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QMC1: Survey of QMC 2

MC and QMC and other points
Monte Carlo (MC) and quasi-Monte Carlo (QMC) methods come down to

sampling the input space of a function.
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Top row, left to right

MC, grid, and two QMC methods

Top row, left to right

Two more QMC, sparse grid, blue noise
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QMC1: Survey of QMC 3

Outline
1) What QMC is (utmost stratification)

2) Why it works (discrepancy, variation and Koksma-Hlawka)

3) How it works (constructions)

4) Randomized QMC

5) When it works best (effective dimension, tractability, weighted spaces)

(room for Bayesian thinking here)

LMS Invited Lecture Series, CRISM Summer School 2018



QMC1: Survey of QMC 4

Landmark papers in MC
Some landmark papers where Monte Carlo was applied:

• Physics Metropolis et al. (1953)

• Chemistry (reaction equations) Gillespie (1977)

• Financial valuation Boyle (1977)

• Bootstrap resampling Efron (1979)

• OR (discrete event simulation) Tocher & Owen (1960)

• Bayes (maybe 5 landmarks in early days)

• Nonsmooth optimization Kirkpatrick et al. (1983)

• Computer graphics (path tracing) Kajiya (1988)

LMS Invited Lecture Series, CRISM Summer School 2018
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Landmark uses of QMC
• Particle transport methods in physics / medical imaging Jerome Spanier++

• Financial valuation, some early examples Paskov & Traub 1990s

• Graphical rendering Alex Keller++

(They got an Oscar!)

• Solving PDEs Frances Kuo, Christoph Schwab++, 2015

• Particle methods Chopin & Gerber (2015)

The next landmark methods

Some strong candidate areas:

• machine learning

• Bayes

• uncertainty quantification (UQ)

LMS Invited Lecture Series, CRISM Summer School 2018



QMC1: Survey of QMC 6

The next landmark

QMC methods dominate when

dimension is high, but

effective dimension is low

Best way to find out

try it and see

Low effective dimension

f : [0, 1]d → R is very nearly a sum of functions of just a few inputs

LMS Invited Lecture Series, CRISM Summer School 2018



QMC1: Survey of QMC 7

MC and QMC
We estimate

µ =

∫
[0,1]d

f(x) dx by µ̂ =
1

n

n∑
i=1

f(xi), xi ∈ [0, 1]d

In plain MC, the xi are IID U[0, 1]d. In QMC they’re ’spread evenly’.

Non uniform

µ =

∫
Ω

f(x)p(x) dx and µ̂ =
1

n

n∑
i=1

f(ψ(ui)), ui ∈ [0, 1]s

ψ : [0, 1]s → Rd

If u ∼ U[0, 1]s then x = ψ(u) ∼ p

Many methods fit this framework. Devroye (1986)

Acceptance-rejection is a bit awkward.

LMS Invited Lecture Series, CRISM Summer School 2018
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Illustration
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Fibonacci lattice

MC and two QMC methods in the unit square
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Hammersley sequence

MC points always have clusters and gaps. What is random is where they appear.

QMC points avoid clusters and gaps to the extent that mathematics permits.

LMS Invited Lecture Series, CRISM Summer School 2018



QMC1: Survey of QMC 9

Measuring uniformity
We need a way to verify that the points xi are ‘spread out’ in [0, 1]d.

The most fruitful way is to show that

U {x1,x2, . . . ,xn}
.
= U[0, 1]d

Discrepancy

A discrepancy is a distance ‖F − F̂n‖ between measures

F = U[0, 1]d and F̂n = U {x1,x2, . . . ,xn}.

There are many discrepancies.

LMS Invited Lecture Series, CRISM Summer School 2018



QMC1: Survey of QMC 10

Local discrepancy
Did the box [0,a) get it’s fair share of points?
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a

0

●

0.6

0.70

b

0

●

0.42

0.45

Local discrepancy at a, b

δ(a) = F̂n([0,a))− F ([0,a)) =
13

32
− 0.6× 0.7 = −0.01375

Star discrepancy

D∗n = D∗n(x1, . . . ,xn) = sup
a∈[0,1)d

|δ(a)| i.e., ‖δ‖∞

For d = 1 this is Kolmogorov-Smirnov. LMS Invited Lecture Series, CRISM Summer School 2018
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More discrepancies
D∗n = sup

a∈[0,1)d

∣∣F̂n([0,a))− F ([0,a))
∣∣

Dn = sup
a,b∈[0,1)d

∣∣F̂n([a, b))− F ([a, b))
∣∣

D∗n 6 Dn 6 2dD∗n

Lp discrepancies

D∗pn =

(∫
[0,1)d

|δ(a)|p da

)1/p

e.g., Warnock

Also

Wrap-around discrepancies Hickernell

Discrepancies over (triangles, rotated rectangles, balls · · · convex sets · · · ).
Beck, Chen, Schmidt, Brandolini, Travaglini, Colzani, Gigante, Cools, Pillards

Best results are only for axis-aligned hyper-rectangles.

That’s enough for good integration. LMS Invited Lecture Series, CRISM Summer School 2018
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QMC’s law of large numbers

1) If f is Riemann integrable on [0, 1]d, and

2) D∗n(x1, . . . ,xn)→ 0

Then

1

n

n∑
i=1

f(xi)→
∫

[0,1]d
f(x) dx

How fast?

MC has the CLT.

QMC has the Koksma-Hlawka inequality.

LMS Invited Lecture Series, CRISM Summer School 2018
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Koksma’s inequality
For d = 1 |µ̂− µ| 6 D∗n(x1, . . . , xn)×

∫ 1

0
|f ′(x)|dx

NB: D∗n = ‖δ‖∞ and
∫ 1

0
|f ′(x)|dx is the total variation V (f).

Setup for the proof∫ 1

0

f(x) dx = f(1)−
∫ 1

0

xf ′(x) dx Integration by parts

1

n

n∑
i=1

f(xi) = f(1)− 1

n

n∑
i=0

i(f(xi+1)− f(xi)︸ ︷︷ ︸
=
∫ xi+1
xi

f ′(x) dx

) Summation by parts

A few more steps, via continuity of f ′

|µ− µ̂| = · · · =
∣∣∣∣∫ 1

0

δ(x)f ′(x) dx

∣∣∣∣ 6 ‖δ‖∞‖f ′‖1 = D∗n × V (f)

LMS Invited Lecture Series, CRISM Summer School 2018
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Koksma-Hlawka theorem∣∣∣∣∣ 1n
n∑
i=1

f(xi)−
∫

[0,1)d
f(x) dx

∣∣∣∣∣ 6 D∗n × VHK(f)

VHK is the total variation in the sense of Hardy (1905) and Krause (1903)

Multidimensional variation has a few surprises for us.

Puzzler

Is this a 100% confidence interval?

LMS Invited Lecture Series, CRISM Summer School 2018
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Rates of convergence
It is possible to get D∗n = O

( log(n)d−1

n

)
.

Then

|µ̂− µ| = o(n−1+ε) vs Op(n
−1/2) for MC

What about those logs?

Maybe log(n)d−1/n� 1/
√
n

Low effective dimension (later) counters them

As do some randomizations (later)

Roth (1954)

D∗n = o
( log(n)(d−1)/2

n

)
is unattainable

Gap between log(n)(d−1)/2 and log(n)d−1 subject to continued work.

E.g., Lacey, Bilyk

LMS Invited Lecture Series, CRISM Summer School 2018
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Tight and loose bounds
They are not mutually exclusive.

Koksma-Hlawka is tight

|µ̂− µ| 6 (1− ε)D∗n(x1, . . . ,xn)× VHK(f) fails for some f

KH holds as an equality for a worst case function, e.g., f ′
.
= ±δ.

It even holds if an adversary sees your xi before picking f .

Koksma-Hlawka is also very loose

It can greatly over-estimate actual error. Usually δ and f ′ are dissimilar.

µ̂− µ = −〈δ, f ′〉

Just like Chebychev’s inequality

It is also tight and very loose. E.g., Pr
(
|N (0, 1)| > 10

)
6 0.01 is loose.

Yes: 1.5× 10−23 6 10−2

LMS Invited Lecture Series, CRISM Summer School 2018
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Variation
Multidimensional Hardy-Krause variation has surprises for us. O (2005)

f(x1, x2) =

1, x1 + x2 6 1/2

0, else

VHK(f) =∞ on [0, 1]2

VHK(fε) <∞, for some fε with ‖f − fε‖1 < ε

Cusps

For general a ∈ Rd,

f = max(aTx, 0) =⇒ VHK(f) =∞ for d > 3

f = max(aTx, 0)2 =⇒ VHK(f) =∞ for d > 4

QMC-friendly discontinuities

Axis parallel discontinuities may have VHK <∞.

Used by e.g., X. Wang, I. Sloan, Z. He LMS Invited Lecture Series, CRISM Summer School 2018
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Extensibility
For d = 1, the equispaced points xi = (i− 1/2)/n have D∗n =

1

2n
Best possible.

● ● ● ● ●

0 1

But where do we put the n+1’st point?

We cannot get D∗n = O(1/n) along a sequence x1, x2, . . . .

Extensible sequences

Take first n points of x1,x2,x3, . . . ,xn,xn+1,xn+2, . . . .

Then we can get D∗n = O((log n)d/n).

No known extensible constructions get O((log n)d−1/n).

LMS Invited Lecture Series, CRISM Summer School 2018
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van der Corput
i φ2(i)

1 1 0.1 1/2 0.5

2 10 0.01 1/4 0.25

3 11 0.11 3/4 0.75

4 100 0.001 1/8 0.125

5 101 0.101 5/8 0.625

6 110 0.011 3/8 0.375

7 111 0.111 7/8 0.875

8 1000 0.0001 1/16 0.0625

9 1001 0.1001 9/16 0.5625

Take xi = φ2(i). Extensible with D∗n = O(log(n)/n).

Commonly xi = φ2(i− 1) starts at x1 = 0. LMS Invited Lecture Series, CRISM Summer School 2018
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van der Corput
●●n=1

●●●n=2

●● ●●n=3

●● ●●●n=4

●● ●● ●●n=5

●● ●● ●●●n=6

●● ●● ●● ●●n=7

●● ●● ●● ●●●n=8

●● ●● ●● ●● ●●n=9

●● ●● ●● ●● ●●●n=10

●● ●● ●● ●● ●● ●●n=11

●● ●● ●● ●● ●● ●●●n=12

●● ●● ●● ●● ●● ●● ●●n=13

●● ●● ●● ●● ●● ●● ●●●n=14

●● ●● ●● ●● ●● ●● ●● ●●n=15

●● ●● ●● ●● ●● ●● ●● ●●●n=16

●● ●● ●● ●● ●● ●● ●● ●● ●●n=17
LMS Invited Lecture Series, CRISM Summer School 2018
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Halton sequences
The van der Corput trick works for any base. Use bases 2, 3, 5, 7, . . .
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864 random points

Halton sequence in the unit square

Via base b digital expansions

i =
K∑
k=0

bkaik → φb(i) ≡
K∑
k=0

b−1−kaik

xi = (φ2(i), φ3(i), . . . , φp(i))LMS Invited Lecture Series, CRISM Summer School 2018



QMC1: Survey of QMC 22

Digital nets
Halton sequences are balanced if n is a multiple of 2a and 3b and 5c . . .

Digital nets use just one base b =⇒ balance all margins equally.

Elementary intervals

Some elementary intervals in base 5

LMS Invited Lecture Series, CRISM Summer School 2018



QMC1: Survey of QMC 23

Digital nets
E =

s∏
j=1

[ aj
bkj

aj + 1

bkj

)
, 0 6 aj < bkj

(0,m, s)-net

n = bm points in [0, 1)s. If vol(E) = 1/n then E has one of the n points.

e.g. Faure (1982) points, prime base b > s

(t,m, s)-net

If E deserves bt points it gets bt points. Integer t > 0.

e.g. Sobol’ (1967) points base 2

Smaller t is better (but a construction might not exist).

minT project

Schürer & Schmid give bounds on t given b, m and s

Monographs

Niederreiter (1992) Dick & Pillichshammer (2010)
LMS Invited Lecture Series, CRISM Summer School 2018



QMC1: Survey of QMC 24

Example nets
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A (0,3,2) net
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A (0,4,2) net

Two digital nets in base 5

The (0, 4, 2)-net is a bivariate margin of a (0, 4, 5)-net.

The parent net has 54 = 625 points in [0, 1)5.

It balances 43,750 elementary intervals.

Think of 43,750 control variates for 625 obs.

We should remove that diagonal striping artifact (later).
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Digital net constructions
Write i =

∑K
k=0 aikb

k (simplest for prime b) and let

xi1 ≡


xi10

xi11

...

xi1K

 =


C

(1)
11 C

(1)
12 . . . C

(1)
1K

C
(1)
21 C

(1)
22 . . . C

(1)
2K

...
...

. . .
...

C
(1)
K1 C

(1)
K2 . . . C

(1)
KK




ai0

ai1
...

aiK

 mod b

Now put xi1 ∈ [0, 1] take xi1 =
∑K
k=0 xi1kb

1−k.

Generally xij = C(j)ai mod b for i = 0, . . . , bm − 1 and j = 1, . . . , s.

Good C(j) give small t.

See Dick & PIllichshammer (2010), Niederreiter (1991)

Computational cost

About the same as a Tausworth random number generator.

Base b = 2 offers some advantages.
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QMC1: Survey of QMC 26

Extensible nets
Nets can be extended to larger sample sizes.

(t, s)-sequence in base b

Infinite sequence of (t,m, s)-nets.

x1, . . . ,xbm︸ ︷︷ ︸ xbm+1, . . . ,x2bm︸ ︷︷ ︸ · · · xkbm+1, . . . ,x(k+1)bm︸ ︷︷ ︸ · · ·
(t,m, s)−net︸ ︷︷ ︸

1st

(t,m, s)−net︸ ︷︷ ︸
2nd

· · · (t,m, s)−net︸ ︷︷ ︸
b’th︸ ︷︷ ︸

(t,m+1,s)−net

· · ·

And recursively for all m > t.

Examples

Sobol’ b = 2 Faure t = 0 Niederreiter & Xing b = 2 (mostly)
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QMC1: Survey of QMC 27

Sobol’ points
Top row: (xi,1, xi,2) Bottom row: (xi,10, xi,11)
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Using ‘direction numbers’ of Kuo and Joe
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Very simple example

f(x) =

(
d∑
j=1

xj

)2

E(f(X)) =
d2

4
+

d

12
d = 12

Reference lines∝ n−1/2 and n−1, • for n = 2k
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QMC1: Survey of QMC 29

Lattices
The other main family of QMC points. An extensive literature, e.g., Sloan & Joe,

Kuo, Nuyens, Dick, Cools, Hickernell, Lemieux, L’Ecuyer· · ·
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z = (1,253)

Some lattice rules for n=377

Computation like congruential generators

xi =
( i
n
,
Z2i

n
,
Z3i

n
, . . . ,

Zdi

n

)
(mod 1) Zj ∈ N

choose Z = (1, Z2, Z3, . . . , Zd) wiselyLMS Invited Lecture Series, CRISM Summer School 2018



QMC1: Survey of QMC 30

QMC error estimation
|µ̂− µ| 6 D∗n × VHK(f)

Not a 100% confidence interval

because not known to user

• D∗n is hard to compute

• VHK harder to get than µ

For fixed n we get |µ̂− µ| <∞

• VHK =∞ is common, e.g., f(x1, x2) = 1x1+x261

Then KH gives |µ̂− µ| 6∞

Also

Koksma-Hlawka is worst case. It can be very conservative.

Recent work

GAIL project of Hickernell++ allows user specified error tolerance ε.
LMS Invited Lecture Series, CRISM Summer School 2018



QMC1: Survey of QMC 31

Randomized QMC
1) Make xi ∼ U[0, 1)d individually,

2) keeping D∗n(x1, . . . ,xn) = O(n−1+ε) collectively.

R independent replicates

µ̂ =
1

R

R∑
r=1

µ̂r

V̂ar(µ̂) =
1

R(R− 1)

R∑
r=1

(µ̂r − µ̂)2

If VHK(f) <∞ then

E((µ̂− µ)2) = O(n−2+ε)

Random shift Cranley & Patterson (1976)

Scrambled nets O (1995,1997,1998)

Linear scramble Matousek (1998)

Survey in L’Ecuyer & Lemieux (2005) LMS Invited Lecture Series, CRISM Summer School 2018
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Rotation modulo 1
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After

Cranley−Patterson rotation

Shift the points by u ∼ U[0, 1)s with wraparound:

xi → xi + u (mod 1).

Commonly used on lattice rules.

Can also be used with nets.

At least it removes x1 = 0.
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QMC1: Survey of QMC 33

Digit scrambling

1) Chop space into b slabs. Shuffle.

2) Repeat within each of b slabs.

3) Then within b2 sub-slabs.

4) Ad infinitum b3, b4, . . .

5) And the same for all s coordinates.

Each xi ∼ U[0, 1)s and x1, . . . ,xn still a net (a.s.). O (1995)

Cheaper scrambles: digital shift and random linear.

LMS Invited Lecture Series, CRISM Summer School 2018



QMC1: Survey of QMC 34

Example scrambles
Two components of the first 530 points of a Faure (0, 53)-net in base 53.
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Nested uniform

Randomized Faure points

The digital shift is much like a Cranley-Patterson rotation.

It uses just one random u for all points: x̃i = xi ⊕ u.

Random linear Matousek (1998) and nested uniform O (1995) have the same

Var(µ̂).
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Unscrambled Faure
First n = 112 = 121 points of Faure (0, 11)-net in [0, 1]11.
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Two projections of 121 Faure points

Unscrambled points are very structured.

Scrambling breaks it up.
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Scrambled net properties
Using σ2 =

∫
(f(x)− µ)2 dx

If Then N.B.

f ∈ L2 Var(µ̂) = o(1/n) even if VHK(f) =∞
f ∈ L2 Var(µ̂) 6 Γt,b,s σ

2/n if t = 0, Γ 6 e
.
= 2.718

∂1,2,...,sf ∈ L2(etc) Var(µ̂) = O(log(n)s−1/n3) O (1997,2008)

Γ <∞ rules out (log n)s−1 catastrophe at finite n.

Loh (2003) has a CLT for t = 0 (and fully scrambled points).

Geometrically

Scrambling Faure breaks up the diagonal striping of the nets.

Scrambling Sobol’ points moves the full / empty blocks around.

Improved rate

RMSE is O(n−1/2) better than QMC rate (cancellation).

Holds for nested uniform and nested linear scrambles.
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Scrambling vs shifting
Consider n = 2m points in [0, 1).

QMC

van der Corput points (i− 1)/n for i = 1, . . . , n.

• · · · · · · · · · |• · · · · · · · · ·|• · · · · · · · · ·|• · · · · · · · · ·|

Shift

Shift all points by U ∼ U(0, 1) with wraparound.

Get one point in each [(i− 1)/n, i/n)

· · · • · · · · · · |· · · • · · · · · ·|· · · • · · · · · ·|· · · • · · · · · ·|

Scramble

Get a stratified sample, independent xi ∼ U[(i− 1)/n, i/n)

· · · • · · · · · · |· · · · · · · · • ·|· · · · · • · · · ·|· · • · · · · · · ·|

Random errors cancel yielding an O(n−1/2) improvement.
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Higher order nets
Results from Dick, Baldeaux

Start with a net zi ∈ [0, 1)2s dimensions.

‘Interleave’ digits of two variables to make a new one:

zi,2j = 0.g1g2g3 · · ·
zi,2j+1 = 0.h1h2h3 · · ·

−→ xi,j = 0.g1h1g2h2g3h3 · · · .

Error is O(n−2+ε) under increased smoothness:
∂2s

∂x2
1 . . . ∂x

2
d

f

Scrambling gets RMSE O(n−2−1/2+ε)

Even higher

Start with ks dimensions interleave down to s.

Get O(n−k+ε) and O(n−k−1/2+ε) (under still higher smoothness)

Very promising

Cost: many inputs and much smoothness.

Starting to be used in PDEs. Kuo, Nuyens, Scwhab
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The curse of dimension
Curse of dimension: larger d makes integration harder.

CrM =

{
f : [0, 1]d → R

∣∣∣∣ ∣∣∣∏
j

∂αj

∂x
αj

j

f
∣∣∣ 6M,

∑
j

αj = r, αj > 0

}
Bahkvalov I:

For any x1, . . . ,xn ∈ [0, 1]d there is f ∈ CrM with |µ̂n − µ| > kn−r/d

Ordinary QMC like r = d

Bahkvalov II:

Random points can’t beat RMSE O(n−r/d−1/2)

Ordinary MC like r = 0
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What if we beat those rates?
Sometimes we get high accuracy for large d.

It does not mean we beat the curse of dimensionality.

Bahkvalov never promised universal failure.

Only the existence of hard cases.

We may have just had an easy, non-worst case function.

Two kinds of easy

• Truncation: only the first s� d components of x matter

• Superposition: the components only matter “s at a time”

Either way

f might not be “fully d-dimensional”.
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Dimensional decomposition
For u = {j1, j2, . . . , jr} ⊂ 1:d ≡ {1, 2, . . . , d} let

xu = (xj1 , . . . , xjr )

xi,u = (xij1 , . . . , xijr )

Via ANOVA or other method, write

f(x) =
∑
u⊆1:d

fu(xu)

Then

µ̂− µ =
∑
u⊆1:d

(
1

n

n∑
i=1

fu(xi,u)−
∫
fu(xu) dxu

)
|µ̂− µ| 6

∑
u⊆1:d

D∗n(x1,u, . . . ,xn,u)× ‖fu‖

Often D∗n(xi,u)� D∗n(xi) for small |u|. If also ‖fu‖ is small for large u,

then all the terms are small.
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Studying the good cases
Two main tools to describe it

• Weighted spaces and tractability

• ANOVA and effective dimension

Implications

Neither causes the curse to be lifted. They describe the happy circumstance

where the curse did not apply.

Both leave important gaps described below. I’ll raise as an open problem later.
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Weighted spaces
Hickernell (1996), Sloan & Wozniakowski (1998),

Dick, Kuo, Novak, Wasilkowski, many more

∂u ≡
∏
j∈u

∂

∂xj
assume ∂1:df exists

Inner product, weights γu > 0

‖f‖2γ =
∑
u⊆1:d

1

γu

∫
[0,1]u

∣∣∣∣∫
[0,1]−u

∂uf(x) dx−u

∣∣∣∣2 dxu

Function ball Bγ,C = {f | ‖f‖γ 6 C}
Small γu =⇒ only small ‖∂uf‖ in ball.

Product weights

γu =
∏
j∈u γj where γj decrease rapidly with j.

Now f ∈ Bγ,C implies ∂uf small when |u| large.

Many more choices: Dick, Kuo, Sloan (2013) LMS Invited Lecture Series, CRISM Summer School 2018
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ANOVA and effective dimension
Caflisch, Morokoff & O (1997)

ANOVA: f(x) =
∑
u⊆1:d fu(x)

Often f is dominated by its low order interactions.

Then RQMC may make a huge improvement.

Let σ2
u = Var(fu) variance component

Truncation dim. s 6 d∑
u⊆1:s

σ2
u > 0.99

∑
u⊆1:d

σ2
u

Superposition dim. s 6 d∑
|u|6s

σ2
u > 0.99

∑
u⊆1:d

σ2
u

Mean dimension∑
u |u|σ2

u∑
u σ

2
u

Liu & O (2006) Easier to estimate via Sobol’ indices.
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Open problem
• ANOVA captures magnitude of the low dimensional parts but not their

smoothness. Even when it verifies that f is dominated by low dimensional

parts it does not assure small |µ̂− µ|.

• Weighted space models assure accurate estimation at least asymptotically.

However, it is not easy to decide which weighted space to use.

• Given a weighted space, there are algorithms to tune QMC points for it.

• ANOVA approaches may support a strategy for choosing good weights for a

given problem, building on Sobol’ indices Sobol’++, Saltelli++, Prieur++,

Kucherenko++ or active subspaces Constantine++

The problems are about how to combine the approaches and when / whether a

resulting adaptive algorithm will be effective.
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Example
Kuo, Schwab, Sloan (2012) consider quadrature for

f(x) =
1

1 +
∑d
j=1 x

α
j /j!

, 0 < α 6 1.

For α = 1 and d = 500

R = 50 replicated estimates of
∑
v |v|σ2

v/σ
2 using n = 10,000

had mean 1.0052 and standard deviation 0.0058.

Upshot

f(x) is nearly additive

mean dimension between 1.00356 and 1.00684

(±2 standard errors)
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Lowering effective dimension
Sometimes we can make f more suited to QMC.

E.g., cram importance into first few components of x.

MC vs QMC

MC places lots of effort on variance reduction.

For QMC we gain by reducing effective dimension.

Or Hardy-Krause variation (but there asymptotics are slow).

E.g., when turning u ∼ U[0, 1]d into z ∼ N (0,Σ)

The choice of Σ1/2 affects QMC performance.

Caflisch, Morokoff & O (1997)

Acworth, Broadie & Glasserman (1998)

Imai & Tan (2014)

Best Σ can depend strongly on f .

Papageorgiou (2002)
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Sampling Brownian motion
Feynman-Kac/Brownian bridge

First few variables define a ‘skeleton’. The rest fill in.

0.0 0.2 0.4 0.6 0.8 1.0

−
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−

0.
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5

Time t

B
(t

) ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

Brownian bridge construction of Brownian motion

See also Mike Giles++ on multi-level MC. LMS Invited Lecture Series, CRISM Summer School 2018
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Choosing γ
Each γ corresponds to a reproducing kernel Hilbert space (RKHS)

The question

Which RKHS should we use in a given problem?

H1 or H2 or · · · or HJ · · ·

1) sometimes f ∈ Hj all j = 1, . . . , J

and f ∈ H1 vsH2 have very different implications

2) sometimes f belongs to none of them.

while |f − f̃ | 6 ε where f̃ ∈ H

Bayes and empirical Bayes ideas might help chooseH

Maybe we want anH where f is ‘typical’.

A natural γ has

γu ∝
∫

[0,1]d

(
∂uf(x)

)2
dx

NB: the constant of proportionality is also important.LMS Invited Lecture Series, CRISM Summer School 2018
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