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Abstract

We introduce a general methodology, nested filtering, that combines two
layers of inference: a grid-based scheme to approximate the posterior distri-
bution of the fixed parameters and filtering to track and predict the distri-
bution of the state variables in a recursive way. We specifically explore the
use of Monte Carlo and Gaussian filtering methods, but other approaches
fit naturally within the new framework.

State-space Model

States: The value of the system
state x(t) can be approximated at
times tk applying RK4 method as
x̄k = x̄k−1 + F (x̄k−1,θ, h, σwk) .

•F (x̄k−1,θ, h, σwk): estimate of the
time derivatives dx(tk).

•wk: zero-mean ind. state noise.
• σ ≥ 0.
• h > 0: time-discretisation step.

Observations

Observations: States, x̄k ≈
x(tk), and unknown parameters, θ,
are estimated from a sequence of ob-
servation vectors, modelled as
ȳkm = g(x̄km,θ) + σovkm,

k = 1, 2, . . . , m ≥ 1
• g : Rdx → Rdy, being dy ≤ dx.
• vkm: zero-mean ind. observational noise.
• σo > 0.
•m: discrete observation period.

Dynamical Model

To put the states and the observations in the same time scale, we work
with the pair of random sequences xn = x̄nm and yn = ȳnm, as

yn = g(xn,θ) + σovn, n = 1, 2, . . . (1)
xn = Fm(xn−1,θ, h, σvn), (2)

where Fm represents the transformation from xn−1 = x̄(n−1)m to xn =
x̄nm in m steps.

Nested Filters

We design a sequential Monte Carlo method based on the parameter likeli-
hoods un(θ) = p(yn|θ,y1:n−1). We approximate first the predictive measure
p(xn|θ,y1:n−1)dxn and then use use the relationship

un(θ) =
∫
p(yn|xn,θ)p(xn|θ,y1:n−1)dxn.

General Nested Filter

Initialisation:Draw θi0, i = 1, . . . , N , i.i.d. samples from p(θ)dθ. Re-
cursive step:
1.For i = 1, . . . , N :
(a)Draw θ̄in from a Markov kernel κN(dθ|θin−1).
(b)Approximate p̂(xn|θ̄

i
n,y1:n−1)dxn ≈ p(xn|θ̄

i
n,y1:n−1)dxn.

(c)Use this approximation to compute ûn(θ̄
i
n) and let wi

n ∝ ûn(θ̄
i
n) be

the normalised weight of θ̄in.
2.Resample to obtain the set {θin}Ni=1 and the approximation
p(θ|y1:n)dθ ≈ 1

N

∑N
i=1 δθin(dθ).

A variety of techniques can be used in both layers of the filter. In the
first one we focus on Monte Carlo schemes (SMC and SQMC), while in the
second one we opt for the use of Gaussian filters (EKF and EnKF).
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A Stochastic Lorenz 96 Model

Ground truth. The model consists of two sets of dynamic variables, x
and z, that displays some key features of atmosphere dynamics.

dx = f 1(x, z,α)dt + σdw1
dz = f 2(x, z,α)dt + σ̄dw2

Let us assume there are dx slow variables and L fast variables per slow vari-
able. The components of the maps, f 1 and f 2 functions (with dimensions
dx and L respectively), can be written as

f1j(x, z,α) = −xj−1(xj−2 − xj+1)− xj + F − HC
B

Lj−1∑
l=(j−1)L

zl,

f2l(x, z,α) = −CBzl+1(zl+2 − zl−1)− Czl + CF

B
+ HC

B
xbl−1

L c
.

Observations are linear but can only be collected from this system once
every m discrete time steps and only one out of K slow variables can be
observed.
Forecast model. We use the differential equation:

dxj = fj(x,θ)dt+σdwj = [−xj−1(xj−2−xj+1)−xj +F−`(xj, a)]dt+σdwj (3)

• a = [a1, a2]>: (constant) parameter vector.
• θ = [F, a>]>: contains all the parameters.
• `(xj, a) = a1x

2
j + a2xj: ansatz, a polynomial in xj of degree 2, for the coupling term

HC
B

∑Lj−1
l=(j−1)L zl.

Computer simulations

Integration step h = 5× 10−3

Variables parameters K = 2 and L = 10
Fixed model parameters F = 8, H = 0.75, C = 10 and B = 15
Noise scaling factors σ = h

4 = 0.25× 10−3 and σo = 4
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Figure 2: Comparison of the SQMC-EKF (red lines) and SQMC-EnKF (blue lines) in
terms of their running time and their MSE as the state dimension dx increases (m = 20
discrete time steps) and as the gap between observations m increases (dx = 100).
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Figure 1: Sequences of state estimates in x2 (unobserved variable) over time in a
5,000-dimensional Lorenz 96 model using SQMC-EnKF method. Posterior density of the
parameters a = [a1, a2]> and F in t = 5. The reference values are represented in black
lines.

Summary of contributions

•A nested filtering methodology to recursively estimate the static
parameters and the dynamic variables is introduced.

•We combine Monte Carlo and quasi Monte Carlo schemes for the
unknown static parameters with either EKF and EnKF for the
time-varying states, showing specific results for a 5,000-dimensional
system.

•We have proved, under very general assumptions, that the proposed
method converges (with optimal Monte Carlo rates) to a possibly biased
version of the posterior distribution of the parameters.
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