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Motivation: Sample with diversity
Image search
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Extractive text summarization

DPPs provide rigorous approach
for sampling diverse subsets

Determinantal Point Processes
Definitions

• {1, . . . , N} indices/labels of items
• K a N ×N PSD matrix
• DPP(K) a measure on subsets of {1, . . . , N}
• X ∼ DPP(K) if ∀S ⊆ {1, . . . , N},

P [S ⊆ X ] = det KS

• Existence when 0N � K � IN

Projection DPPs
• K is an orthogonal projection matrix

K =
r∑

i=1
u(i)u(i)T = ΦTΦ, with 〈u(i), u(j)〉 = δij

• Interpretation
P [S ⊆ X ] = det KS = Vol2 {φi ; i ∈ S}

• |X | a.s.= Tr K = rank K = r

Bolt request

P[ , ✓ X ]
� P[ , ✓ X ] K( , )

Properties
• If X ∼ DPP(K), then ∀i, j

P [{i, j} ⊆ X ] =
∣∣∣∣P [i ∈ X ] Kij

Kij P [j ∈ X ]

∣∣∣∣
= P [i ∈ X ]P [j ∈ X ]−K2

ij

≤ P [i ∈ X ]P [j ∈ X ]

• |Kij | ≈ similarity between i and j
– The larger |Kij | the smaller P [{i, j} ⊆ X ]

– Diversity/repulsion
– |Kij | yields departure from independence

Goal
Exact sampling is expensive

⇓
Provide efficient samplers for DPPs

Setup
Build an r ×N feature matrix A =

(√
q1φ1| . . . |

√
qNφN

)
Assumption 1. A is full row rank i.e. rankA = r

Construct the projection kernel K = AT [AAT]−1 A
Notations

• For |B| = r, B , A:B

Let B = {i1, . . . , ir}, then for X ∼ DPP(K)

P [X = B] = |det B|2

det AAT
∝ Vol2 B

• B , {B ; |B| = r, det B 6= 0}
– Indices of columns of A forming a basis of Im A
– B is the support of DPP(K)

State space represented as a tiling of a zonotope
The volume spanned by the feature vectors

Z(A) , A[0, 1]N

admits a natural tiling

VolZ(A) =
∑
B∈B

Vol B =
∑
B∈B
|det B|

The optimal solution y∗ of Px(A, c)

min
y∈RN

cTy

s.t. Ay = x
0 ≤ y ≤ 1

takes the form
x = Ay∗ = Aξ(x) + Bxu

for a unique Bx ∈ B, where

• u ∈ [0, 1]r

• ξ(x) ∈ {0, 1}N s.t. ξ(x)|Bx
= 0

Any x ∈ Z(A) falls inside a uniquely defined parallelotope Z(Bx) shifted by Aξ(x)

Manipulating the optimality conditions:

• Each basis B ∈ B can be realized as a Bx for some x

• Any x′ ∈ Aξ(x) + Z(Bx) will be assigned Bx′ = Bx

Z(A) is tiled by all parallelotopes Z(B) , B ∈ B, with disjoint interiors

Random walk on tiles
Sample projection DPPs with hit-and-run + linear programming

• Use hit-and-run to build an underlying continuous random
walk (xn) in Z(A) with limiting distribution

π(x) dx =
∑
B∈B

CB × 1B(x) dx

• Identify the tile in which xn lies to get a discrete random
walk (Bxn

) on B with limiting distribution

P [Bx = B] ∝
∫

B
π(x) dx = CB ×Vol B

– Solve Pxn
(A, c)

– Extract the tile Bxn = {i ; y∗i ∈]0, 1[}

Acceptance = 1 leads to uniform limiting distribution

π(x) dx = 1Z(A)(x) dx =
∑
i 6=j

1 × 1Bij
(x) dx

P [x ∈ Bij ] ∝ 1×Vol Bij = Vol1 Bij

Acceptance = Vol B(x̃)
Vol B(x) leads to volume limiting distribution

π(x) dx =
∑
i 6=j

Vol Bij × 1Bij
(x) dx

P [x ∈ Bij ] ∝ Vol Bij Vol Bij = Vol2 Bij

Some experiments
Relative error of the estimation of P [{i1, i2, i3} ⊆ X ]
for non-uniform spanning trees

Extractive text summarization

Chosen uniformly at random

Chosen with our sampler

Conclusion and next steps
• New interpretable brigde between MCMC and optimization
• Random walk on tiles mixes empirically faster

• Extension to generic DPPs?
• Speed-up by dedicated LP solvers?

• Our sampler for Vol1 inherits Lovasz & Vempala’s mixing time from but not for Vol2


