Motivation: LIkELIHOODS WITH AN UNKNOWN ANCESTRAL TREE

Given a set of aligned sequences, e.g.

the probability of having evolved from some initial sequence (here $\ldots A \ldots A \ldots A \ldots A \ldots$) may be expressed:
which in turn may be expressed by conditioning on the most recent event:
 computing a weighted sum over all paths from " 12345 " to ": graph below:

- number of nodes $=$ number of distinct terms in \mathbb{P}-recursion,

Challenge: A growing graph of ancestral states

As the number of sequences n and segregating sites s increases, it quickly becomes computationally intractable to recursively compute exact likelihoods.

We need methods which do not pre-suppose the ancestral graph, since it is a priori unknown and generating it is as hard as computing likelihoods.

Importance Sampling of ancestral paths

We can approximate probabilities of aligned sequences-e.g. $\mathbb{P}\left(\underset{\left.\mathscr{D}^{\circ} \cdot{ }^{\circ}\right) \text {-by }}{ }\right.$ sampling ancestral histories $X_{1}, \ldots, X_{N} \stackrel{i i d}{\sim} \mathbb{Q} \ll \mathbb{P}$ and relying on the following approximation:

For this approach to work effectively, \mathbb{Q} should satisfy:

1. \mathbb{Q} must approximate \mathbb{P} well on the space of histories;
2. sampling $X_{i} \sim \mathbb{Q}$ should be fast;
3. computing $\mathbb{Q}\left(X_{i}\right)$ should be fast.

SEQUENTIAL SAMPLING SCHEMES

Existing proposal distributions are all sequential: they construct paths step-by step from the bottom up. They differ by how the next step in a path is sampled.

Stephens and Donnelly (S\&D

simple combinatorial sampling

Path density bias and path counting

Any step-by-step scheme which does not penalize choices which "lead to fewer choices down the line", will be biassed in favour of low-density regions of path-space, e.g.

To correct for path density bias, we must be able to count ancestral histories effectively (i.e. without generating the ancestral graph), which we do as follows:

$$
h(T)=\sum_{S \subsetneq[r], 1 \in S} h\left(\left\{T_{i} \mid i \in S\right\}\right) h\left(\left\{T_{i} \mid i \notin S\right\}\right)\binom{\left(\sum_{i=1}^{r} k_{i}\right)-2}{\left(\sum_{i \in S} k_{i}\right)-1}
$$

whereby we here encode rooted unordered trees as nested systems of sets, e.g.

$$
\boldsymbol{B}_{\stackrel{\bullet}{\bullet} \oplus}^{\bullet \bullet}=\{\{\{1,\{2\}\}\},\{3,4\}, 5\} .
$$

