Univ. Lille, CNRS, Centrale Lille, UMR 9189 - CRIStAL

* INRIA Lille

State space represented as a tiling of a zonotope

Motivation: Sample with diversity
Image search

Extractive text summarization

DPPs provide rigorous approach for sampling diverse subsets

Determinantal Point Processes
Definitions

- $\{1, \ldots, N\}$ indices/labels of items
- K a $N \times N$ PSD matrix
- $\operatorname{DPP}(\mathbf{K})$ a measure on subsets of $\{1, \ldots, N\}$
- $\mathcal{X} \sim \operatorname{DPP}(\mathbf{K})$ if $\forall S \subseteq\{1, \ldots, N\}$,

$\mathbb{P}[S \subseteq \mathcal{X}]=\operatorname{det} \mathbf{K}_{S}$

- Existence when $\mathbf{0}_{N} \preceq \mathbf{K} \preceq \mathbf{I}_{N}$

Projection DPPs

- \mathbf{K} is an orthogonal projection matrix

$$
\mathbf{K}=\sum_{i=1}^{r} u^{(i)} u^{(i) \top}=\boldsymbol{\Phi}^{\top} \boldsymbol{\Phi}, \quad \text { with }\left\langle u^{(i)}, u^{(j)}\right\rangle=\delta_{i j}
$$

- Interpretation $\mathbb{P}[S \subseteq \mathcal{X}]=\operatorname{det} \mathbf{K}_{S}=\operatorname{Vol}^{2}\left\{\phi_{i} ; i \in S\right\}$
- $|\mathcal{X}| \stackrel{\text { a.s. }}{=} \operatorname{Tr} \mathbf{K}=\operatorname{rank} \mathbf{K}=r$

Properties

- If $\mathcal{X} \sim \operatorname{DPP}(\mathbf{K})$, then $\forall i, j$

$$
\begin{aligned}
\mathbb{P}[\{i, j\} \subseteq \mathcal{X}] & =\left|\begin{array}{cc}
\mathbb{P}[i \in \mathcal{X}] & \mathbf{K}_{i j} \\
\mathbf{K}_{i j} & \mathbb{P}[j \in \mathcal{X}]
\end{array}\right| \\
& =\mathbb{P}[i \in \mathcal{X}] \mathbb{P}[j \in \mathcal{X}]-\mathbf{K}_{i j}^{2} \\
& \leq \mathbb{P}[i \in \mathcal{X}] \mathbb{P}[j \in \mathcal{X}]
\end{aligned}
$$

- $\left|\mathbf{K}_{i j}\right| \approx$ similarity between i and j

The larger $\left|\mathbf{K}_{i j}\right|$ the smaller $\mathbb{P}[\{i, j\} \subseteq \mathcal{X}]$
Diversity/repulsion
$\left|\mathbf{K}_{i j}\right|$ yields departure from independence

Goal

Exact sampling is expensive

Provide efficient samplers for DPPs

Setup

Build an $r \times N$ feature matrix $\mathbf{A}=\left(\sqrt{q_{1}} \phi_{1}|\ldots| \sqrt{q_{N}} \phi_{N}\right)$
Assumption 1. A is full row rank i.e. $\operatorname{rank} A=r$
Construct the projection kernel $\mathbf{K}=\mathbf{A}^{\top}\left[\mathbf{A A}^{\top}\right]^{-1} \mathbf{A}$
Notations

- For $|B|=r, \mathbf{B} \triangleq \mathbf{A}_{: B}$

Let $B=\left\{i_{1}, \ldots, i_{r}\right\}$, then for $\mathcal{X} \sim \operatorname{DPP}(\mathbf{K})$

$$
\mathbb{P}[\mathcal{X}=B]=\frac{|\operatorname{det} \mathbf{B}|^{2}}{\operatorname{det} \mathbf{A} \mathbf{A}^{\mathrm{\top}}} \propto \mathrm{Vol}^{2} \mathbf{B}
$$

- $\mathcal{B} \triangleq\{B ;|B|=r, \operatorname{det} \mathbf{B} \neq 0\}$

Indices of columns of \mathbf{A} forming a basis of $\operatorname{Im} \mathbf{A}$ \mathcal{B} is the support of $\operatorname{DPP}(\mathbf{K})$

The volume spanned by the feature vectors

$\mathcal{Z}(\mathbf{A}) \triangleq \mathbf{A}[0,1]^{N}$

admits a natural tiling
$\operatorname{Vol} \mathcal{Z}(\mathbf{A})=\sum_{B \in \mathcal{B}} \operatorname{Vol} \mathbf{B}=\sum_{B \in \mathcal{B}}|\operatorname{det} \mathbf{B}|$
The optimal solution y^{*} of $P_{x}(\mathbf{A}, c)$

$$
\begin{array}{cl}
\min _{y \in \mathbb{R}^{N}} & c^{\top} y \\
\text { s.t. } & \mathbf{A} y=x
\end{array}
$$

takes the form

$x=\mathbf{A} y^{*}=\mathbf{A} \xi(x)+\mathbf{B}_{x} u$

for a unique $B_{x} \in \mathcal{B}$, where

- $u \in[0,1]^{r}$
- $\xi(x) \in\{0,1\}^{N}$ s.t. $\xi(x)_{\mid B_{x}}=0$

Any $x \in \mathcal{Z}(\mathbf{A})$ falls inside a uniquely defined parallelotope $\mathcal{Z}\left(\mathbf{B}_{x}\right)$ shifted by $\mathbf{A} \xi(x)$

B_{1} B_{1} B_{1} \square B_{2} B_{2} \square

Manipulating the optimality conditions:

- Each basis $B \in \mathcal{B}$ can be realized as a B_{x} for some x
- Any $x^{\prime} \in \mathbf{A} \xi(x)+\mathcal{Z}\left(\mathbf{B}_{x}\right)$ will be assigned $B_{x^{\prime}}=B_{x}$
$\mathcal{Z}(\mathbf{A})$ is tiled by all parallelotopes $\mathcal{Z}(\mathbf{B}), B \in \mathcal{B}$, with disjoint interiors

Random walk on tiles

Sample projection DPPs with hit-and-run + linear programming

- Use hit-and-run to build an underlying continuous random walk $\left(x_{n}\right)$ in $\mathcal{Z}(\mathbf{A})$ with limiting distribution

$$
\pi(x) \mathrm{d} x=\sum_{B \in \mathcal{B}} C_{\mathbf{B}} \times \mathbb{1}_{\mathbf{B}}(x) \mathrm{d} x
$$

- Identify the tile in which x_{n} lies to get a discrete random walk ($B_{x_{n}}$) on \mathcal{B} with limiting distribution

$$
\mathbb{P}\left[B_{x}=B\right] \propto \int_{\mathbf{B}} \pi(x) \mathrm{d} x=C_{\mathbf{B}} \times \operatorname{Vol} \mathbf{B}
$$

- Solve $P_{x_{n}}(\mathbf{A}, c)$

Extract the tile $B_{x_{n}}=\left\{i ; y_{i}^{*} \in\right] 0,1[\}$

Acceptance $=1$ leads to uniform limiting distribution

$\mathbb{P}\left[x \in \mathbf{B}_{i j}\right] \propto 1 \times \operatorname{Vol}_{\mathbf{B}_{i j}}=\operatorname{Vol}^{1} \mathbf{B}_{i j}$

Acceptance $=\frac{\operatorname{Vol} B(\hat{x})}{\operatorname{Vol} B(x)}$ leads to volume limiting distribution $\pi(x) \mathrm{d} x=\sum \operatorname{Vol}_{\mathbf{B}_{i j}} \times \mathbb{1}_{\mathbf{B}_{i j}}(x) \mathrm{d} x$

$\mathbb{P}\left[x \in \mathbf{B}_{i j}\right] \propto \operatorname{Vol}_{\mathbf{B}_{i j}} \operatorname{Vol}_{\mathbf{B}_{i j}}=\operatorname{Vol}^{2} \mathbf{B}_{i j}$

Some experiments

Relative error of the estimation of $\mathbb{P}\left[\left\{i_{1}, i_{2}, i_{3}\right\} \subset \mathcal{X}\right]$ for non-uniform spanning trees

Extractive text summarization
Chosen uniformly at random
If you consider yourself to have even a passing familiarity with science, you likely find yourseff in a state of disbelief as the president
of the In fact, it's so wrong that it may have the opposite e effect of whas conspiracy theories about vaccines.
In fact, it's so wrong that it may have the opposite ffecec of what they'retrying to achieve.
Respondents who knew more about science generally, regardless of political leaning, were better able to identify the scientific consensus
In fact, well-meaning attempts by scientists to inform the public might even backfire.
Psychologists, apty, dubbed this the "backfire effect."

| But if s sientists are motivated
 will be sorely dispappointed. |
| :--- | :--- |

That's not to say scientists should return to the bench and keep their mouths shut.
Goldman also said scientists can do more than just educate the public The Union of Concerned Scientists, for example, has created
ascience watcheotean a science watchdogteam that keeps tabs on the activities of eederal agencies.
It's very logical, and my hunch is that it comes naturaly to scientists because most have largely spent tt
as students, professors, or mentors and the deficit model perfectly explains how a scientist learns science.

Chosen with our sampler
If you are a scientist, this disregard for evidence probably drives you crazy.
So what do you do about it?
In 2010, Dan Kahan, a Yale psychologitst, essentially proved this theory wrong in interest.
If the deficit model were correct, Kahan reasoned, then people with
with scientists that climate change poses a seriou
Scientific literacy, it seemed, increased polarization.
Scientific literacy, it seemed, increased polarization.
This lumps scientist in with the nebulous "left"and, as Daniel
Science, rebrands scientific authoity
This lumps scientists is with the eneblos "left" and, as Daniel En.
Science, rebrands scientific authority as sust another form of efitism.
Is it any surpise, then, that lectures from scientists built on the premise that they simply know more (even ifit's true) fail to convince
this audience?
With that in mind, it may be more worthwhile to figure out how to talk about science with people they already know, through, say,
local and community interactions, than it is to to to to oublish explainers on national newes sites
local and community interactions, than it is to try to publish explainers on national news sites.
Goldman also said scientists can do more than just educate the public. The Union of Concerned Scientists, for example, has created
a cience watchogogteam that keeps tabs on the activities of federal agencies.
Theres's also a certain irnent that, ight here in this article, 1 'm lecturing scientists about what they might not know-in other words,
I'm guity of following the deficit model myself.

Conclusion and next steps

- New interpretable brigde between MCMC and optimization
- Random walk on tiles mixes empirically faster
- Extension to generic DPPs?
- Speed-up by dedicated LP solvers?

