathrm{~d} v \mid x)
$$

but the integral is intractable.
We can, however create a non-negative, unbiased estimator of $p(y \mid x)$, for example

$$
\hat{p}(y \mid x, V):=p(y \mid x, V) \quad \text { where } \quad V \sim p_{V}(\mathrm{~d} v \mid x)
$$

The PMMH algorithm

Now, let $\hat{p}(y \mid x, V) \geq 0$ be any unbiased estimator of $p(y \mid x)$, where $V \sim p_{V}(\mathrm{~d} v \mid x)$ are auxiliary variables (e.g. from importance sampling; particle filter; Rhee/Glynn). Then

$$
\hat{\pi}(x ; V)=\pi_{0}(x) \hat{p}(y \mid x, V)
$$

is an unbiased estimator of $\pi(x)$ up to some fixed constant.
Given a current value, x and a realisation $\hat{\pi}=\hat{\pi}(x ; v)$, one iteration of the PMMH algorithm is:

PMMH Algorithm

(1) Sample x^{\prime} from some density $q\left(x, x^{\prime}\right)$.
(2) Sample $\hat{\pi}^{\prime}$ from unbiased estimator, $\hat{\pi}\left(x^{\prime} ; V^{\prime}\right)$ of $\pi\left(x^{\prime}\right)$.
(3) Let

$$
\alpha=1 \wedge \frac{\hat{\pi}^{\prime} q\left(x^{\prime}, x\right)}{\hat{\pi} q\left(x, x^{\prime}\right)} .
$$

(4) W.p. α set $x \leftarrow x^{\prime}$ and $\hat{\pi} \leftarrow \hat{\pi}^{\prime}$ else keep x and $\hat{\pi}$ unchanged.

Averages of estimators

Instead of a single realisation, $\hat{\pi}(x ; v)$, of an unbiased estimator, we could create m such realisations, $\hat{\pi}\left(x ; v_{1}\right), \ldots, \hat{\pi}\left(x ; v_{m}\right)$. Their average

$$
\hat{\pi}_{m}=\frac{1}{m} \sum_{j=1}^{m} \hat{\pi}\left(x ; v_{j}\right)
$$

is a realisation from a new unbiased estimator, which could be used in a PMMH algorithm.

Is this worth doing?

Outline

(1) PMMH and averages
(2) Existing theory
(3) First result
(4) A tighter result?
(5) Simulation study
(6) Summary

The normalised weight, W

The PMMH algorithm creates a Markov chain on (x, v); the stationary distribution is: $p_{V}(x, \mathrm{~d} v) \hat{\pi}(x ; v) \mathrm{d} x$.

Let $W:=\hat{\pi}(x ; V) / \pi(x) \in W$, so $(W L O G) \mathbb{E}[W]=1$. The PMMH creates a Markov chain on (x, w); the stationary distribution is:

$$
\tilde{\pi}(\mathrm{d} x, \mathrm{~d} w):=\pi(x) \mathrm{d} x \mathrm{q}_{1}(x, \mathrm{~d} w) w
$$

Given a current value, x and a realisation $\hat{\pi}=\pi(x) w$, one iteration of the PMMH algorithm is:

PMMH Algorithm

(1) Sample x^{\prime} from some density $q\left(x, x^{\prime}\right)$.
(2) Sample w^{\prime} from $\mathrm{q}\left(x^{\prime}, \mathrm{d} w^{\prime}\right)$.
(3) Let

$$
\alpha=1 \wedge \frac{\pi\left(x^{\prime}\right) w^{\prime} q\left(x^{\prime}, x\right)}{\pi(x) w q\left(x, x^{\prime}\right)}=1 \wedge r\left(x, x^{\prime}\right) \frac{w^{\prime}}{w} .
$$

(4) W.p. α set $x \leftarrow x^{\prime}$ and $w \leftarrow w^{\prime}$ else keep x and w unchanged.

Vector of normalised weights, W

Alternatively we could sample a vector of m estimates, \underline{W} from

$$
\mathrm{q}(x, \mathrm{~d} \underline{w}):=\prod_{j=1}^{m} \mathrm{q}_{1}\left(x, \mathrm{~d} w_{j}\right) .
$$

$\frac{1}{m} \sum_{j=1}^{m} w_{j}$ represents a realisation from a new unbiased estimator. The stationary distribution is

$$
\tilde{\pi}(\mathrm{d} x, \mathrm{~d} \underline{w}):=\pi(x) \mathrm{d} x \mathrm{q}(x, \mathrm{~d} \underline{w}) \frac{1}{m} \sum_{j=1}^{m} w_{j} .
$$

Denote the kernels by $\mathrm{P}_{1}\left(x, w ; \mathrm{d} x^{\prime}, \mathrm{d} w^{\prime}\right)$ and $\mathrm{P}_{m}\left(x, \underline{w} ; \mathrm{d} x^{\prime}, \mathrm{d} \underline{w}^{\prime}\right)$.

Measures of interest

Conditional acceptance probability:

$$
\alpha\left(x, x^{\prime} \mid \mathrm{P}\right):=\int \mathrm{q}(x, \mathrm{~d} w) w \mathrm{q}\left(x^{\prime}, \mathrm{d} w^{\prime}\right)\left[1 \wedge r\left(x, x^{\prime}\right) \frac{w^{\prime}}{w}\right]
$$

Dirichlet form:

$$
\begin{aligned}
\mathcal{E}_{\mathrm{P}}(f):= & \frac{1}{2} \int \pi(x) \mathrm{d} x q\left(x, x^{\prime}\right) \mathrm{d} x^{\prime} \int \mathrm{q}(x, \mathrm{~d} w) w \mathrm{q}\left(x^{\prime}, \mathrm{d} w^{\prime}\right) \\
& {\left[1 \wedge r\left(x, x^{\prime}\right) \frac{w^{\prime}}{w}\right]\left[f(x, w)-f\left(x^{\prime}, w^{\prime}\right)\right]^{2} }
\end{aligned}
$$

Spectral gap:

$$
\inf _{f \in L_{0}^{2}(\tilde{\pi}),\langle f, f\rangle=1} \mathcal{E}_{\mathrm{P}}(f) .
$$

Asymptotic variance:

$$
\operatorname{Var}(f, \mathrm{P}):=\lim _{n \rightarrow \infty} \operatorname{Var}\left(n^{-1 / 2} \sum_{i=1}^{n} f\left(X_{i}\right)\right)
$$

Andrieu and Vihola, 2015.

AV2015: Theorem 10 + Corollary 31

(1) For any $x, x^{\prime} \in \mathrm{X}$ the conditional acceptance rates satisfy $\alpha^{*}\left(x, x^{\prime} \mid \mathrm{P}_{m}\right) \geq \alpha^{*}\left(x, x^{\prime} \mid \mathrm{P}_{1}\right)$.
(2) For any $f: X \rightarrow \mathbb{R}$, the Dirichlet forms satisfy $\mathcal{E}_{\mathrm{P}_{m}}(f) \geq \mathcal{E}_{\mathrm{P}_{1}}(f)$.
(3) $\operatorname{Gap}\left(\mathrm{P}_{m}\right) \geq \operatorname{Gap}\left(\mathrm{P}_{1}\right)$.
(4) For any $f: \mathrm{X} \rightarrow \mathbb{R}$ with $\operatorname{Var}_{\pi}(f)<\infty$, the asymptotic variances satisfy $\operatorname{Var}\left(f, \mathrm{P}_{m}\right) \leq \operatorname{Var}\left(f, \mathrm{P}_{1}\right)$.

Does not require independence; \underline{W} must arise from an exchangeable distribution.

How much better is P_{m} than P_{1} ? Does it justify the extra computational effort?

Heuristics

Andrieu and Vihola (2016): PMMH is never as good as ideal MH.

Suppose sampling $W_{1}, \ldots W_{m}$ takes m times the computational effort of sampling W_{1}. For a given computational budget, \# iterations reduced by a factor of m, so we need $m \operatorname{Var}\left(f, P_{m}\right)<\operatorname{Var}\left(f, P_{1}\right)$ for averaging to be worthwhile.

Previous work

Sherlock, Thiery, Roberts and Rosenthal (2013) [ArXiv vn 1 of 2015 paper] examines the PMRWM as $d \rightarrow \infty$.

Empirically: if $W_{j} \sim \operatorname{Gam}(a, a)$ iid, $m \operatorname{Var}\left(f, \mathrm{P}_{m}\right) \geq \operatorname{Var}\left(f, \mathrm{P}_{1}\right)$. Same for $W_{j}=(a, b)$ w.p. $(1-p, p)$ iid (with $\left.a(1-p)+b p=1\right)$.
Bornn, Pillai, Smith and Woodard (2014): ABC-MCMC with a uniform error window and assumption that P_{m} is non-negative definite then $(2 m-1) \operatorname{Var}\left(f, \mathrm{P}_{m}\right) \geq \operatorname{Var}\left(f, \mathrm{P}_{1}\right)$.

Our result

Theorem 1

(1) For any $x, x^{\prime} \in \mathrm{X}$ the conditional acceptance rates satisfy $\alpha^{*}\left(x, x^{\prime} \mid \mathrm{P}_{m}\right) \leq m \alpha^{*}\left(x, x^{\prime} \mid \mathrm{P}_{1}\right)$.
(2) For any $f: X \rightarrow \mathbb{R}$, the Dirichlet forms satisfy $\mathcal{E}_{\mathrm{P}_{m}}(f) \leq m \mathcal{E}_{\mathrm{P}_{1}}(f)$.
(3) For any $f: X \rightarrow \mathbb{R}$ with $\operatorname{Var}_{\pi}(f)<\infty$, $m \operatorname{Var}\left(f, \mathrm{P}_{m}\right) \geq \operatorname{Var}\left(f, \mathrm{P}_{1}\right)-(m-1) \operatorname{Var}_{\pi}(f)$.

Does not require independence; \underline{W} must arise from an exchangeable distribution (two proofs).

If P_{m} is non-negative definite, then
$(2 m-1) \operatorname{Var}\left(f, \mathrm{P}_{m}\right) \geq \operatorname{Var}\left(f, \mathrm{P}_{1}\right)$.

Direct proof: key tools (1)

Consider an extended statespace $\left(\mathrm{X} \times \mathrm{W}^{m} \times \mathrm{K}\right)$, where $\mathrm{K}=\{1,2, \ldots, m\}$.
Let $r=r\left(x, x^{\prime}\right)=\pi\left(x^{\prime}\right) q\left(x^{\prime}, x\right) /\left(\pi(x) q\left(x, x^{\prime}\right)\right)$. Define $\mathrm{Q}_{1}\left(x, \underline{w}, k ; \mathrm{d} x^{\prime}, \mathrm{d} \underline{w}^{\prime}, k^{\prime}\right)$ as

$$
\begin{aligned}
& q\left(x, x^{\prime}\right) \mathrm{q}\left(x^{\prime}, \mathrm{d}_{\underline{w}^{\prime}}\right) \mathrm{q}_{1}\left(\underline{w^{\prime}}, k^{\prime}\right) \alpha_{1}\left(x, \underline{w}, k ; x^{\prime}, \underline{w^{\prime}}, k^{\prime}\right) \\
& \quad+\left(1-\bar{\alpha}_{1}(x, \underline{w}, k)\right) \delta\left(\left(x^{\prime}, \underline{w}^{\prime}, k^{\prime}\right)-(x, \underline{w}, k)\right)
\end{aligned}
$$

where $\bar{\alpha}_{1}(x, \underline{w}, k)$ is acc. prob from (x, \underline{w}, k) and
$\mathrm{q}_{1}(\underline{w} ; k)=\left\{\begin{array}{ll}\frac{1}{m} & k \in \mathrm{~K} \\ 0 & \text { otherwise, }\end{array} \quad, \quad \alpha_{1}\left(x, \underline{w}, k ; x^{\prime}, \underline{w}^{\prime}, k^{\prime}\right)=1 \wedge\left[r \frac{w_{k^{\prime}}^{\prime}}{w_{k}}\right]\right.$

Lemma: $\left\{\left(X_{t}, W_{t, K_{t}}\right)\right\}_{t=1}^{\infty}$ under Q_{1} is $\stackrel{\mathcal{D}}{=}\left\{\left(X_{t}, W_{t}\right)\right\}_{t=1}^{\infty}$ under P_{1}.

Direct proof: key tools (2)

Define $\mathrm{Q}_{m}\left(x, \underline{w}, k ; \mathrm{d} x^{\prime}, \mathrm{d} \underline{w}^{\prime}, k^{\prime}\right)$ as

$$
\begin{aligned}
& q\left(x, x^{\prime}\right) \mathrm{q}\left(x^{\prime}, \mathrm{d} \underline{w}^{\prime}\right) \mathrm{q}_{m}\left(\underline{w^{\prime}}, k^{\prime}\right) \alpha_{m}\left(x, \underline{w}, k ; x^{\prime}, \underline{w}^{\prime}, k^{\prime}\right) \\
& \quad+\left(1-\bar{\alpha}_{m}(x, \underline{w}, k)\right) \delta\left(\left(x^{\prime}, \underline{w}^{\prime}, k^{\prime}\right)-(x, \underline{w}, k)\right)
\end{aligned}
$$

where $\bar{\alpha}_{m}(x, \underline{w}, k)$ is acc. prob from (x, \underline{w}, k) and
$q_{m}(\underline{w} ; k)=\left\{\begin{array}{ll}\frac{w_{k}}{\sum_{j=1}^{w_{k}} w_{j}} & k \in \mathrm{~K} \\ 0 & \text { otw. }\end{array}, \alpha_{m}\left(x, \underline{w}, k ; x^{\prime}, \underline{w^{\prime}}, k^{\prime}\right)=1 \wedge\left[r \frac{\sum_{j=1}^{m} w_{j}^{\prime}}{\sum_{j=1}^{m} w_{j}}\right]\right.$

Lemma: the joint distribution of $\left\{\left(X_{t}, \sum_{j=1}^{m} W_{t, j}\right)\right\}_{t=1}^{\infty}$ is the same under Q_{m} and P_{m}.

Key Steps

Proposition

Q_{1} and Q_{m} both have an invariant distribution of

$$
\tilde{\pi}_{m}(x, \underline{w}, k):=\pi(x) \mathrm{q}(x ; \underline{w}) \mathrm{q}_{1}(\underline{w} ; k) w_{k} .
$$

Proposition

$$
\mathrm{q}_{1}\left(\underline{w}^{\prime}, k^{\prime}\right) \alpha_{1}\left(x, \underline{w}, k ; x^{\prime}, \underline{w}^{\prime}, k^{\prime}\right) \geq \frac{1}{m} \mathrm{q}_{m}\left(\underline{w}^{\prime}, k^{\prime}\right) \alpha_{m}\left(x, \underline{w}, k ; x^{\prime}, \underline{w}^{\prime}, k^{\prime}\right) .
$$

This leads directly to our results on $\alpha^{*}\left(x, x^{\prime}\right)$ and \mathcal{E}. Our result for Var follows from a simple (but neat!) Lemma in Andrieu, Lee and Vihola (2015).

A tighter result?

We have: $m \operatorname{Var}\left(f, \mathrm{P}_{m}\right) \geq \operatorname{Var}\left(f, \mathrm{P}_{1}\right)-(m-1) \operatorname{Var}_{\pi}(f)$.
Qn: $m \operatorname{Var}\left(f, \mathrm{P}_{m}\right) \geq \operatorname{Var}\left(f, \mathrm{P}_{1}\right)$ would be better! Is it true?

Counter example

$$
\begin{gathered}
X=\{1,2\}, q(1,2)=c_{1}, q(2,1)=c_{2}, \pi=(0.5,0.5) . \\
m=2, W=\{0,2\} \\
q(x,(0,2))=q(x,(2,0))=0.5, q(x,(0,0))=q(x,(2,2))=0 .
\end{gathered}
$$

$$
f(x)=2 x-1
$$

Counter example: plot

The ratio $\operatorname{Var}\left(f, \mathrm{P}_{1}\right) / \operatorname{Var}\left(f, \mathrm{P}_{2}\right)$ as a function of $\left(c_{1}, c_{2}\right)$.

Tighter result?

Qn: $m \operatorname{Var}\left(f, \mathrm{P}_{m}\right) \geq \operatorname{Var}\left(f, \mathrm{P}_{1}\right)$ would be better! Is it true?
A1: Not for general exchangeable weights.
Qn What if the weights are independent?
Consider the kernels on the extended statespace:

$$
m \operatorname{Var}\left(f, \mathrm{Q}_{m}\right)-\operatorname{Var}\left(f, \mathrm{Q}_{1}\right)=\langle f, A f\rangle
$$

where

$$
A:=2 m\left(I-\mathrm{Q}_{m}\right)^{-1}-2\left(I-\mathrm{Q}_{1}\right)^{-1}-(m-1) I .
$$

Qn: Does A have any negative eigenvalues?
A: Yes, for some (c_{1}, c_{2}), and some independent \underline{W} distributions.
So \exists functions $f(x, \underline{w}, k)$ for which $m \operatorname{Var}\left(f, Q_{m}\right)<\operatorname{Var}\left(f, Q_{1}\right)$.

Tighter result?

Qn: $m \operatorname{Var}\left(f, \mathrm{P}_{m}\right) \geq \operatorname{Var}\left(f, \mathrm{P}_{1}\right)$ would be better! Is it true?
A1: Not for general exchangeable weights.
A2: Not with independent weights for $f: \mathrm{X} \times \mathrm{W}^{m} \times \mathrm{K} \rightarrow \mathbb{R}$.
Qn: What about functions $f(x)$ and with independent weights?
A: ??? - we have not been able to find a counter example.

Simulation study

Gaussian-process logistic regression.

1. Independence sampler.
2. RWM with scaling optimal for the marginal algorithm.

Graphs showing

$$
\frac{1}{m} \text { ESS. }
$$

Simulation study: ESS/m

Qn: Never worth taking an average?

Simulation study: ESS/T

Graphs show ESS $/ T_{c p u}$.

Qn: Worth taking an average?
A: Yes, when there is a set-up cost.

Summary

We provide upper bounds on the efficiency of the PMMH when using the average of m exchangeable unbiased estimators compared to using just 1 of the estimators.

If there is no start-up cost then there is little gain in using $m>1$.
This is entirely different from the choice of the number of particles in particle-marginal MH : choose m such that $\operatorname{Var}_{\mathrm{q}}(\log W)=\mathcal{O}(1)$.

> Thank you for your attention!

