Analysis of the maximal a posteriori partition in the Gaussian Dirichlet Process Mixture Model

Łukasz Rajkowski
1.rajkowski emimun.edu.pl

University of Warsaw

The Chinese Restaurant Process

$\mathbb{P}($ new table $) \propto \alpha \quad \mathbb{P}($ join table $) \propto \#$ sitting there e.g. $\mathbb{P}\{\{1,2,4,6\},\{3\},\{5,7\}\}=\frac{\alpha}{\alpha} \cdot \frac{1}{1+\alpha} \cdot \frac{\alpha}{2+\alpha} \cdot \frac{2}{3+\alpha} \cdot \frac{\alpha}{4+\alpha} \cdot \frac{3}{5+\alpha} \cdot \frac{1}{6+\alpha}$

The Gaussian DPMM and the MAP

The Gaussian DPMM for n observations may be modelled as follows
$\mathcal{J} \sim \operatorname{CRP}(\alpha)_{n} \quad($ the Chinese Restaurant P.)

$$
\boldsymbol{\theta}=\left(\theta_{J}\right)_{J \in \mathcal{J}} \mid \mathcal{J} \stackrel{\text { iid }}{\sim} \mathcal{N}(\vec{\mu}, T)
$$

$$
\boldsymbol{x}_{J}=\left(x_{j}\right)_{j \in J} \mid \mathcal{J}, \boldsymbol{\theta} \stackrel{\mathrm{iid}}{\sim} \mathcal{N}\left(\theta_{J}, \Sigma\right) \quad \text { for } J \in \mathcal{J}
$$

The partition that maximises the posterior probability is the MAP partition. It is denoted by $\hat{\mathcal{J}}\left(x_{1}, \ldots, x_{n}\right)$.

Result 1. Convexity of the MAP

For every $n \in \mathbb{N}$ if $J_{1}, J_{2} \in \hat{\mathcal{J}}\left(x_{1}, \ldots, x_{n}\right), J_{1} \neq J_{2}$ and A_{k} is the convex hull of the set $\left\{x_{i}: i \in J_{k}\right\}$ for $k=1,2$ then $A_{1} \cap A_{2}$ is an empty set or a singleton $\left\{x_{i}\right\}$ for some $i \leq n$.

Result 2. Which clusters are big?

If $\sup _{n} \frac{1}{n} \sum_{i=1}^{n}\left\|x_{n}\right\|^{2}<\infty$ then

$$
\liminf _{n \rightarrow \infty} \min \left\{|J|: J \in \hat{\mathcal{J}}\left(x_{1}, \ldots, x_{n}\right), \exists_{j \in J}\left\|x_{j}\right\|<r\right\} / n>0
$$

for every $r>0$.

Corollary. If $\left(\frac{1}{n} \sum_{i=1}^{n}\left\|x_{i}\right\|^{2}\right)_{n=1}^{\infty}$ is bounded then for every $r>0$ the number of clusters that intersect $B(\mathbf{0}, r)$ is bounded.

Commentary

Let $X_{1}, X_{2}, \ldots \stackrel{\text { iid }}{\sim} P$ and $\hat{\mathcal{J}}_{n}=\hat{\mathcal{J}}\left(X_{1}, \ldots, X_{n}\right)$.

- If $\alpha=\mathrm{T}=\Sigma=1$ and $P=\sum_{m=0}^{\infty} q(1-q)^{m} \delta_{18^{m}}$, where $q=(2 \cdot 18)^{-1}$, then $\mathbb{E} X^{4}<\infty$ and almost surely $\lim \inf _{n \rightarrow \infty} \min \left\{|J|: J \in \hat{\mathcal{J}}_{n}\right\}=1$.
- If $\alpha=\mathrm{T}=1, \Sigma<(32 \ln 2)^{-1}$ and $P=\operatorname{Exp}(1)$ then $\lim _{n \rightarrow \infty}\left|\hat{\mathcal{J}}_{n}\right|=\infty$ almost surely. This implies that Result 2 is not easily generalised!

The Induced Partition

Let \mathcal{A} be a fixed partition of \mathbb{R}^{d}. For $n \in \mathbb{N}$ and $A \in \mathcal{A}$ let $J_{n}^{A}=\left\{i \leq n: X_{i} \in A\right\}$ and define a random partition of $[n]$ by $\mathcal{J}_{n}^{\mathcal{A}}=\left\{J_{n}^{A} \neq \emptyset: A \in \mathcal{A}\right\}$.
We say that this partition of $[n]$ is induced by \mathcal{A}.
$\longrightarrow \mathcal{J}_{7}^{\mathcal{A}}=\{\{1\},\{2,7\},\{3,4,6\},\{5\}\}$

The function Δ

Let Δ be the function on the space of finite families of measurable sets defined by

$$
\Delta(\mathcal{A})=\frac{1}{2} \underbrace{\sum_{A \in \mathcal{A}} P(A)\left\|\Sigma^{-1 / 2} \mathbb{E}(X \mid X \in A)\right\|^{2}}_{\text {variance of CEV }}+\underbrace{\sum_{A \in \mathcal{A}} P(A) \ln P(A)}_{\text {-entropy of CEV }} .
$$

Consider $X_{1}, X_{2}, \ldots \stackrel{\text { iid }}{\sim} P$. Then
$\sqrt[n]{\text { posterior score of } \mathcal{J}_{n}^{\mathcal{A}}} \approx n \exp \{\Delta(\mathcal{A})\}$
Let $\hat{\mathcal{A}}_{n}$ be the family of the convex hulls of clusters in $\hat{\mathcal{J}}_{n}=\hat{\mathcal{J}}\left(X_{1}, \ldots, X_{n}\right)$. $\sqrt[n]{\text { posterior score of } \hat{\mathcal{J}}_{n}} \approx n \exp \left\{\Delta\left(\hat{\mathcal{A}}_{n}\right)\right\}$

Result 3. The MAP asymptotic

Assume that P has bounded support and is continuous with respect to Lebesgue measure. Then the distance between $\hat{\mathcal{A}}_{n}$ and the set of partitions that maximise the function Δ converges to 0 .

Result 4. The force of Σ

Assume that P has bounded support and is continuous with respect to Lebesgue measure. Then for every $K \in \mathbb{N}$ there exists an $\varepsilon>0$ such that if $\|\Sigma\|<\varepsilon$ then $\left|\hat{\mathcal{J}}_{n}\right|>K$ for sufficiently large n.

$\alpha=1, T=I d, \Sigma=\sigma^{2} I d$, where $\sigma^{2} \in\{.1, .01, .0025\}$

What's next?

1. 'Limit' result and unbounded support of P

- the possibility of small probability clusters distant from 0 , unbounded \# of clusters
- no chance of convergence in Hausdorff metric, perhaps only d_{P}

2. Prior on the covariance structure

- we may put Wishart distribution on covariance parameter
- preliminary computations for induced partitions give

$$
\Delta^{\prime}(\mathcal{A})=-\frac{1}{2} \sum p_{A} \ln \operatorname{det}(\operatorname{Var}(X \mid X \in A))-\sum p_{A} \ln p_{A}
$$

- more difficult to relate induced partitions to the MAP

