Monte Carlo: random vectors and objects

Art B. Owen Stanford University

Adapted from "Monte Carlo theory, methods and examples" http://statweb.stanford.edu/~owen/mc/

Random vectors

Now we want random $\boldsymbol{X} = (X_1, X_2, \dots, X_d) \in \mathbb{R}^d$.

If $X_j \sim F_j$ independent, then we're back to the univariate case.

So the vector story is about inducing **dependence**.

Dependence is hard

For d > 1

- the correct dependence is hard to specify theoretically
- sometimes it 'emerges' from problem data
- our named distributions cover fewer use cases
- there can be a curse of dimension, costs like $O(e^{d \times \text{something}})$

Contrast

For d = 1 we could have almost any named distribution that our problem needed, or maybe build our own sampler.

For d > 1 we more often force our problem into a list of distributions we can do. Special cases and tricks are prominent

(Or use MCMC or SMC.)

Sequential inversion

We want random $\boldsymbol{X} = (X_1, X_2, \dots, X_d)$ Let $U_1, \dots, U_d \stackrel{\text{iid}}{\sim} \mathbf{U}(0, 1).$

Let F_1 be the marginal distribution of X_1 . $X_1 \sim F_1^{-1}(U_1)$ For $j = 2, \dots, d$ Let $G_j(\cdot) = F_j(\cdot \mid X_1 = x_1, \dots, X_{j-1} = x_{j-1})$ $X_j = G_j^{-1}(U_j)$

Comments

1) Exact

- 2) Easy if you know how
- 3) Ordering of variables may affect efficiency
- 4) Can be super hard to get all those conditional distributions

Acceptance-rejection

If (\boldsymbol{X},Y) is uniformly distributed in

$$\{(\boldsymbol{x}, y) \mid 0 \leqslant y \leqslant f(\boldsymbol{x}), \ \boldsymbol{x} \in \mathbb{R}^d\} \subset \mathbb{R}^{d+1}$$

then $oldsymbol{X} \sim f.$ The geometry goes through, so the algorithm is:

- 1) Sample $oldsymbol{Y}\sim g$ on \mathbb{R}^d
- 2) Accept iff $f_u(\boldsymbol{Y}) \leqslant cg_u(\boldsymbol{Y})$

Todo list

- 1) Be able to sample from g
- 2) Be able to compute f_u/g_u (possibly unnormalized)
- 3) Find $c < \infty$ where you know $f_u \leqslant cg_u$

Curse of dimension

Commonly c grows with d. It can grow exponentially. Consider

$$f = \prod_{j=1}^{d} f_j(x_j \mid x_k, \ k < j)$$

$$g = \prod_{j=1}^{d} g_j(x_j \mid x_k, \ k < j), \qquad f_j(x_j \mid \cdots) \leqslant c_j g_j(x_j \mid \cdots)$$

$$c = \prod_{j=1}^{d} c_j$$

If every $c_j \ge c_0 > 1$, then $c \ge c_0^d$.

In a case like this we might use sequential Monte Carlo (SMC) (Chopin lectures) If we must wait until X_d is available to accept or reject we probably face a large c.

Example

We want $X \sim \mathbf{U}(\mathbb{B}^d)$, $\mathbb{B}^d = \{ \boldsymbol{z} \in \mathbb{R}^d \mid \boldsymbol{z}^{\mathsf{T}} \boldsymbol{z} \leqslant 1 \}$ (unit ball). Sample $\boldsymbol{X} \sim \mathbf{U}([-1, 1]^d)$ keep \boldsymbol{X} iff $\|\boldsymbol{X}\| \leqslant 1$.

Round peg, square hole

d	Acceptance
2	$\pi/4 \doteq 0.785$
5	0.164
10	0.00249
20	2.46×10^{-8}
50	1.54×10^{-28}

Generally

$$\frac{\operatorname{vol}(\mathbb{B}^d)}{2^d} = \frac{\pi^{d/2}}{2^d \Gamma(1 + d/2)}$$

Recall: $\Gamma(k) = (k - 1)!$

LMS Invited Lecture Series, CRISM Summer School 2018

Mixtures

They still work.

You have to have mixing ingredients though.

So they turn \mathbb{R}^d samplers into more \mathbb{R}^d samplers.

Copulas

Let $X \in \mathbb{R}^d$ have a continuous distribution with marginals F_j .

Then $U = (F_1(X_1), \ldots, F_d(X_d))$ is a multivariate uniform random vector. Also called a **copula**.

We can take $X_j = F_j^{-1}(U_j)$ componentwise

Sklar's theorem

For any distribution on \mathbb{R}^d there **exists** a copula distribution for U

with
$$X_j \stackrel{\mathrm{d}}{=} F_j^{-1}(U_j)$$
.

That doesn't mean we can find it!

The marginals are the easy part. The copula is the hard part.

Some we can do

- multivariate normal
- multivariate t
- multinomial (multivariate binomial)
- Dirichlet (multivariate beta)
- multivariate exponential

Puzzler

Can we just put "multivariate" in front of any distribution name? Sort of: but it won't be unique. There are ≥ 12 bivariate Gammas (Kotz et al) Also "multivariate f" might not preserve meaningful properties of f.

Multivariate normal

 $m{X} \sim \mathcal{N}(\mu, \Sigma), \ \ \mu \in \mathbb{R}^d$ and $\Sigma \in \mathbb{R}^{d imes d}$ positive semidefinite $\mathbb{E}(m{X}) = \mu$ and $\operatorname{Var}(m{X}) = \Sigma$

Density

If $\boldsymbol{\Sigma}$ is invertible then

$$\varphi(\boldsymbol{x};\boldsymbol{\mu},\boldsymbol{\Sigma}) = \frac{e^{-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{\mathsf{T}}\boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})}}{(2\pi)^{d/2}|\boldsymbol{\Sigma}|^{1/2}}$$

Singular distributions

Then $\operatorname{rank}(\Sigma) < d$ and \boldsymbol{X} is confined to a low dimensional flat subset of \mathbb{R}^d .

$$\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$$
Partition: $\boldsymbol{X} = \begin{pmatrix} \boldsymbol{X}_1 \\ \boldsymbol{X}_2 \end{pmatrix} \sim \mathcal{N}\left(\begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}, \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix}\right)$

Key properties

1)
$$AX + b \sim \mathcal{N}(A\mu + b, A\Sigma A^{\mathsf{T}})$$

2)
$$X_1 \sim \mathcal{N}(\mu_1, \Sigma_{11})$$
 and $X_2 \sim \mathcal{N}(\mu_2, \Sigma_{22})$

3) $oldsymbol{X}_1$ indep of $oldsymbol{X}_2\iff \Sigma_{12}=0$

4) If
$$\Sigma_{22}$$
 invertible, then distn of X_1 given $X_2 = x_2$ is
 $\mathcal{N}(\mu_1 + \Sigma_{12}\Sigma_{22}^{-1}(x_2 - \mu_2), \Sigma_{11} - \Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21})$

Property 4 is our friend.

1) Start with $oldsymbol{Z} \sim \mathcal{N}(0, I_d)$ (easy)

- 2) Find any $C \in \mathbb{R}^{d \times d}$ with $CC^{\mathsf{T}} = \Sigma$ (below)
- 3) Deliver ${oldsymbol X}=\mu+C{oldsymbol Z}$

Two main choices

Cholesky: C lower triangular. Best to check $CC^{\mathsf{T}} = \Sigma$. (In case you got an upper triangular C) Spectral: For $\Sigma = P\Lambda P^{\mathsf{T}}$ use $C = P\Lambda^{1/2}P^{\mathsf{T}}$ P orthogonal and Λ diagonal

Execise

Cholesky with $Z_j = \Phi^{-1}(U_j)$ is sequential inversion.

Gaussian

Conditional sampling is powerful. Recall $oldsymbol{X}_1 \mid oldsymbol{X}_2 = oldsymbol{x}_2$ is

$$\mathcal{N}(\mu_1 + \Sigma_{12}\Sigma_{22}^{-1}(\boldsymbol{x}_2 - \mu_2), \Sigma_{11} - \Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21})$$

We can generate Gaussian components in any order we like.

Linear combinations

Let $T = \Theta X \in \mathbb{R}^r$ for $\Theta \in \mathbb{R}^{r \times d}$ of rank r < d. Then $\begin{pmatrix} X \\ T \end{pmatrix} = \begin{pmatrix} X \\ \Theta X \end{pmatrix} \sim \mathcal{N} \left(\begin{pmatrix} \mu \\ \Theta \mu \end{pmatrix}, \begin{pmatrix} \Sigma & \Sigma \Theta^\mathsf{T} \\ \Theta \Sigma & \Theta \Sigma \Theta^\mathsf{T} \end{pmatrix} \right)$

If we've already got $T = \Theta X$ we can fill in the rest of X conditionally. We can get $T_1 = \Theta_1 X$ then $T_2 = \Theta_2 X$.

Cost is just algebra (and careful coding).

For huge d

A technique from Doucet (2010)

Suppose we already chose $m{T}=m{t}\in \mathbb{R}^r$ where $m{T}=\Thetam{X}.$ Now we want to fill in the rest of $m{X}$

We can use:

1) $\boldsymbol{X} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$

2) $\boldsymbol{X} \leftarrow \boldsymbol{X} + \Sigma \Theta^{\mathsf{T}} (\Theta \Sigma \Theta^{\mathsf{T}})^{-1} (\boldsymbol{t} - \Theta \boldsymbol{X})$

New algebra costs $O(r^3)$ not $O(d^3)$. Still need a good Σ sampler.

Multivariate t

$$oldsymbol{X} = \mu + rac{\Sigma^{1/2} oldsymbol{Z}}{\sqrt{W/
u}}, \quad W \sim \chi^2_{(
u)}$$

Elliptically symmetric contours, much heavier tails than $\mathcal{N}(\mu, \Sigma)$.

This is also a mixture of Gaussians.

scale mixture

continuous distribution

Multinomial data

Let J be a categorical variable:

$$\mathbb{P}(J=j)=p_j$$
 for $j=1,2,\ldots,d$

The "one-hot encoding" of J = j is

$$\boldsymbol{Y} = \begin{pmatrix} 0 & 0 & \cdots & 0 & 1 \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ &$$

Multinomial

$$oldsymbol{X} = \sum_{i=1}^m oldsymbol{Y}_i$$
 independent categoricals $oldsymbol{Y}_i$

We place m balls independently into d bins.

Bin j has probability p_j .

Multinomial ctd.

 $oldsymbol{X} = (X_1, X_2, \dots, X_d) \sim \operatorname{Mult}(m, oldsymbol{p})$ where $oldsymbol{p} = (p_1, \dots, p_d)$

$$\mathbb{P}(\boldsymbol{X} = \boldsymbol{x}) = \frac{m!}{x_1! x_2! \cdots x_d!} \prod_{j=1}^d p_j^{x_j} \qquad x_j \ge 0 \quad \sum_j x_j = m$$

From the definition

$$\begin{array}{ll} \pmb{X} \leftarrow (0,\ldots,0) & // \operatorname{length} d \\ & \text{for } j=1 \operatorname{to} m \operatorname{do} \\ & J \sim p & // \operatorname{i.e.}, \mathbb{P}(J=j)=p_j \\ & X_j \leftarrow X_j+1 \end{array}$$

But this is slow for large m.

Conditionally

We can sample them one at a time in any order we like.

Each component is binomial. Given $X_1 = x_1$:

$$(X_2, \dots, X_d) \sim \text{Mult}(m - x_1, \frac{p_2}{1 - p_1}, \dots, \frac{p_d}{1 - p_1})$$

For $\boldsymbol{X} \sim \operatorname{Mult}(m, \boldsymbol{p})$

given $m \in \mathbb{N}_0$, $d \in \mathbb{N}$ and $p = (p_1, \dots, p_d) \in \Delta^{d-1}$ $\ell \leftarrow m, S \leftarrow 1$ for j = 1 to d do $X_j \sim \operatorname{Bin}(\ell, p_j/S)$ $\ell \leftarrow \ell - X_j$ $S \leftarrow S - p_j$

 ${\rm deliver}\,X$

Recursively

For any subset of bins: $u \subset \{1, 2, \dots, d\}$ Generate $X_u \equiv \sum_{j \in u} X_j \sim Bin(m, \sum_{j \in u} p_j)$

Now you have two multinomials,

one within set u and one within set u^c

Fill in within set u

$$m \leftarrow X_u$$
 and $p_j \leftarrow p_j / \sum_{k \in u} p_k$

For set u^c

$$m \leftarrow m - X_u$$
 and $p_j \leftarrow p_j / \sum_{k \in u^c} p_k$

Dirichlet

The unit simplex is

$$\Delta^{d-1} = \left\{ (x_1, \dots, x_d) \mid x_j \ge 0, \sum_{j=1}^d x_j = 1 \right\}$$

A random $X \in \Delta^{d-1}$ represents a random probability vector. Useful in hierarchical models.

Density

$$D(\alpha)^{-1} \prod_{j=1}^{d} x_j^{\alpha_j - 1}, \quad \boldsymbol{x} \in \Delta^{d-1}, \quad D(\alpha) = \frac{\prod_{j=1}^{d} \Gamma(\alpha_j)}{\Gamma\left(\sum_{j=1}^{d} \alpha_j\right)}$$

Need $\alpha_j > 0$. If $\alpha_j = 1$ we get $\mathbf{U}(\Delta^{d-2})$.

First d-1 components

$$D(\alpha)^{-1} \prod_{j=1}^{d-1} x_j^{\alpha_j - 1} \left(1 - \sum_{j=1}^{d-1} x_j \right)$$

LMS Invited Lecture Series, CRISM Summer School 2018

Samples

Large α_j 'attract' points to their corner More precisely: large α_j 'repel' points from the far side

LMS Invited Lecture Series, CRISM Summer School 2018

Sampling

Using some probability inequalities:

1) $Y \sim \text{Gam}(\alpha_j)$ 2) $X_j = Y_j / \sum_{k=1}^d Y_k$

Marginally

This also shows that $X_j \sim \text{Beta}(\alpha_j, \sum_{k \neq j} \alpha_k)$.

Multivariate Poisson

Take $Z_j \sim \operatorname{Poi}(\lambda_j)$ for $j = 1, \ldots, r$ then

$$\begin{pmatrix} X_1 \\ X_2 \\ \vdots \\ X_d \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 1 & 1 & \cdots & 1 \end{pmatrix} \begin{pmatrix} Z_1 \\ Z_2 \\ \vdots \\ Z_r \end{pmatrix}$$

I..e. X = AZ for $A \in \{0, 1\}^{d \times r}$ Each X_j Poisson and $\mathbb{E}(X) = A\lambda$

Interpretation

Event sources Z_1, \ldots, Z_r . Event outcomes X_1, \ldots, X_d . $A_{jk} = 1 \iff$ source k affects outcome j.

Unfortunately: we cannot get negative dependence this way.

Copula-marginal sampling

Let *C* be a copula. Sample $U \sim C$ then $X_j = F_j^{-1}(U_j)$ Any copula we like with any margins we like.

Gaussian copula

For a correlation matrix $R \in \mathbb{R}^{d \times d}$

1)
$$\boldsymbol{Y} \sim \mathcal{N}(0,R)$$

- 2) $\boldsymbol{U} \leftarrow \Phi(\boldsymbol{Y})$
- **3)** $X_j \leftarrow F_j^{-1}(U_j), \quad j = 1, \dots, d$

Also called Nataf transformation and NORTA (normal to anything).

Normal copula, Poisson margins

 $\mathbb{E}(X_j) = 2$ and points jittered

Copula sampling

The Gaussian copula has some undesirable properties for insurance and finance.

A $t_{(\nu)}$ copula is considered safer (McNeil et al., 2005)

 $\boldsymbol{Y} \sim t(0, R, \nu), \quad U_j = \mathbb{P}(t_{(\nu)} \leqslant Y_j) \quad X_j = F_j^{-1}(U_j)$

Copula sampling is a hybrid with target qualitative behaviour but aesthetically problematic for some.

Geometry

Random points on

$$\mathbb{S}^{d-1} = \{ \boldsymbol{z} \in \mathbb{R}^d \mid \boldsymbol{z}^\mathsf{T} \boldsymbol{z} = 1 \}$$

The standard Gaussian is spherically symmetric

$$(2\pi)^{-d/2}e^{-\frac{1}{2}\boldsymbol{z}^{\mathsf{T}}\boldsymbol{z}}$$

Easy way to sample

- 1) $\boldsymbol{Z} \sim \mathcal{N}(0, I)$
- 2) $X \leftarrow Z / \|X\|$

There are alternatives for d = 3 in graphics.

For any spherically symmetric distribution

Get $X \sim \mathbf{U}(\mathbb{S}^{d-1})$ and multiply by the desired radius. Exercise: get $X \sim \mathbf{U}\{z \in \mathbb{R}^d \mid \|z\| \leqslant 1\}$ (ball)

Box-Muller

LMS Invited Lecture Series, CRISM Summer School 2018 Is this same trick in reverse to get $\pmb{Z} \sim \mathcal{N}(0, I_2)$.

Examples

Next come some sketched examples.

Time does not permit full details.

If one looks interesting, you'll have to follow up later.

Random permutations

Uniform over m! permutations of $1, \ldots, m$

$$oldsymbol{X} \leftarrow (1, 2, \dots, m-1, m)$$

for $j = m, \dots, 2$ do
 $k \sim \mathbf{U}\{1, \dots, j\}$
swap X_j and X_k
deliver $oldsymbol{X}$

Derangements

Exercise: Enforce $X_i \neq i$ for all $i = 1, \ldots, m$

For K-fold cross validation

Set up a vector with $m = K \lceil n/K \rceil$ elements

 $v = (1:K, 1:K, 1:K, \cdots, 1:K)$

Random permutation $\pi(i)$ Group labels $G_i = v_{\pi(i)}, i = 1, \dots, n$

Fitting, tuning, validate

Fit over 50% tune parameters over 30% validate on 20%

Linear permutations

To permute of $m=2^{64}$ elements.

(Long story about min hashing)

Uniform permutation infeasible.

Suffices to permute $0, 1, \ldots, p-1$ for prime p > m

Two algorithms

$$\pi(i) = U + i \mod p$$
 (digital shift)
 $\pi(i) = U + V \times i \mod p$ (random linear)

For $U \sim \mathbf{U}\{0, 1, \dots, p-1\}$ and $V \sim \mathbf{U}\{1, \dots, p-1\}$ NB: $V \neq 0$

These get 1 and 2 dimensional margins right (respectively). Random linear **requires** p to be prime.

These are also used in randomized quasi-Monte Carlo

Downsampling data

Given (\boldsymbol{x}_i, Y_i) for $i = 1, \ldots, N$

we want a simple random sample of $n \ll N$

First solution

Tag observation i with $u_i \sim \mathbf{U}(0, 1)$ Keep those i with smallest n tags u_i

Better solution

Work out the distribution of 'next item' sampled.

Reservoir sampling

We don't have to know N before sampling begins.

Poisson processes

Number of points in $[t, t+s) \sim \operatorname{Poi}(\lambda \times s)$

Non overlapping intervals are independent.

 $T_i - T_{i-1} \sim \operatorname{Exp}(1)/\lambda$

Non uniform rate $\lambda(t)$

Let $\Lambda(t) = \int_0^t \lambda(s) \, \mathrm{d}s$. Then

$$T_i = \Lambda^{-1} \big(\Lambda(T_{i-1}) + E_i \big), \quad E_i \sim \operatorname{Exp}(1)$$

just like inversion.

Random lines

Sample via polar coordinates.

Poisson lines

Isotropic

Non-isotropic

Gaussian processes

X(t) for $t \in \mathcal{T}$. Maybe $\mathcal{T} = [0, \infty)$ or $\mathcal{T} \subset \mathbb{R}^d$. Mean $\mu(\cdot)$ and covariance $\Sigma(\cdot, \cdot)$.

Finite dimensional distributions

$$\begin{pmatrix} X(t_1) \\ X(t_2) \\ \vdots \\ X(t_m) \end{pmatrix} \sim \mathcal{N} \left(\begin{pmatrix} \mu(t_1) \\ \mu(t_2) \\ \vdots \\ \mu(t_m) \end{pmatrix}, \begin{pmatrix} \Sigma(t_1, t_1) & \Sigma(t_1, t_2) & \cdots & \Sigma(t_1, t_m) \\ \Sigma(t_2, t_1) & \Sigma(t_2, t_2) & \cdots & \Sigma(t_2, t_m) \\ \vdots & \vdots & \ddots & \vdots \\ \Sigma(t_m, t_1) & \Sigma(t_m, t_2) & \cdots & \Sigma(t_m, t_m) \end{pmatrix} \right)$$
Notes

We can generate in any order.

But algebra could be costly.

Easy for Brownian motion:

$$B(t_j) = B(t_{j-1}) + \sqrt{t_j - t_{j-1}} \times \mathcal{N}(0, 1)$$

Markov property fills in between

Matern processes

Used as generative models for functions in physics / engineering. Supports "Bayesian numerical analysis" on expensive codes.

Stochastic differential equations

Drift $a(\cdot,\cdot)\text{, diffusion }b(\cdot,\cdot)$

 $dX_t = a(X_t) dt + b(X_t) dB_t$, Brownian motion B_t

Euler-Maruyama

At times $t_k = k \times \Delta$, with $Z_k \sim \mathcal{N}(0, 1)$ $\widehat{X}(t_{k+1}) = \widehat{X}(t_k) + a_k \Delta + b_k \sqrt{\Delta} Z_k$ $a_k = a(\widehat{X}(t_k)), \quad b_k = b(\widehat{X}(t_k))$

Milstein

$$\widehat{X}(t_{k+1}) = \widehat{X}(t_k) + a_k \Delta + b_k \sqrt{\Delta} Z_k + \frac{1}{2} b_k b'_k (Z_k^2 - 1) \Delta_k$$
$$b'_k = b'(\widehat{X}(t_k))$$

Milstein's $\widehat{X}(\cdot)$ tracks $X(\cdot)$ better (strong sense). Multilevel Monte Carlo is the best way to handle bias from $\Delta > 0$ Giles++

Dirichlet process

 $X_i \sim H(\cdot, \theta_i)$ where $\theta_i \in \Theta$ with $\theta_i \sim F$ For random F centered on G

$$(F(A_1), \cdots, F(A_m)) \sim \operatorname{Dir}(\alpha G(A_1), \dots, \alpha G(A_m))$$

After some algebra:

the distribution of $heta_{n+1}$ given $heta_1,\ldots, heta_n$ is a CRP

Chinese restaurant process

Metaphor

People either start a new table

or join one with prob proportional to number seated there

Then θ_{n+1} is either a previously seen θ_i , or a new draw from GYou get clustered θ_i allowing for hitherto unseen clusters

Point processes

L: centers of insect cells Ripley (1977) R: pine trees Van Liesbout (2004)

Two Spatial Point Sets

We can mimick positive dependence via $P_i \sim \operatorname{Poi}(\Lambda)$ for random Λ .

Negative dependence is harder.

We need MCMC lectures of Rosenthal, Roberts or SMC lectures of Chopin

Thanks

- Lecturers: Nicolas Chopin, Mark Huber, Jeffrey Rosenthal
- Guest speakers: Michael Giles, Gareth Roberts
- The London Mathematical Society: Elizabeth Fisher, Iain Stewart
- CRISM & The University of Warwick, Statistics
- Sponsors: Amazon, Google
- Partners: ISBA, MCQMC, BAYSM
- Poster: Talissa Gasser, Hidamari Design
- NSF: DMS-1407397 & DMS-1521145
- Planners: Murray Pollock, Christian Robert, Gareth Roberts
- Support: Paula Matthews, Murray Pollock, Shahin Tavakoli