Monte Carlo: random vectors and objects

Art B. Owen
Stanford University

Adapted from "Monte Carlo theory, methods and examples" http://statweb.stanford.edu/~owen/mc/

Random vectors

Now we want random $\boldsymbol{X}=\left(X_{1}, X_{2}, \ldots, X_{d}\right) \in \mathbb{R}^{d}$.
If $X_{j} \sim F_{j}$ independent, then we're back to the univariate case.
So the vector story is about inducing dependence.

Dependence is hard

For $d>1$

- the correct dependence is hard to specify theoretically
- sometimes it 'emerges' from problem data
- our named distributions cover fewer use cases
- there can be a curse of dimension, costs like $O\left(e^{d \times \text { something }}\right)$

Contrast

For $d=1$ we could have almost any named distribution that our problem needed, or maybe build our own sampler.

For $d>1$ we more often force our problem into a list of distributions we can do.
Special cases and tricks are prominent
(Or use MCMC or SMC.)

Sequential inversion

$$
\begin{aligned}
& \text { We want random } \boldsymbol{X}=\left(X_{1}, X_{2}, \ldots, X_{d}\right) \\
& \text { Let } U_{1}, \ldots, U_{d} \stackrel{\text { iid }}{\sim} \mathbf{U}(0,1) . \\
& \text { Let } F_{1} \text { be the marginal distribution of } X_{1} . \\
& X_{1} \sim F_{1}^{-1}\left(U_{1}\right) \\
& \text { For } j=2, \ldots, d \\
& \quad \text { Let } G_{j}(\cdot)=F_{j}\left(\cdot \mid X_{1}=x_{1}, \ldots, X_{j-1}=x_{j-1}\right) \\
& \quad X_{j}=G_{j}^{-1}\left(U_{j}\right)
\end{aligned}
$$

Comments

1) Exact
2) Easy if you know how
3) Ordering of variables may affect efficiency
4) Can be super hard to get all those conditional distributions

Acceptance-rejection

If (\boldsymbol{X}, Y) is uniformly distributed in

$$
\left\{(\boldsymbol{x}, y) \mid 0 \leqslant y \leqslant f(\boldsymbol{x}), \quad \boldsymbol{x} \in \mathbb{R}^{d}\right\} \subset \mathbb{R}^{d+1}
$$

then $\boldsymbol{X} \sim f$. The geometry goes through, so the algorithm is:

1) Sample $\boldsymbol{Y} \sim g$ on \mathbb{R}^{d}
2) Accept iff $f_{u}(\boldsymbol{Y}) \leqslant c g_{u}(\boldsymbol{Y})$

Todo list

1) Be able to sample from g
2) Be able to compute f_{u} / g_{u} (possibly unnormalized)
3) Find $c<\infty$ where you know $f_{u} \leqslant c g_{u}$

Curse of dimension

Commonly c grows with d. It can grow exponentially. Consider

$$
\begin{aligned}
f & =\prod_{j=1}^{d} f_{j}\left(x_{j} \mid x_{k}, k<j\right) \\
g & =\prod_{j=1}^{d} g_{j}\left(x_{j} \mid x_{k}, k<j\right), \quad f_{j}\left(x_{j} \mid \cdots\right) \leqslant c_{j} g_{j}\left(x_{j} \mid \cdots\right) \\
c & =\prod_{j=1}^{d} c_{j}
\end{aligned}
$$

If every $c_{j} \geqslant c_{0}>1$, then $c \geqslant c_{0}^{d}$.
In a case like this we might use sequential Monte Carlo (SMC) (Chopin lectures)
If we must wait until X_{d} is available to accept or reject we probably face a large c.

Example

We want $\boldsymbol{X} \sim \mathbf{U}\left(\mathbb{B}^{d}\right), \quad \mathbb{B}^{d}=\left\{\boldsymbol{z} \in \mathbb{R}^{d} \mid \boldsymbol{z}^{\top} \boldsymbol{z} \leqslant 1\right\}$ (unit ball). Sample $\boldsymbol{X} \sim \mathbf{U}\left([-1,1]^{d}\right)$ keep \boldsymbol{X} iff $\|\boldsymbol{X}\| \leqslant 1$.

Round peg, square hole

d	Acceptance
2	$\pi / 4 \doteq 0.785$
5	0.164
10	0.00249
20	2.46×10^{-8}
50	1.54×10^{-28}

Generally

$$
\begin{aligned}
& \frac{\operatorname{vol}\left(\mathbb{B}^{d}\right)}{2^{d}}=\frac{\pi^{d / 2}}{2^{d} \Gamma(1+d / 2)} \\
& \text { Recall: } \Gamma(k)=(k-1)!
\end{aligned}
$$

Mixtures

They still work.
You have to have mixing ingredients though.
So they turn \mathbb{R}^{d} samplers into more \mathbb{R}^{d} samplers.

Copulas

Let $\boldsymbol{X} \in \mathbb{R}^{d}$ have a continuous distribution with marginals F_{j}.
Then $\boldsymbol{U}=\left(F_{1}\left(X_{1}\right), \ldots, F_{d}\left(X_{d}\right)\right)$ is a multivariate uniform random vector. Also called a copula.

We can take $X_{j}=F_{j}^{-1}\left(U_{j}\right)$ componentwise

Sklar's theorem

For any distribution on \mathbb{R}^{d} there exists a copula distribution for \boldsymbol{U}

$$
\text { with } X_{j} \stackrel{\mathrm{~d}}{=} F_{j}^{-1}\left(U_{j}\right)
$$

That doesn't mean we can find it!
The marginals are the easy part. The copula is the hard part.

Some we can do

- multivariate normal
- multivariate t
- multinomial (multivariate binomial)
- Dirichlet (multivariate beta)
- multivariate exponential
Puzzler

Can we just put "multivariate" in front of any distribution name?
Sort of: but it won't be unique. There are $\geqslant 12$ bivariate Gammas (Kotz et al) Also "multivariate f " might not preserve meaningful properties of f.

Multivariate normal

$\boldsymbol{X} \sim \mathcal{N}(\mu, \Sigma), \quad \mu \in \mathbb{R}^{d}$ and $\Sigma \in \mathbb{R}^{d \times d}$ positive semidefinite
$\mathbb{E}(\boldsymbol{X})=\mu$ and $\operatorname{Var}(\boldsymbol{X})=\Sigma$

Density

If Σ is invertible then

$$
\varphi(\boldsymbol{x} ; \mu, \Sigma)=\frac{e^{-\frac{1}{2}(\boldsymbol{x}-\mu)^{\top} \Sigma^{-1}(\boldsymbol{x}-\mu)}}{(2 \pi)^{d / 2}|\Sigma|^{1 / 2}}
$$

Singular distributions

Then $\operatorname{rank}(\Sigma)<d$ and \boldsymbol{X} is confined to a low dimensional flat subset of \mathbb{R}^{d}.

$$
\begin{gathered}
\mathcal{N}(\mu, \Sigma) \\
\text { Partition: } x=\binom{x_{1}}{x_{2}} \sim \mathcal{N}\left(\binom{\mu_{1}}{\mu_{2}},\left(\begin{array}{ll}
\Sigma_{11} & \Sigma_{12} \\
\Sigma_{21} & \Sigma_{22}
\end{array}\right)\right)
\end{gathered}
$$

Key properties

1) $A \boldsymbol{X}+b \sim \mathcal{N}\left(A \mu+b, A \Sigma A^{\top}\right)$
2) $\boldsymbol{X}_{1} \sim \mathcal{N}\left(\mu_{1}, \Sigma_{11}\right)$ and $\boldsymbol{X}_{2} \sim \mathcal{N}\left(\mu_{2}, \Sigma_{22}\right)$
3) \boldsymbol{X}_{1} indep of $\boldsymbol{X}_{2} \Longleftrightarrow \Sigma_{12}=0$
4) If Σ_{22} invertible, then distn of \boldsymbol{X}_{1} given $\boldsymbol{X}_{2}=\boldsymbol{x}_{2}$ is

$$
\mathcal{N}\left(\mu_{1}+\Sigma_{12} \Sigma_{22}^{-1}\left(\boldsymbol{x}_{2}-\mu_{2}\right), \Sigma_{11}-\Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}\right)
$$

Property 4 is our friend.

Basic $\mathcal{N}(\mu, \Sigma)$

1) Start with $\boldsymbol{Z} \sim \mathcal{N}\left(0, I_{d}\right) \quad$ (easy)
2) Find any $C \in \mathbb{R}^{d \times d}$ with $C C^{\top}=\Sigma$ (below)
3) Deliver $\boldsymbol{X}=\mu+C \boldsymbol{Z}$

Two main choices
Cholesky: C lower triangular.
Best to check $C C^{\top}=\Sigma . \quad$ (In case you got an upper triangular C)
Spectral: For $\Sigma=P \Lambda P^{\top}$ use $C=P \Lambda^{1 / 2} P^{\top}$
P orthogonal and Λ diagonal

Execise

Cholesky with $Z_{j}=\Phi^{-1}\left(U_{j}\right)$ is sequential inversion.

Gaussian

Conditional sampling is powerful. Recall $\boldsymbol{X}_{1} \mid \boldsymbol{X}_{2}=\boldsymbol{x}_{2}$ is

$$
\mathcal{N}\left(\mu_{1}+\Sigma_{12} \Sigma_{22}^{-1}\left(\boldsymbol{x}_{2}-\mu_{2}\right), \Sigma_{11}-\Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}\right)
$$

We can generate Gaussian components in any order we like.
Linear combinations

Let $\boldsymbol{T}=\Theta \boldsymbol{X} \in \mathbb{R}^{r}$ for $\Theta \in \mathbb{R}^{r \times d}$ of rank $r<d$. Then

$$
\binom{\boldsymbol{X}}{\boldsymbol{T}}=\binom{\boldsymbol{X}}{\Theta \boldsymbol{X}} \sim \mathcal{N}\left(\binom{\mu}{\Theta \mu},\left(\begin{array}{cc}
\Sigma & \Sigma \Theta^{\top} \\
\Theta \Sigma & \Theta \Sigma \Theta^{\top}
\end{array}\right)\right)
$$

If we've already got $\boldsymbol{T}=\Theta \boldsymbol{X}$ we can fill in the rest of \boldsymbol{X} conditionally.
We can get $\boldsymbol{T}_{1}=\Theta_{1} \boldsymbol{X}$ then $\boldsymbol{T}_{2}=\Theta_{2} \boldsymbol{X}$.
Cost is just algebra (and careful coding).

For huge d

A technique from Doucet (2010)

Suppose we already chose $\boldsymbol{T}=\boldsymbol{t} \in \mathbb{R}^{r}$ where $\boldsymbol{T}=\Theta \boldsymbol{X}$.
Now we want to fill in the rest of \boldsymbol{X}
We can use:

1) $\boldsymbol{X} \sim \mathcal{N}(\mu, \Sigma)$
2) $\boldsymbol{X} \leftarrow \boldsymbol{X}+\Sigma \Theta^{\top}\left(\Theta \Sigma \Theta^{\top}\right)^{-1}(\boldsymbol{t}-\Theta \boldsymbol{X})$

New algebra costs $O\left(r^{3}\right)$ not $O\left(d^{3}\right)$.
Still need a good Σ sampler.

Multivariate t

$$
\boldsymbol{X}=\mu+\frac{\Sigma^{1 / 2} \boldsymbol{Z}}{\sqrt{W / \nu}}, \quad W \sim \chi_{(\nu)}^{2}
$$

Elliptically symmetric contours, much heavier tails than $\mathcal{N}(\mu, \Sigma)$.
This is also a mixture of Gaussians.
scale mixture
continuous distribution

Multinomial data

Let J be a categorical variable:

$$
\mathbb{P}(J=j)=p_{j} \text { for } j=1,2, \ldots, d
$$

The "one-hot encoding" of $J=j$ is

$$
\boldsymbol{Y}=\left(\begin{array}{llll}
0 & 0 & \cdots & 0 \\
\underbrace{1}_{\text {pos. } j} & 0 & \cdots & 0
\end{array}\right) \in\{0,1\}^{d}
$$

Multinomial

$$
\boldsymbol{X}=\sum_{i=1}^{m} \boldsymbol{Y}_{i} \quad \text { independent categoricals } \boldsymbol{Y}_{i}
$$

We place m balls independently into d bins.
Bin j has probability p_{j}.

Multinomial ctd.

$\boldsymbol{X}=\left(X_{1}, X_{2}, \ldots, X_{d}\right) \sim \operatorname{Mult}(m, \boldsymbol{p})$ where $\boldsymbol{p}=\left(p_{1}, \ldots, p_{d}\right)$

$$
\mathbb{P}(\boldsymbol{X}=\boldsymbol{x})=\frac{m!}{x_{1}!x_{2}!\cdots x_{d}!} \prod_{j=1}^{d} p_{j}^{x_{j}} \quad x_{j} \geqslant 0 \quad \sum_{j} x_{j}=m
$$

From the definition

$$
\begin{array}{ll}
\boldsymbol{X} \leftarrow(0, \ldots, 0) & \text { // length } d \\
\text { for } j=1 \text { to } m \text { do } & \\
J \sim p & \text { // i.e., } \mathbb{P}(J=j)=p_{j} \\
X_{j} \leftarrow X_{j}+1 &
\end{array}
$$

But this is slow for large m.

Conditionally

We can sample them one at a time in any order we like.
Each component is binomial. Given $X_{1}=x_{1}$:

$$
\begin{aligned}
& \left(X_{2}, \ldots, X_{d}\right) \sim \operatorname{Mult}\left(m-x_{1}, \frac{p_{2}}{1-p_{1}}, \ldots, \frac{p_{d}}{1-p_{1}}\right) \\
& \text { For } \boldsymbol{X} \sim \operatorname{Mult}(m, \boldsymbol{p})
\end{aligned}
$$

$$
\text { given } m \in \mathbb{N}_{0}, d \in \mathbb{N} \text { and } \boldsymbol{p}=\left(p_{1}, \ldots, p_{d}\right) \in \Delta^{d-1}
$$

$$
\ell \leftarrow m, S \leftarrow 1
$$

$$
\text { for } j=1 \text { to } d \text { do }
$$

$$
X_{j} \sim \operatorname{Bin}\left(\ell, p_{j} / S\right)
$$

$$
\ell \leftarrow \ell-X_{j}
$$

$$
S \leftarrow S-p_{j}
$$

deliver \boldsymbol{X}

Recursively

For any subset of bins: $u \subset\{1,2, \ldots, d\}$
Generate $X_{u} \equiv \sum_{j \in u} X_{j} \sim \operatorname{Bin}\left(m, \sum_{j \in u} p_{j}\right)$
Now you have two multinomials, one within set u and one within set u^{c}

Fill in within set u
$m \leftarrow X_{u}$ and $p_{j} \leftarrow p_{j} / \sum_{k \in u} p_{k}$
For set u^{c}
$m \leftarrow m-X_{u}$ and $p_{j} \leftarrow p_{j} / \sum_{k \in u^{c}} p_{k}$

Dirichlet

The unit simplex is

$$
\Delta^{d-1}=\left\{\left(x_{1}, \ldots, x_{d}\right) \mid x_{j} \geqslant 0, \sum_{j=1}^{d} x_{j}=1\right\}
$$

A random $\boldsymbol{X} \in \Delta^{d-1}$ represents a random probability vector. Useful in hierarchical models.

Density

$$
D(\alpha)^{-1} \prod_{j=1}^{d} x_{j}^{\alpha_{j}-1}, \quad \boldsymbol{x} \in \Delta^{d-1}, \quad D(\alpha)=\frac{\prod_{j=1}^{d} \Gamma\left(\alpha_{j}\right)}{\Gamma\left(\sum_{j=1}^{d} \alpha_{j}\right)}
$$

Need $\alpha_{j}>0$. If $\alpha_{j}=1$ we get $\mathbf{U}\left(\Delta^{d-2}\right)$.
First $d-1$ components

$$
D(\alpha)^{-1} \prod_{j=1}^{d-1} x_{j}^{\alpha_{j}-1}\left(1-\sum_{\substack{j=1 \\ \text { LMs Invited Lectu }}}^{d-1} x_{j}\right)
$$

Samples

Large α_{j} 'attract' points to their corner
More precisely: large α_{j} 'repel' points from the far side

Some Dirichlet samples

Sampling

Using some probability inequalities:

1) $Y \sim \operatorname{Gam}\left(\alpha_{j}\right)$
2) $X_{j}=Y_{j} / \sum_{k=1}^{d} Y_{k}$

Marginally

This also shows that $X_{j} \sim \operatorname{Beta}\left(\alpha_{j}, \sum_{k \neq j} \alpha_{k}\right)$.

Multivariate Poisson

Take $Z_{j} \sim \operatorname{Poi}\left(\lambda_{j}\right)$ for $j=1, \ldots, r$ then

$$
\left(\begin{array}{c}
X_{1} \\
X_{2} \\
\vdots \\
X_{d}
\end{array}\right)=\left(\begin{array}{ccccc}
1 & 0 & 1 & \cdots & 0 \\
0 & 1 & 0 & \cdots & 1 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 1 & 1 & \cdots & 1
\end{array}\right)\left(\begin{array}{c}
Z_{1} \\
Z_{2} \\
\vdots \\
Z_{r}
\end{array}\right)
$$

I..e. $\boldsymbol{X}=A \boldsymbol{Z}$ for $A \in\{0,1\}^{d \times r}$

Each X_{j} Poisson and $\mathbb{E}(\boldsymbol{X})=A \lambda$
Interpretation
Event sources Z_{1}, \ldots, Z_{r}.
Event outcomes X_{1}, \ldots, X_{d}.
$A_{j k}=1 \Longleftrightarrow$ source k affects outcome j.
Unfortunately: we cannot get negative dependence this way.

Copula-marginal sampling

Let C be a copula. Sample $\boldsymbol{U} \sim C$ then $X_{j}=F_{j}^{-1}\left(U_{j}\right)$
Any copula we like with any margins we like.

Gaussian copula

For a correlation matrix $R \in \mathbb{R}^{d \times d}$

1) $\boldsymbol{Y} \sim \mathcal{N}(0, R)$
2) $\boldsymbol{U} \leftarrow \Phi(\boldsymbol{Y})$
3) $X_{j} \leftarrow F_{j}^{-1}\left(U_{j}\right), \quad j=1, \ldots, d$

Also called Nataf transformation and NORTA (normal to anything).

Normal copula, Poisson margins

(a) $\rho=0.7$

(b) $\rho=-0.7$
$\mathbb{E}\left(X_{j}\right)=2$ and points jittered

Copula sampling

The Gaussian copula has some undesirable properties for insurance and finance.
A $t_{(\nu)}$ copula is considered safer (McNeil et al., 2005)

$$
\boldsymbol{Y} \sim t(0, R, \nu), \quad U_{j}=\mathbb{P}\left(t_{(\nu)} \leqslant Y_{j}\right) \quad X_{j}=F_{j}^{-1}\left(U_{j}\right)
$$

Copula sampling is a hybrid with target qualitative behaviour but aesthetically problematic for some.

Geonetry

Random points on

$$
\mathbb{S}^{d-1}=\left\{\boldsymbol{z} \in \mathbb{R}^{d} \mid \boldsymbol{z}^{\top} \boldsymbol{z}=1\right\}
$$

The standard Gaussian is spherically symmetric

$$
(2 \pi)^{-d / 2} e^{-\frac{1}{2} \boldsymbol{z}^{\top} \boldsymbol{z}}
$$

Easy way to sample

1) $\boldsymbol{Z} \sim \mathcal{N}(0, I)$
2) $X \leftarrow Z /\|X\|$

There are alternatives for $d=3$ in graphics.
For any spherically symmetric distribution
Get $\boldsymbol{X} \sim \mathbf{U}\left(\mathbb{S}^{d-1}\right)$ and multiply by the desired radius.
Exercise: get $\boldsymbol{X} \sim \mathbf{U}\left\{\boldsymbol{z} \in \mathbb{R}^{d} \mid\|\boldsymbol{z}\| \leqslant 1\right\}$ (ball)
Box-Muller
Is this same trick in reverse to get $\boldsymbol{Z} \sim \mathcal{N}\left(0, I_{2}\right)$.

Examples

Next come some sketched examples.

Time does not permit full details.

If one looks interesting, you'll have to follow up later.

Random permutations

Uniform over m ! permutations of $1, \ldots, m$

$$
\begin{aligned}
& \boldsymbol{X} \leftarrow(1,2, \ldots, m-1, m) \\
& \text { for } j=m, \ldots, 2 \text { do } \\
& \quad k \sim \mathbf{U}\{1, \ldots, j\} \\
& \quad \text { swap } X_{j} \text { and } X_{k} \\
& \text { deliver } \boldsymbol{X}
\end{aligned}
$$

Derangements

Exercise: Enforce $X_{i} \neq i$ for all $i=1, \ldots, m$

For K-fold cross validation

Set up a vector with $m=K\lceil n / K\rceil$ elements

$$
\boldsymbol{v}=(1: K, 1: K, 1: K, \cdots, 1: K)
$$

Random permutation $\pi(i)$
Group labels $G_{i}=v_{\pi(i)}, \quad i=1, \ldots, n$
Fitting, tuning, validate
Fit over 50\%
tune parameters over 30\%
validate on 20%

Linear permutations

To permute of $m=2^{64}$ elements.
(Long story about min hashing)
Uniform permutation infeasible.
Suffices to permute $0,1, \ldots, p-1$ for prime $p>m$
Two algorithms

$$
\begin{array}{ll}
\pi(i)=U+i \bmod p & \text { (digital shift) } \\
\pi(i)=U+V \times i \bmod p & \text { (random linear) }
\end{array}
$$

For $U \sim \mathbf{U}\{0,1, \ldots, p-1\}$ and $V \sim \mathbf{U}\{1, \ldots, p-1\}$
NB: $V \neq 0$
These get 1 and 2 dimensional margins right (respectively).
Random linear requires p to be prime.
These are also used in randomized quasi-Monte Carlo

Downsampling data

Given $\left(\boldsymbol{x}_{i}, Y_{i}\right)$ for $i=1, \ldots, N$ we want a simple random sample of $n \ll N$

First solution

Tag observation i with $u_{i} \sim \mathbf{U}(0,1)$
Keep those i with smallest n tags u_{i}

Better solution

Work out the distribution of 'next item' sampled.
Reservoir sampling
We don't have to know N before sampling begins.

Poisson processes

Number of points in $[t, t+s) \sim \operatorname{Poi}(\lambda \times s)$
Non overlapping intervals are independent.

$$
T_{i}-T_{i-1} \sim \operatorname{Exp}(1) / \lambda
$$

Non uniform rate $\lambda(t)$
Let $\Lambda(t)=\int_{0}^{t} \lambda(s) \mathrm{d} s$. Then

$$
T_{i}=\Lambda^{-1}\left(\Lambda\left(T_{i-1}\right)+E_{i}\right), \quad E_{i} \sim \operatorname{Exp}(1)
$$

just like inversion.

Random lines

Sample via polar coordinates.

Poisson lines

Isotropic

Non-isotropic

Gaussian processes

$X(t)$ for $t \in \mathcal{T}$. Maybe $\mathcal{T}=[0, \infty)$ or $\mathcal{T} \subset \mathbb{R}^{d}$.
Mean $\mu(\cdot)$ and covariance $\Sigma(\cdot, \cdot)$.
Finite dimensional distributions

$$
\left.\begin{array}{rl}
\left(\begin{array}{c}
X\left(t_{1}\right) \\
X\left(t_{2}\right) \\
\vdots \\
X\left(t_{m}\right)
\end{array}\right) \sim \mathcal{N}\left(\left(\begin{array}{c}
\mu\left(t_{1}\right) \\
\mu\left(t_{2}\right) \\
\vdots \\
\mu\left(t_{m}\right)
\end{array}\right)\right. & \left(\begin{array}{cccc}
\Sigma\left(t_{1}, t_{1}\right) & \Sigma\left(t_{1}, t_{2}\right) & \cdots & \Sigma\left(t_{1}, t_{m}\right) \\
\Sigma\left(t_{2}, t_{1}\right) & \Sigma\left(t_{2}, t_{2}\right) & \cdots & \Sigma\left(t_{2}, t_{m}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\Sigma\left(t_{m}, t_{1}\right) & \Sigma\left(t_{m}, t_{2}\right) & \cdots & \Sigma\left(t_{m}, t_{m}\right)
\end{array}\right)
\end{array}\right)
$$

We can generate in any order.
But algebra could be costly.
Easy for Brownian motion:

$$
B\left(t_{j}\right)=B\left(t_{j-1}\right)+\sqrt{t_{j}-t_{j-1}} \times \mathcal{N}(0,1)
$$

Markov property fills in between

Matern processes

Used as generative models for functions in physics / engineering. Supports "Bayesian numerical analysis" on expensive codes.

Stochastic differential equations

Drift $a(\cdot, \cdot)$, diffusion $b(\cdot, \cdot)$

$$
\mathrm{d} X_{t}=a\left(X_{t}\right) \mathrm{d} t+b\left(X_{t}\right) \mathrm{d} B_{t}, \quad \text { Brownian motion } B_{t}
$$

Euler-Maruyama

At times $t_{k}=k \times \Delta$, with $Z_{k} \sim \mathcal{N}(0,1)$

$$
\begin{aligned}
\widehat{X}\left(t_{k+1}\right) & =\widehat{X}\left(t_{k}\right)+a_{k} \Delta+b_{k} \sqrt{\Delta} Z_{k} \\
a_{k} & =a\left(\widehat{X}\left(t_{k}\right)\right), \quad b_{k}=b\left(\widehat{X}\left(t_{k}\right)\right)
\end{aligned}
$$

Milstein

$$
\begin{aligned}
\widehat{X}\left(t_{k+1}\right) & =\widehat{X}\left(t_{k}\right)+a_{k} \Delta+b_{k} \sqrt{\Delta} Z_{k}+\frac{1}{2} b_{k} b_{k}^{\prime}\left(Z_{k}^{2}-1\right) \Delta_{k} \\
b_{k}^{\prime} & =b^{\prime}\left(\widehat{X}\left(t_{k}\right)\right)
\end{aligned}
$$

Milstein's $\widehat{X}(\cdot)$ tracks $X(\cdot)$ better (strong sense).
Multilevel Monte Carlo is the best way to handle bias from $\Delta>0$

Dirichlet process

$\boldsymbol{X}_{i} \sim H\left(\cdot, \theta_{i}\right)$ where $\theta_{i} \in \Theta$ with $\theta_{i} \sim F$
For random F centered on G

$$
\left(F\left(A_{1}\right), \cdots, F\left(A_{m}\right)\right) \sim \operatorname{Dir}\left(\alpha G\left(A_{1}\right), \ldots, \alpha G\left(A_{m}\right)\right)
$$

After some algebra:
the distribution of θ_{n+1} given $\theta_{1}, \ldots, \theta_{n}$ is a CRP

Chinese restaurant process

Metaphor
People either start a new table
or join one with prob proportional to number seated there
Then θ_{n+1} is either a previously seen θ_{i}, or a new draw from G
You get clustered θ_{i} allowing for hitherto unseen clusters

Point processes

L: centers of insect cells Ripley (1977) R: pine trees Van Liesbout (2004)

Two Spatial Point Sets

Cell centers

Finnish pines

We can mimick positive dependence via $P_{i} \sim \operatorname{Poi}(\Lambda)$ for random Λ.
Negative dependence is harder.
We need MCMC lectures of Rosenthal, Roberts or SMC lectures of Chopin

Thanks

- Lecturers: Nicolas Chopin, Mark Huber, Jeffrey Rosenthal
- Guest speakers: Michael Giles, Gareth Roberts
- The London Mathematical Society: Elizabeth Fisher, lain Stewart
- CRISM \& The University of Warwick, Statistics
- Sponsors: Amazon, Google
- Partners: ISBA, MCQMC, BAYSM
- Poster: Talissa Gasser, Hidamari Design
- NSF: DMS-1407397 \& DMS-1521145
- Planners: Murray Pollock, Christian Robert, Gareth Roberts
- Support: Paula Matthews, Murray Pollock, Shahin Tavakoli

