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Stochastic Volatility Model with Leverage

Stochastic volatility (SV) models are an increasingly popular
choice for modelling financial return data. The basic SV model
assumes an autoregressive structure for the log-volatility, and it
is able to match the empirically observable low serial
autocorrelation in the return series, but high serial
autocorrelation in the squared return series. The SV model with
leverage (SVL) extends the SV model by allowing the return
series and the increment of the log-volatility series to correlate.
This correlation models a real world phenomenon, the
asymmetric relationship between returns and their volatility.
Formally, in the centered parameterization, for t = 1, . . . ,T ,

yt = exp(ht/2)εt ,

ht+1 = µ + ϕ(ht − µ) + σηt ,

cor(εt , ηt) = ρ,

(C)

with (εt)
T
t=1 , (ηt)

T
t=1 ∼ NT (0T , IT ) vectors. An equivalent

specification can be obtained by substituting h̃t = (ht − µ)/σ
into (C),

yt = exp((µ + σh̃t)/2)εt ,

h̃t+1 = ϕh̃t + ηt .
(NC)

Project

The goal of this project is to find an MCMC sampler for SVL that
has a high effective sample size per unit time, and that can be
used as a subroutine for more sophisticated hierarchical
models. Adaptive methods and adaptation phases are hence
not preferred.
Auxiliary sampler
In terms of sampling vol. efficiently, the state-of-the-art MCMC
sampler is based on an auxiliary model developed in [3]. It
transforms the observation equation to a linear form, and then
approximates (log(ε2

t ), ηt) by a ten component mixture of
bivariate Gaussian distributions. With the mixture components
denoted by st ∈ {1, . . . ,10}, the auxiliary model in NC is

log(y2
t ) = µ + σh̃t + m(1)

st
+ v (1)

st
wt ,

h̃t+1 = ϕh̃t +

√
1− ρ2zt

+ sgn(yt)ρ
(

m(2)
st

+ v (2)
st

wt

)
,

(A)

where wt , zt ∼ i.i.d. N (0,1), and m(i)
st
, v (i)

st
are precalculated

constants. An independent Metropolis-Hastings (MH) step is
used for (ϕ, ρ, σ2), and then Gaussian simulation smoothing for
µ and the vector h.
Direct sampler
Direct estimation of (C) or (NC) is also possible since
p(ϕ, ρ, σ2, µ | y ,h), and also its derivatives can be evaluated.
Due to the issues with the independent MH sampler for (A), we
tried the random-walk MH (RWMH) approach, and the
Metropolis adjusted Langevin algorithm (MALA) for parameter
sampling, and, as an approximation, stayed with the efficient
simulation smoother from the (A) sampler. This approximation
can be corrected by an MH acceptance-rejection step.
As already shown for the basic SV model [2], samplers based
on different parameterizations can have substantially different
sampling efficiency on the same data set due to the altered
dependence structure. To exploit this phenomenon, the
ancillarity-sufficiency interweaving strategy (ASIS) [5] can utilize
samplers of both C and NC, and thus ASIS may be able to
deliver a markedly higher effective sample size than C or NC
samplers. ASIS affects only dependent MH algorithms, hence
we took advantage of it in the RWMH and the MALA samplers.
Stan & JAGS
For completeness, Stan [1] and JAGS [4] were also tried out
through their R interface in both the C and the NC
parameterizations.
Setup
The samplers below were run on an extensive grid of
parameters, altogether 91500 different MCMC chains were
produced. The length of the burn-in was 5000, and 50000
samples were drawn afterwards. The initial values were the true
ones in all cases, and the priors were always

(ϕ + 1)/2 ∼ Beta(20,1.5),
(ρ + 1)/2 ∼ Beta(3,5),

σ2 ∼ Gamma(0.5,0.5),

µ ∼ N (−10,
√

10
2
),

h1 ∼ N (µ, σ2/(1− ϕ2)).
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Auxiliary model

I Draw s | y ,h, ϕ, ρ, σ, µ
I Using inverse transform sampling

I Draw ϕ, ρ, σ2 | y ,s
I Collapsed sampler: h and µ are integrated out
I MH step with a 3D truncated Gaussian proposal that approximates

p(ϕ, ρ, σ | y ,s) around its mode
I Includes Kalman filter, numerical optimization and differentiation

I Draw h, µ | y ,s, ϕ, ρ, σ
I Using Gaussian simulation smoothing

Exact model & ASIS

I Draw h | y , ϕ, ρ, σ
I Using the AUX model

I Draw ϕ, ρ, σ2, µ | y ,h
I RWMH: 4D uncorr. Gaussian random walk in an unbounded space
I MALA: RWMH’s proposal shifted by the posterior’s scaled gradient

I If ASIS
I Calculate h̃ using the new σ2, µ values
I Redraw ϕ, ρ, σ2, µ | y , h̃
I Move back to h using the new σ2, µ values

Results

Figure: Boxplot showing the execution times of the samplers after the burn-in. Different samplers
react differently to changes in the parametereziation or changes in the true parameter.

RWMH MALA AUX Stan JAGS

N
C

C

10
0

10
4

10
8

11
2

10
6

10
8

11
0

11
2

10
00

15
00

20
00 0

10
00

0
20

00
0

30
00

0

40
0

60
0

80
0

0
0.5
0.9

0.95
0.99

0
0.5
0.9

0.95
0.99

Runtime (s)

T
ru

e 
ϕ

Runtime for different values of ϕ and T = 1000

Figure: Triangle of sampler properties: Efficiency
in terms of ESS, Speed in terms of runtime, and
Robustness in terms of insensitiveness to
different data.
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Table: 8 heatmaps are shown for each sampler and parameterization strategy. The first 4 illustrate effective sample sizes (ESS) of the drawn µ
and σ2 chains, respectively, grouped by the size of the data set. The second 4 columns of heatmaps showcase the effective sampling rates (ESR)
in a similar fashion. Intuitively, the ESS is the number of i.i.d. draws, and it should ideally be 50000 here. Analogously, ESR is the number of i.i.d.
draws per second. The plots are parceled out in a grid of the true data generating values of φ and σ2. Finally, the grid point colors are on a
logarithmic scale, and they map to the median of the 50 corresponding values.

Efficiency of ϕ and ρ
In general, the picture looks similar to the case of µ and σ2. Stan
outperforms all other choices in terms of ESS. If runtime is also of
concern, then RWMH is the strongest choice for small data sets,
while MALA together with RWMH show the best performance for
larger data sets.
Efficiency of the volatility
Interestingly, the general framework of Stan is able to deliver the
highest ESSs, slightly outperforming on average even the
model-specific, optimized AUX sampler. RWMH with ASISx5 has 4
to 8 times smaller ESS for the latent vector than Stan in most
cases. In terms of ESR, Stan and JAGS are the least favorable,
while RWMH and MALA without ASIS perform ca. 10 times better
than other choices. Since the Gaussian simulation smoother is a

highly efficient algorithm both in terms of speed and sampling
efficiency, the computation times of the (ϕ, ρ, σ2, µ) draws
becomes a crucial factor, in which RWMH excels the most.
Effect of reparameterization and ASIS
According to the Table, the sampling efficiency of JAGS, Stan, and
AUX greatly depends on the parameterization and the data
generating process. This effect is observable only in a weaker
form at RWMH and MALA. On the other hand, ASIS increases
both the ESS and the ESR, and we recommend ASIS for more
reliable performance as well.
Future
The most promising algorithms will be included in the R package
stochvol as a computationally highly efficient, compiled
extension to the basic SV model sampler.
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