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Random vectors
Now we want random X = (X1, X2, . . . , Xd) ∈ Rd.

If Xj ∼ Fj independent, then we’re back to the univariate case.

So the vector story is about inducing dependence.
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Dependence is hard
For d > 1

• the correct dependence is hard to specify theoretically

• sometimes it ‘emerges’ from problem data

• our named distributions cover fewer use cases

• there can be a curse of dimension, costs like O(ed×something)

Contrast

For d = 1 we could have almost any named distribution that our problem needed,

or maybe build our own sampler.

For d > 1 we more often force our problem into a list of distributions we can do.

Special cases and tricks are prominent

(Or use MCMC or SMC.)
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Sequential inversion
We want random X = (X1, X2, . . . , Xd)

Let U1, . . . , Ud
iid∼ U(0, 1).

Let F1 be the marginal distribution of X1.

X1 ∼ F−1
1 (U1)

For j = 2, . . . , d

Let Gj(·) = Fj(· | X1 = x1, . . . , Xj−1 = xj−1)

Xj = G−1
j (Uj)

Comments

1) Exact

2) Easy if you know how

3) Ordering of variables may affect efficiency

4) Can be super hard to get all those conditional distributions
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Acceptance-rejection
If (X, Y ) is uniformly distributed in

{(x, y) | 0 6 y 6 f(x), x ∈ Rd} ⊂ Rd+1

then X ∼ f . The geometry goes through, so the algorithm is:

1) Sample Y ∼ g on Rd

2) Accept iff fu(Y ) 6 cgu(Y )

Todo list

1) Be able to sample from g

2) Be able to compute fu/gu (possibly unnormalized)

3) Find c <∞ where you know fu 6 cgu
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Curse of dimension
Commonly c grows with d. It can grow exponentially. Consider

f =
d∏
j=1

fj(xj | xk, k < j)

g =
d∏
j=1

gj(xj | xk, k < j), fj(xj | · · · ) 6 cjgj(xj | · · · )

c =
d∏
j=1

cj

If every cj > c0 > 1, then c > cd0.

In a case like this we might use sequential Monte Carlo (SMC) (Chopin lectures)

If we must wait until Xd is available to accept or reject we probably face a large c.
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Example
We want X ∼ U(Bd), Bd = {z ∈ Rd | zTz 6 1} (unit ball).

Sample X ∼ U([−1, 1]d) keep X iff ‖X‖ 6 1.

Round peg, square hole

d Acceptance

2 π/4
.
= 0.785

5 0.164

10 0.00249

20 2.46× 10−8

50 1.54× 10−28

Generally

vol(Bd)
2d

=
πd/2

2dΓ(1 + d/2)
Recall: Γ(k) = (k − 1)!
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Mixtures
They still work.

You have to have mixing ingredients though.

So they turn Rd samplers into more Rd samplers.
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Copulas
Let X ∈ Rd have a continuous distribution with marginals Fj .

Then U = (F1(X1), . . . , Fd(Xd)) is a multivariate uniform random vector.

Also called a copula.

We can take Xj = F−1
j (Uj) componentwise

Sklar’s theorem

For any distribution on Rd there exists a copula distribution for U

with Xj
d
= F−1

j (Uj).

That doesn’t mean we can find it!

The marginals are the easy part. The copula is the hard part.
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Some we can do
• multivariate normal

• multivariate t

• multinomial (multivariate binomial)

• Dirichlet (multivariate beta)

• multivariate exponential

Puzzler

Can we just put “multivariate” in front of any distribution name?

Sort of: but it won’t be unique. There are > 12 bivariate Gammas (Kotz et al)

Also “multivariate f” might not preserve meaningful properties of f .
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Multivariate normal
X ∼ N (µ,Σ), µ ∈ Rd and Σ ∈ Rd×d positive semidefinite

E(X) = µ and Var(X) = Σ

Density

If Σ is invertible then

ϕ(x;µ,Σ) =
e−

1
2 (x−µ)TΣ−1(x−µ)

(2π)d/2|Σ|1/2

Singular distributions

Then rank(Σ) < d and X is confined to a low dimensional flat subset of Rd.
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N (µ,Σ)

Partition: X =

X1

X2

 ∼ N
µ1

µ2

 ,

Σ11 Σ12

Σ21 Σ22


Key properties

1) AX + b ∼ N (Aµ+ b, AΣAT)

2) X1 ∼ N (µ1,Σ11) and X2 ∼ N (µ2,Σ22)

3) X1 indep of X2 ⇐⇒ Σ12 = 0

4) If Σ22 invertible, then distn of X1 given X2 = x2 is

N
(
µ1 + Σ12Σ−1

22 (x2 − µ2),Σ11 − Σ12Σ−1
22 Σ21

)
Property 4 is our friend.
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BasicN (µ,Σ)
1) Start with Z ∼ N (0, Id) (easy)

2) Find any C ∈ Rd×d with CCT = Σ (below)

3) Deliver X = µ+ CZ

Two main choices

Cholesky: C lower triangular.

Best to check CCT = Σ. (In case you got an upper triangular C)

Spectral: For Σ = PΛPT use C = PΛ1/2PT

P orthogonal and Λ diagonal

Execise

Cholesky with Zj = Φ−1(Uj) is sequential inversion.
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Gaussian
Conditional sampling is powerful. Recall X1 |X2 = x2 is

N
(
µ1 + Σ12Σ−1

22 (x2 − µ2),Σ11 − Σ12Σ−1
22 Σ21

)
We can generate Gaussian components in any order we like.

Linear combinations

Let T = ΘX ∈ Rr for Θ ∈ Rr×d of rank r < d. ThenX

T

 =

 X

ΘX

 ∼ N
 µ

Θµ

 ,

 Σ ΣΘT

ΘΣ ΘΣΘT


If we’ve already got T = ΘX we can fill in the rest of X conditionally.

We can get T 1 = Θ1X then T 2 = Θ2X .

Cost is just algebra (and careful coding).
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For huge d
A technique from Doucet (2010)

Suppose we already chose T = t ∈ Rr where T = ΘX .

Now we want to fill in the rest of X

We can use:

1) X ∼ N (µ,Σ)

2) X ←X + ΣΘT(ΘΣΘT)−1(t−ΘX)

New algebra costs O(r3) not O(d3).

Still need a good Σ sampler.
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Multivariate t

X = µ+
Σ1/2Z√
W/ν

, W ∼ χ2
(ν)

Elliptically symmetric contours, much heavier tails thanN (µ,Σ).

This is also a mixture of Gaussians.

scale mixture

continuous distribution
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Multinomial data
Let J be a categorical variable:

P(J = j) = pj for j = 1, 2, . . . , d

The “one-hot encoding” of J = j is

Y =
(
0 0 · · · 0 1︸︷︷︸

pos. j

0 · · · 0
)
∈ {0, 1}d

Multinomial

X =

m∑
i=1

Yi independent categoricals Yi

We place m balls independently into d bins.

Bin j has probability pj .

LMS Invited Lecture Series, CRISM Summer School 2018



Foundations 2 of 5 18

Multinomial ctd.
X = (X1, X2, . . . , Xd) ∼ Mult(m,p) where p = (p1, . . . , pd)

P(X = x) =
m!

x1!x2! · · ·xd!

d∏
j=1

p
xj

j xj > 0
∑
j

xj = m

From the definition

X ← (0, . . . , 0) // length d

for j = 1 to m do

J ∼ p // i.e., P(J = j) = pj

Xj ← Xj + 1

But this is slow for large m.
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Conditionally
We can sample them one at a time in any order we like.

Each component is binomial. Given X1 = x1:

(X2, . . . , Xd) ∼ Mult
(
m− x1,

p2
1−p1 , . . . ,

pd
1−p1

)
For X ∼ Mult(m,p)

given m ∈ N0, d ∈ N and p = (p1, . . . , pd) ∈ ∆d−1

`← m, S ← 1

for j = 1 to d do

Xj ∼ Bin(`, pj/S)

`← `−Xj

S ← S − pj
deliver X
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Recursively
For any subset of bins: u ⊂ {1, 2, . . . , d}
Generate Xu ≡

∑
j∈uXj ∼ Bin(m,

∑
j∈u pj)

Now you have two multinomials,

one within set u and one within set uc

Fill in within set u

m← Xu and pj ← pj/
∑
k∈u pk

For set uc

m← m−Xu and pj ← pj/
∑
k∈uc pk

LMS Invited Lecture Series, CRISM Summer School 2018



Foundations 2 of 5 21

Dirichlet
The unit simplex is

∆d−1 =
{

(x1, . . . , xd)
∣∣ xj > 0,

d∑
j=1

xj = 1
}

A random X ∈ ∆d−1 represents a random probability vector.

Useful in hierarchical models.

Density

D(α)−1
d∏
j=1

x
αj−1
j , x ∈ ∆d−1, D(α) =

∏d
j=1 Γ(αj)

Γ
(∑d

j=1 αj
)

Need αj > 0. If αj = 1 we get U(∆d−2).

First d− 1 components

D(α)−1
d−1∏
j=1

x
αj−1
j

(
1−

d−1∑
j=1

xj

)
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Samples
Large αj ‘attract’ points to their corner

More precisely: large αj ‘repel’ points from the far side
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Sampling
Using some probability inequalities:

1) Y ∼ Gam(αj)

2) Xj = Yj/
∑d
k=1 Yk

Marginally

This also shows that Xj ∼ Beta(αj ,
∑
k 6=j αk).
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Multivariate Poisson
Take Zj ∼ Poi(λj) for j = 1, . . . , r then

X1

X2

...

Xd

 =


1 0 1 · · · 0

0 1 0 · · · 1
...

...
...

. . .
...

0 1 1 · · · 1




Z1

Z2

...

Zr


I..e. X = AZ for A ∈ {0, 1}d×r

Each Xj Poisson and E(X) = Aλ

Interpretation

Event sources Z1, . . . , Zr .

Event outcomes X1, . . . , Xd.

Ajk = 1 ⇐⇒ source k affects outcome j.

Unfortunately: we cannot get negative dependence this way.
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Copula-marginal sampling
Let C be a copula. Sample U ∼ C then Xj = F−1

j (Uj)

Any copula we like with any margins we like.

Gaussian copula

For a correlation matrix R ∈ Rd×d

1) Y ∼ N (0, R)

2) U ← Φ(Y )

3) Xj ← F−1
j (Uj), j = 1, . . . , d

Also called Nataf transformation and NORTA (normal to anything).
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Normal copula, Poisson margins
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(a) ρ = 0.7
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(b) ρ = −0.7

E(Xj) = 2 and points jittered
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Copula sampling
The Gaussian copula has some undesirable properties for insurance and finance.

A t(ν) copula is considered safer (McNeil et al., 2005)

Y ∼ t(0, R, ν), Uj = P(t(ν) 6 Yj) Xj = F−1
j (Uj)

Copula sampling is a hybrid with target qualitative behaviour

but aesthetically problematic for some.
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Geometry
Random points on

Sd−1 = {z ∈ Rd | zTz = 1}

The standard Gaussian is spherically symmetric

(2π)−d/2e−
1
2z

Tz

Easy way to sample

1) Z ∼ N (0, I)

2) X ← Z/‖X‖

There are alternatives for d = 3 in graphics.

For any spherically symmetric distribution

Get X ∼ U(Sd−1) and multiply by the desired radius.

Exercise: get X ∼ U{z ∈ Rd | ‖z‖ 6 1} (ball)

Box-Muller

Is this same trick in reverse to get Z ∼ N (0, I2).
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Examples

Next come some sketched examples.

Time does not permit full details.

If one looks interesting, you’ll have to follow up later.
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Random permutations
Uniform over m! permutations of 1, . . . ,m

X ← (1, 2, . . . ,m− 1,m)

for j = m, . . . , 2 do

k ∼ U{1, . . . , j}
swap Xj and Xk

deliver X

Derangements

Exercise: Enforce Xi 6= i for all i = 1, . . . ,m
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For K-fold cross validation
Set up a vector with m = Kdn/Ke elements

v =
(
1:K, 1:K, 1:K, · · · , 1:K

)
Random permutation π(i)

Group labels Gi = vπ(i), i = 1, . . . , n

Fitting, tuning, validate

Fit over 50%

tune parameters over 30%

validate on 20%
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Linear permutations
To permute of m = 264 elements.

(Long story about min hashing)

Uniform permutation infeasible.

Suffices to permute 0, 1, . . . , p− 1 for prime p > m

Two algorithms

π(i) = U + imod p (digital shift)

π(i) = U + V × imod p (random linear)

For U ∼ U{0, 1, . . . , p− 1} and V ∼ U{1, . . . , p− 1}
NB: V 6= 0

These get 1 and 2 dimensional margins right (respectively).

Random linear requires p to be prime.

These are also used in randomized quasi-Monte Carlo

LMS Invited Lecture Series, CRISM Summer School 2018



Foundations 2 of 5 33

Downsampling data
Given (xi, Yi) for i = 1, . . . , N

we want a simple random sample of n� N

First solution

Tag observation i with ui ∼ U(0, 1)

Keep those i with smallest n tags ui

Better solution

Work out the distribution of ‘next item’ sampled.

Reservoir sampling

We don’t have to know N before sampling begins.
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Poisson processes
Number of points in [t, t+ s) ∼ Poi(λ× s)
Non overlapping intervals are independent.

Ti − Ti−1 ∼ Exp(1)/λ

Non uniform rate λ(t)

Let Λ(t) =
∫ t

0
λ(s) ds. Then

Ti = Λ−1
(
Λ(Ti−1) + Ei

)
, Ei ∼ Exp(1)

just like inversion.
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Random lines
Sample via polar coordinates.

Isotropic Non−isotropic

Poisson lines
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Gaussian processes
X(t) for t ∈ T . Maybe T = [0,∞) or T ⊂ Rd.

Mean µ(·) and covariance Σ(·, ·).

Finite dimensional distributions
X(t1)

X(t2)
...

X(tm)

 ∼ N



µ(t1)

µ(t2)
...

µ(tm)

 ,


Σ(t1, t1) Σ(t1, t2) · · · Σ(t1, tm)

Σ(t2, t1) Σ(t2, t2) · · · Σ(t2, tm)
...

...
. . .

...

Σ(tm, t1) Σ(tm, t2) · · · Σ(tm, tm)




Notes

We can generate in any order.

But algebra could be costly.

Easy for Brownian motion:

B(tj) = B(tj−1) +
√
tj − tj−1 ×N (0, 1)

Markov property fills in between
LMS Invited Lecture Series, CRISM Summer School 2018



Foundations 2 of 5 37

Matern processes
Used as generative models for functions in physics / engineering.

Supports “Bayesian numerical analysis” on expensive codes.
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Matern Process Realizations
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Stochastic differential equations
Drift a(·, ·), diffusion b(·, ·)

dXt = a(Xt) dt+ b(Xt) dBt, Brownian motion Bt

Euler-Maruyama

At times tk = k ×∆, with Zk ∼ N (0, 1)

X̂(tk+1) = X̂(tk) + ak∆ + bk
√

∆Zk

ak = a(X̂(tk)), bk = b(X̂(tk))

Milstein

X̂(tk+1) = X̂(tk) + ak∆ + bk
√

∆Zk +
1

2
bkb
′
k(Z2

k − 1)∆k

b′k = b′(X̂(tk))

Milstein’s X̂(·) tracks X(·) better (strong sense).

Multilevel Monte Carlo is the best way to handle bias from ∆ > 0
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Dirichlet process
Xi ∼ H(·, θi) where θi ∈ Θ with θi ∼ F
For random F centered on G

(F (A1), · · · , F (Am)) ∼ Dir(αG(A1), . . . , αG(Am))

After some algebra:

the distribution of θn+1 given θ1, . . . , θn is a CRP
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Chinese restaurant process

Metaphor

People either start a new table

or join one with prob proportional to number seated there

Then θn+1 is either a previously seen θi, or a new draw from G

You get clustered θi allowing for hitherto unseen clusters
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Point processes
L: centers of insect cells Ripley (1977) R: pine trees Van Liesbout (2004)
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Finnish pines

Two Spatial Point Sets

We can mimick positive dependence via Pi ∼ Poi(Λ) for random Λ.

Negative dependence is harder.

We need MCMC lectures of Rosenthal, Roberts or SMC lectures of Chopin
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