PERFECT Simulation

Lecture 3

Perfect simulation III Dominated Processes and Uniform Coupler

Mark Huber Claremont McKenna College July, 2018

Supported by NSF grant DMS 1418495

The story so far

Coupling from the past: set up

Ingredients

- Need update function $\phi(x,r)$
- Need set A such that

$$(\forall r \in A)(\forall x \in \Omega)(\phi(x, R) = \{a\})$$

So no matter what random choices I pick in A, all the states in the state space get updated to move to the same state a

Coupling from the past: execution

CFTP

- **1.** Draw R
- **2.** If $R \in A$, $X \leftarrow \text{only element of } \phi(\Omega, R)$
- **3.** Else $Y \leftarrow \text{CFTP}, X \leftarrow \phi(Y, R)$
- 4. Output X

Big question: how do we find such an A?

Coupling from the past: monotonicity

- Suppose we have a partial order on the state space [So for some states a ≤ b]
- ▶ There is a maximum state x_{\max} where $(\forall x)(x \preceq x_{\max})$
- ▶ There is a minimum state x_{\min} where $(\forall x)(x_{\min} \preceq x)$
- For all random choices r

$$x \preceq y \Rightarrow \phi(x, r) \preceq \phi(y, r)$$

Coupling from the past: utilizing monotonicity

With a monotonic update function

$$A = \{r : \phi(x_{\min}, r) = \phi(x_{\max}, r)\}$$

Everything else is trapped between the update for the minimum and maximum states!

Two obstacles to using this

- **1.** What if there is no x_{max} state?
- 2. What if the state space is continuous, and $\phi(x_{\min}, r)$ never quite reaches $\phi(x_{\max}, r)$?

What if there is no $\overline{x_{\max}}$ state?

Unfortunately, this happens a lot

- Perpetuities with state space $[0,\infty)$
- Point processes with unlimited numbers of points
- Queuing networks

Perpetuities

Model things that grow or shrink randomly with random addition

$$X_{t+1} = A_t X_t + B_t,$$

where

$$A_1, A_2, \ldots \sim A$$

 $B_1, B_2, \ldots \sim B$

When $B_t = 1$, $A_t = U_t^{1/\beta}$, where $\{U_t\}$ are $\mathsf{Unif}([0,1])$ call this a Vervaat Perpetutity ¹

¹W. Vervaat, On a Stochastic Difference Equation and a Representation of Non-negative Infinite Divisible Random Variables, *Adv. in Appl. Probab.*, 11(4):750–783, 1979

Another view

Can also view Vervaat Perpetuities as infinite sums of products of iid $U_1, U_2, \ldots \sim \mathsf{Unif}([0,1])$

$$Y = U_1^{1/\beta} + [U_1 U_2]^{1/\beta} + [U_1 U_2 U_3]^{1/\beta} + \cdots$$

- Lower state is 0
- No upper bound on the state of this chain

Simplify things

- For simplicity of exposition, let $\beta = 1$
- Can extend techniques to general beta

Naive update function is monotonic

▶ For any
$$U \in [0,1]$$
,

$$x \le y \Rightarrow U(x+1) \le U(y+1)$$

- Lower bound is 0
- No upper bound!
- Also strictly monotonic

$$x < y \Rightarrow U(x+1) < U(y+1)$$

so upper and lower processes will never meet

In pictures

Dominating process

Definition Say that Y_t dominates X_t if $X_t \leq Y_t$ for all t.

Getting a dominating process

Suppose that $X_t \geq 5$. Then

 $\mathbb{P}((X_t + 1)U_t \le X_t - 1) = \mathbb{P}(U \le 2/3) = 2/3$

The Dominating Process for $\beta = 1$

Why is it dominating?

$$\begin{split} X_{t+1} &= (X_t+1)U_t, \\ Y_{t+1} &= Y_t - \mathbbm{1}(U_t \leq 2/3, Y_t \geq 5) + \mathbbm{1}(U_t > 2/3) \end{split}$$

Fact If $X_0 \le Y_0$, $X_{t+1} = (X_t + 1)U_t$, and $Y_{t+1} = Y_t - \mathbb{1}(U_t \le 2/3, Y_t \ge 5) + \mathbb{1}(U_t > 2/3)$ then $(\forall t)(X_t \le Y_t)$

Why is this useful?

Can calculate the stationary distribution for Y_t

$$(\forall i \in \{1, 2, 3...\})(\mathbb{P}(Y_{\infty} = 4 + i) = (1/2)^{i})$$

Or another way to say it

$$Y_{\infty} \sim 4 + G, \ G \sim \text{Geo}(1/2)$$

So

1. Draw
$$Y_0 \leftarrow Y_\infty$$
, and then set $W_0 \leftarrow 0$
2. Draw U_0, \ldots, U_{k-1} iid Unif $([0, 1])$
3. For $i = 1$ to $k, Y_i \leftarrow (Y_{i-1} + 1)U_{i-1}, W_i \leftarrow (W_{i-1} + 1)U_{i-1}$
Then $W_i \leq X_i \leq Y_i$

Bringing the processes together

- ▶ If we draw X ~ Unif([0, Y_t + 1]) and it falls in [0, W_t + 1], then it is also uniform over [0, W_t + 1]
- So probability that they come together is $(W_t + 1)/(Y_t + 1)$

Putting this together

- 1. Draw $Y_0 \leftarrow Y_\infty$, and then set $W_0 \leftarrow 0$
- **2.** Draw $U_0, \ldots, U_{k-1}, U_k$ iid Unif([0, 1])
- **3.** For i = 1 to $k, Y_i \leftarrow (Y_{i-1} + 1)U_{i-1}, W_i \leftarrow (W_{i-1} + 1)U_{i-1}$
- $4. Y_{k+1} \leftarrow U_k(1+Y_k)$
- 5. If $Y_{k+1} \leq W_k + 1$ then $W_{k+1} \leftarrow Y_{k+1}$
- 6. Else $W_{k+1} \leftarrow (W_k + 1)[Y_{k+1} (W_k + 1)]/[Y_k W_k]$

Great if it converges

What if it doesn't converge?

Change from regular CFTP

If it does not converge

- \blacktriangleright Need a coupled draw (X_0,Y_0) conditioned on $Y_0=6$
- To get it, use reversibility
- Recall that if

$$\pi(dx)p(x,dy) = \pi(dy)p(y,dx)$$

then the chain is $\mbox{reversible},$ and π is a stationary distribution of the chain

 For reversible chains in a stationary state, the path looks the same run forward and backward

Building the dominated process that ends at the right spot

3 steps

- Run the dominated chain backwards in time to beginning of the block
- 2. Impute the forward uniforms from the backward run
- **3.** Use the forward uniforms to update the underlying chain The result is a run of the underlying chain whose dominating chain ends at the proper spot

Run dominating process back in time

Impute forward uniforms

Example If $Y_{-3}=7$ and $Y_{-2}=6$, then $U_{-2}\sim {\sf Unif}[0,2/3]$ If $Y_{-5}=7$ and $Y_{-4}=8$ then

 $U_{-4} \sim \mathsf{Unif}[2/3, 1]$

Use uniforms to drive upper and lower processes forward

Now drive (X_0, Y_0) *forward to get* X_t

Spatial processes

Poisson point process

Rate λ over a window A

- **1.** Draw $N \leftarrow \mathsf{Pois}(\lambda \cdot \mathsf{area}(A)$
- **2.** Draw P_1, \ldots, P_N uniform over A

Remarks

- The number of possible points is unbounded
- Resulting point process is in the exponential space

Picture of PPP

Region with $\lambda \cdot {\rm area} = \mu$

PPP in time

Jump process

- Continuous time Markov chain
- This is a birth-death chain
- Points are born into the process
- Time between births exponential distribution of rate $\lambda \cdot \operatorname{area}(A)$
- Points live for a time, then die (and are removed)
- Stationary distribution is PPP

PPP in time

Suppose space is 1D, two points alive at time 0

- Lifetime of point is Exponential rate 1
- \blacktriangleright Time between births is Exponential rate μ

Modifying for spatial point processes

Want to draw from bounded density with respect to PPP (for $\gamma \in [0,1])$

 $f_{\mathsf{Strauss}}(P) = \gamma^{t(P)}, \quad t(P) = \#\{\{x_i, x_j\} \in P : \mathsf{dist}(x_i, x_j) < R\}$

- Deaths work as in the original PPP-remove the point
- When point born, roll $U \sim \mathsf{Unif}([0,1])$ to see if point added
- \blacktriangleright For instance, if new point would increase t(P) by 2, only accept the birth with probability γ^2
- This makes the chain reversible with the correct stationary distribution

Picture

- Point born at t too close to existing node
- \blacktriangleright Birth only occurs with probability γ

Pseudocode for birth-death step

Birth-Death Strauss step

Input: current state P_1, \ldots, P_n , intensity function λ

- **1.** Draw $T_B \leftarrow \mathsf{Exp}(\mu), \ T_D \leftarrow \mathsf{Exp}(n)$
- 2. If $T_D < T_B$ (death) then let $I \leftarrow \text{Unif}(\{1, \dots, n\})$, remove point P_I from the set
- 3. Else (possible birth) draw P from λ normalized over the region 3.1 Let $b \leftarrow \{i : \text{dist}(P_i, P), \text{ draw } U \leftarrow \text{Unif}([0, 1])$ 3.2 If $U \leq \gamma^b$, then let $P_{N+1} \leftarrow P$

Using with dominated CFTP

The PPP continuous time Markov chain is the dominating process

- The Strauss ctmc is the underlying process
- DCFTP works as with the perpetutities

One step in the process

- Generate a birth or a death
- Always accept deaths and remove the point
- Births are either added for certain, not added for certain, or might be added (?)

When the ? points are gone, the process has coupled

At time 0, all points uncertain

Radius of disk is R/2

Unblocked birth

If point is born that does not conflict with any existing disks, it is certainly added

Death

If point dies-whether certain or uncertain-it is always removed

Birth near known point

If point dies-whether certain or uncertain-it is always removed

Birth near unknown point

Point might or might not be born

New ? points must be next to existing points

- Let B_R be the ball of radius R around the point
- Average # of ? children a ? point has before dying is at most

 $\alpha < \lambda(B_R)(1-\gamma)$

• So if $\alpha < 1$, then ? points die away exponentially fast

Birth-death-swap chains

- Birth-death-swap chains improve this framework ²
- Death same as before
- Births can be "blocked" by one or more points
- If birth blocked by exactly one point, can swap with proability 1/4: take the point's place (so removed blocking point and add the birth)
- This small change guarantees efficiency when

 $\lambda \cdot \operatorname{area}(B_R)(1-\gamma) < 2$

²M. Huber, Spatial birth-death swap chains, *Bernoulli*, arXiv:1006.5934, 18(3):1031–1041, 2012

Slice sampling

Drawing uniforms

- ▶ Recall that if we draw X uniformly from B where $A \subseteq B$, and $X \in A$, then $X \sim \text{Unif}(A)$
- Mira, Møller, and Roberts³ used this fact to create a perfect slice sampler

³A. Mira, J. Møller, and G. O. Roberts, Perfect slice samplers, *J. R. Statist. Soc. B*, 63(3):593–606, 2001

Remember Fundamental Theorem of Simulation, to draw

 $X \sim f_X$

instead draw

 $(X,Y) \sim \mathsf{Unif}(\{(x,y): 0 \le y \le f_X(x)\})$

Example: drawing from beta distribution

 $X \sim \mathsf{Beta}(3,2)$ $(X,Y) \sim \mathsf{Un} \operatorname{if}(A)$

Beta(3,2)

Gibbs sampler

- **1.** Given X, draw $Y \leftarrow \mathsf{Unif}([0, f_X(X)])$
- 2. Given Y, draw $X \leftarrow \mathsf{Unif}(\{x : f_X(x) \ge Y\})$

This is the **slice sampler** since X is drawn from the slice of the volume under the density of height Y

Using monotonicity with perfect slice sampler

Use the following partial order on states

 $(X,Y) \preceq (W,Z) \Leftrightarrow Y \leq Z$

Is there a monotonic update function?

Here's the idea

- ▶ The hard part is drawing uniformly from $\{x : f_X(x) \ge y\}$
- \blacktriangleright Want to draw simulataneously for all y
- Use a nested approach

Draw X uniformly from {x : f_X(x) ≥ y₀}
If X ∈ {x : f_X(x) ≥ y}, also accept as uniform over this set

Illustration of monotonic slice update

Range of y for which choice of x works

All y in $[0, f_X(x)]$ will have x as their value

Can repeat to get values for all y's needed

For CFTP, inital run only needs upper and lower process

Given lower step

- 1. If $f_X(x_\ell) \ge y_u$ then $x_u \leftarrow x_u$
- 2. Else draw x_u uniformly from $\{x : f_X(x) \ge y_u\}$

Recursive step: upper, lower, and middle process

Given upper and lower step 1. Draw x_m uniformly from $\{x : f_X(x) \ge y_m\}$ 2. If $f_X(x_m) \ge y_u$ then $x_m \leftarrow x_u$

Summary

Domination

- Create a chain/process which upper bounds chain
- Naturally works with birth-death chains for spatial point processes
- \blacktriangleright Solution to chains with no x_{\max}

Uniform coupling

- ▶ For $A \subseteq B$, if $X \sim \mathsf{Unif}(B)$ has $X \in A$, then $X \sim \mathsf{Unif}(A)$
- Draws from our earlier work on AR
- Solution to moving continuous chains together