## Simulation

Perfect simulation III
Dominated Processes and Uniform Coupler

Mark Huber
Claremont McKenna College July, 2018

Supported by NSF grant DMS 1418495

## The story so far

## Coupling from the past: set up

## Ingredients

- Need update function $\phi(x, r)$
- Need set $A$ such that

$$
(\forall r \in A)(\forall x \in \Omega)(\phi(x, R)=\{a\})
$$

So no matter what random choices I pick in $A$, all the states in the state space get updated to move to the same state $a$

## Coupling from the past: execution

CFTP

1. Draw $R$
2. If $R \in A, X \leftarrow$ only element of $\phi(\Omega, R)$
3. Else $Y \leftarrow$ CFTP, $X \leftarrow \phi(Y, R)$
4. Output $X$

Big question: how do we find such an $A$ ?

## Coupling from the past: monotonicity

- Suppose we have a partial order on the state space [So for some states $a \preceq b]$
- There is a maximum state $x_{\max }$ where $(\forall x)\left(x \preceq x_{\max }\right)$
- There is a minimum state $x_{\text {min }}$ where $(\forall x)\left(x_{\min } \preceq x\right)$
- For all random choices $r$

$$
x \preceq y \Rightarrow \phi(x, r) \preceq \phi(y, r)
$$

## Coupling from the past: utilizing monotonicity

With a monotonic update function

$$
A=\left\{r: \phi\left(x_{\min }, r\right)=\phi\left(x_{\max }, r\right)\right\}
$$

Everything else is trapped between the update for the minimum and maximum states!

## Two obstacles to using this

1. What if there is no $x_{\text {max }}$ state?
2. What if the state space is continuous, and $\phi\left(x_{\min }, r\right)$ never quite reaches $\phi\left(x_{\max }, r\right)$ ?


## Integration

```
Tootsie Pop
Algorithm
Bounded
Relative Variance
```

Gamma Poisson Approximation Scheme

Gamma Bernoulli<br>Approximation Scheme

Well balanced
Importance Sampling

What if there is no $x_{\max }$ state?


## Unfortunately, this happens a lot

- Perpetuities with state space $[0, \infty)$
- Point processes with unlimited numbers of points
- Queuing networks

Perpetuities

## Perpetuities

Model things that grow or shrink randomly with random addition

$$
X_{t+1}=A_{t} X_{t}+B_{t}
$$

where

$$
\begin{aligned}
& A_{1}, A_{2}, \ldots \sim A \\
& B_{1}, B_{2}, \ldots \sim B
\end{aligned}
$$

When $B_{t}=1, A_{t}=U_{t}^{1 / \beta}$, where $\left\{U_{t}\right\}$ are Unif $([0,1])$ call this a Vervaat Perpetutity ${ }^{1}$
${ }^{1}$ W. Vervaat, On a Stochastic Difference Equation and a Representation of Non-negative Infinite Divisible Random Variables, Adv. in Appl. Probab., 11(4):750-783, 1979

## Another view

Can also view Vervaat Perpetuities as infinite sums of products of iid $U_{1}, U_{2}, \ldots \sim \operatorname{Unif}([0,1])$

$$
Y=U_{1}^{1 / \beta}+\left[U_{1} U_{2}\right]^{1 / \beta}+\left[U_{1} U_{2} U_{3}\right]^{1 / \beta}+\cdots
$$

- Lower state is 0
- No upper bound on the state of this chain


## Simplify things

- For simplicity of exposition, let $\beta=1$
- Can extend techniques to general beta


## Naive update function is monotonic

- For any $U \in[0,1]$,

$$
x \leq y \Rightarrow U(x+1) \leq U(y+1)
$$

- Lower bound is 0
- No upper bound!
- Also strictly monotonic

$$
x<y \Rightarrow U(x+1)<U(y+1)
$$

so upper and lower processes will never meet

## In pictures



## Dominating process

## Definition

Say that $Y_{t}$ dominates $X_{t}$ if $X_{t} \leq Y_{t}$ for all $t$.

## Getting a dominating process

Suppose that $X_{t} \geq 5$. Then

$$
\mathbb{P}\left(\left(X_{t}+1\right) U_{t} \leq X_{t}-1\right)=\mathbb{P}(U \leq 2 / 3)=2 / 3
$$



## The Dominating Process for $\beta=1$



## Why is it dominating?

$$
\begin{aligned}
X_{t+1} & =\left(X_{t}+1\right) U_{t} \\
Y_{t+1} & =Y_{t}-\mathbb{1}\left(U_{t} \leq 2 / 3, Y_{t} \geq 5\right)+\mathbb{1}\left(U_{t}>2 / 3\right)
\end{aligned}
$$

Fact
If $X_{0} \leq Y_{0}, X_{t+1}=\left(X_{t}+1\right) U_{t}$, and
$Y_{t+1}=Y_{t}-\mathbb{1}\left(U_{t} \leq 2 / 3, Y_{t} \geq 5\right)+\mathbb{1}\left(U_{t}>2 / 3\right)$ then

$$
(\forall t)\left(X_{t} \leq Y_{t}\right)
$$

## Why is this useful?

Can calculate the stationary distribution for $Y_{t}$

$$
(\forall i \in\{1,2,3 \ldots\})\left(\mathbb{P}\left(Y_{\infty}=4+i\right)=(1 / 2)^{i}\right)
$$

Or another way to say it

$$
Y_{\infty} \sim 4+G, G \sim \operatorname{Geo}(1 / 2)
$$

So

1. Draw $Y_{0} \leftarrow Y_{\infty}$, and then set $W_{0} \leftarrow 0$
2. Draw $U_{0}, \ldots, U_{k-1}$ iid $\operatorname{Unif}([0,1])$
3. For $i=1$ to $k, Y_{i} \leftarrow\left(Y_{i-1}+1\right) U_{i-1}, W_{i} \leftarrow\left(W_{i-1}+1\right) U_{i-1}$

Then $W_{i} \leq X_{i} \leq Y_{i}$

## Bringing the processes together


$\longleftarrow W_{t+1} \sim \operatorname{Unif}\left(\left[0, W_{t}+1\right]\right) \longrightarrow$


- If we draw $X \sim \operatorname{Unif}\left(\left[0, Y_{t}+1\right]\right)$ and it falls in $\left[0, W_{t}+1\right]$, then it is also uniform over $\left[0, W_{t}+1\right]$
- So probability that they come together is $\left(W_{t}+1\right) /\left(Y_{t}+1\right)$


## Putting this together

1. Draw $Y_{0} \leftarrow Y_{\infty}$, and then set $W_{0} \leftarrow 0$
2. Draw $U_{0}, \ldots, U_{k-1}, U_{k}$ iid $\operatorname{Unif}([0,1])$
3. For $i=1$ to $k, Y_{i} \leftarrow\left(Y_{i-1}+1\right) U_{i-1}, W_{i} \leftarrow\left(W_{i-1}+1\right) U_{i-1}$
4. $Y_{k+1} \leftarrow U_{k}\left(1+Y_{k}\right)$
5. If $Y_{k+1} \leq W_{k}+1$ then $W_{k+1} \leftarrow Y_{k+1}$
6. Else $W_{k+1} \leftarrow\left(W_{k}+1\right)\left[Y_{k+1}-\left(W_{k}+1\right)\right] /\left[Y_{k}-W_{k}\right]$

## Great if it converges



## What if it doesn't converge?



## Change from regular CFTP

## If it does not converge

- Need a coupled draw $\left(X_{0}, Y_{0}\right)$ conditioned on $Y_{0}=6$
- To get it, use reversibility
- Recall that if

$$
\pi(d x) p(x, d y)=\pi(d y) p(y, d x)
$$

then the chain is reversible, and $\pi$ is a stationary distribution of the chain

- For reversible chains in a stationary state, the path looks the same run forward and backward


## Building the dominated process that ends at the right spot

3 steps

1. Run the dominated chain backwards in time to beginning of the block
2. Impute the forward uniforms from the backward run
3. Use the forward uniforms to update the underlying chain

The result is a run of the underlying chain whose dominating chain ends at the proper spot

## Run dominating process back in time

0 O 0

## Impute forward uniforms

Example If $Y_{-3}=7$ and $Y_{-2}=6$, then

$$
U_{-2} \sim \operatorname{Unif}[0,2 / 3]
$$

If $Y_{-5}=7$ and $Y_{-4}=8$ then

$$
U_{-4} \sim \operatorname{Unif}[2 / 3,1]
$$

Use uniforms to drive upper and lower processes forward
0 0.

## Now drive $\left(X_{0}, Y_{0}\right)$ forward to get $X_{t}$

$0 \quad 0 \quad 0$

## Spatial processes

## Poisson point process

Rate $\lambda$ over a window $A$

1. Draw $N \leftarrow \operatorname{Pois}(\lambda \cdot \operatorname{area}(A)$
2. Draw $P_{1}, \ldots, P_{N}$ uniform over $A$

Remarks

- The number of possible points is unbounded
- Resulting point process is in the exponential space


## Picture of PPP

Region with $\lambda \cdot$ area $=\mu$

$\mu^{0}$
$\mu^{1} / 1$ !

$\mu^{2} / 2$ !


## PPP in time

Jump process

- Continuous time Markov chain
- This is a birth-death chain
- Points are born into the process
- Time between births exponential distribution of rate $\lambda \cdot \operatorname{area}(A)$
- Points live for a time, then die (and are removed)
- Stationary distribution is PPP


## PPP in time

Suppose space is 1D, two points alive at time 0
space

$\square$

- Lifetime of point is Exponential rate 1
- Time between births is Exponential rate $\mu$


## Modifying for spatial point processes

Want to draw from bounded density with respect to PPP (for $\gamma \in[0,1])$

$$
f_{\text {Strauss }}(P)=\gamma^{t(P)}, \quad t(P)=\#\left\{\left\{x_{i}, x_{j}\right\} \in P: \operatorname{dist}\left(x_{i}, x_{j}\right)<R\right\}
$$

- Deaths work as in the original PPP-remove the point
- When point born, roll $U \sim \operatorname{Unif}([0,1])$ to see if point added
- For instance, if new point would increase $t(P)$ by 2 , only accept the birth with probability $\gamma^{2}$
- This makes the chain reversible with the correct stationary distribution


## Picture

space


- Point born at $t$ too close to existing node
- Birth only occurs with probability $\gamma$


## Pseudocode for birth-death step

Birth-Death Strauss step
Input: current state $P_{1}, \ldots, P_{n}$, intensity function $\lambda$

1. Draw $T_{B} \leftarrow \operatorname{Exp}(\mu), T_{D} \leftarrow \operatorname{Exp}(n)$
2. If $T_{D}<T_{B}$ (death) then let $I \leftarrow \operatorname{Unif}(\{1, \ldots, n\})$, remove point $P_{I}$ from the set
3. Else (possible birth) draw $P$ from $\lambda$ normalized over the region 3.1 Let $b \leftarrow\left\{i: \operatorname{dist}\left(P_{i}, P\right)\right.$, draw $U \leftarrow \operatorname{Unif}([0,1])$ 3.2 If $U \leq \gamma^{b}$, then let $P_{N+1} \leftarrow P$

## Using with dominated CFTP

The PPP continuous time Markov chain is the dominating process

- The Strauss ctmc is the underlying process
- DCFTP works as with the perpetutities

One step in the process

- Generate a birth or a death
- Always accept deaths and remove the point
- Births are either added for certain, not added for certain, or might be added (?)
When the ? points are gone, the process has coupled


## At time 0, all points uncertain



Radius of disk is $R / 2$

## Unblocked birth



If point is born that does not conflict with any existing disks, it is certainly added

## Death



If point dies-whether certain or uncertain-it is always removed

## Birth near known point



If point dies-whether certain or uncertain-it is always removed

## Birth near unknown point



Point might or might not be born

## Birth near both



## New ? points must be next to existing points



- Let $B_{R}$ be the ball of radius $R$ around the point
- Average \# of ? children a ? point has before dying is at most

$$
\alpha<\lambda\left(B_{R}\right)(1-\gamma)
$$

- So if $\alpha<1$, then ? points die away exponentially fast


## Birth-death-swap chains

- Birth-death-swap chains improve this framework ${ }^{2}$
- Death same as before
- Births can be "blocked" by one or more points
- If birth blocked by exactly one point, can swap with proability $1 / 4$ : take the point's place (so removed blocking point and add the birth)
- This small change guarantees efficiency when

$$
\lambda \cdot \operatorname{area}\left(B_{R}\right)(1-\gamma)<2
$$

[^0]
## Slice sampling



## Drawing uniforms

- Recall that if we draw $X$ uniformly from $B$ where $A \subseteq B$, and $X \in A$, then $X \sim \operatorname{Unif}(A)$
- Mira, Møller, and Roberts ${ }^{3}$ used this fact to create a perfect slice sampler
${ }^{3}$ A. Mira, J. Møller, and G. O. Roberts, Perfect slice samplers, J. R. Statist. Soc. B, 63(3):593-606, 2001


## Slice sampler

Remember Fundamental Theorem of Simulation, to draw

$$
X \sim f_{X}
$$

instead draw

$$
(X, Y) \sim \operatorname{Unif}\left(\left\{(x, y): 0 \leq y \leq f_{X}(x)\right\}\right)
$$

## Example: drawing from beta distribution



$$
\begin{aligned}
& X \sim \operatorname{Beta}(3,2) \\
& (X, Y) \sim \operatorname{Unif}(A)
\end{aligned}
$$

Beta(3, 2)

## Gibbs sampler

1. Given $X$, draw $Y \leftarrow \operatorname{Unif}\left(\left[0, f_{X}(X)\right]\right)$
2. Given $Y$, draw $X \leftarrow \operatorname{Unif}\left(\left\{x: f_{X}(x) \geq Y\right\}\right)$


This is the slice sampler since $X$ is drawn from the slice of the volume under the density of height $Y$

## Using monotonicity with perfect slice sampler

Use the following partial order on states

$$
(X, Y) \preceq(W, Z) \Leftrightarrow Y \leq Z
$$

Is there a monotonic update function?

## Here's the idea

- The hard part is drawing uniformly from $\left\{x: f_{X}(x) \geq y\right\}$
- Want to draw simulataneously for all $y$
- Use a nested approach

- Draw $X$ uniformly from $\left\{x: f_{X}(x) \geq y_{0}\right\}$
- If $X \in\left\{x: f_{X}(x) \geq y\right\}$, also accept as uniform over this set


## Illustration of monotonic slice update



Same value for $y_{0}$ and $y$


Different value for $y_{0}$ and $y$

## Range of $y$ for which choice of $x$ works



All $y$ in $\left[0, f_{X}(x)\right]$ will have $x$ as their value

## Can repeat to get values for all y's needed



For CFTP, inital run only needs upper and lower process


Given lower step

1. If $f_{X}\left(x_{\ell}\right) \geq y_{u}$ then $x_{u} \leftarrow x_{u}$
2. Else draw $x_{u}$ uniformly from $\left\{x: f_{X}(x) \geq y_{u}\right\}$

## Recursive step: upper, lower, and middle process



Given upper and lower step

1. Draw $x_{m}$ uniformly from $\left\{x: f_{X}(x) \geq y_{m}\right\}$
2. If $f_{X}\left(x_{m}\right) \geq y_{u}$ then $x_{m} \leftarrow x_{u}$

## Summary

## Domination

- Create a chain/process which upper bounds chain
- Naturally works with birth-death chains for spatial point processes
- Solution to chains with no $x_{\max }$

Uniform coupling

- For $A \subseteq B$, if $X \sim \operatorname{Unif}(B)$ has $X \in A$, then $X \sim \operatorname{Unif}(A)$
- Draws from our earlier work on AR
- Solution to moving continuous chains together


[^0]:    ${ }^{2}$ M. Huber, Spatial birth-death swap chains, Bernoulli, arXiv:1006.5934, 18(3):1031-1041, 2012

