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The Bayesian Adaptive Independence Sampler (BAIS) [5] is a population MCMC algorithm consisting of N independence samplers run in parallel, all with a common proposal density. The
proposal is a multivariate normal distribution N (µ,Σ) that adapts at each iteration to progressively improve sampler performance. Adaptation is achieved by drawing parameters µ and Σ
from a posterior distribution p(µ,Σ|x1, . . . , xN) using a Bayesian model applied to the current N independence samples (x1, . . . , xN). The distribution to be sampled is thus a product of
p(µ,Σ|x1, . . . , xN) and N independent replications of the target f (x). Hence, the adaptation can be continued indefinitely.
Independence samplers work best when the proposal approximates the target distribution. Consequently, BAIS is not an efficient sampling strategy for multimodal distributions that are
poorly approximated by a multivariate normal. Here we generalise BAIS to allow the proposal to be a finite mixture of K multivariate normal distributions. This is done by augmenting
each independence sampler with a latent variable, a strategy we call Bayesian Adaptive Independence Sampling with Latent variables (BAIS+L).
In this work we describe the significant practical and computational problems that arise in implementing BAIS+L, and discuss exact and approximate strategies for solving these problems.
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An Approximate Sampler

.

The Bayesian Adaptive Independence Sampler with La-
tent variables (BAIS+L), outlined in Algorithm 1 up-
dates K means µk and covariances matrices Σk follow-
ing [2, pp. 86–87]. As in [2] µ0 is the prior mean, ν0,
and Λ0, are the prior degrees of freedom and prior scale
on the distribution of each Σk, respectively, and κ0 is
the prior number of observations of the scale of each Σk.
An exact acceptance ratio α for this approach involves
an intractable quantity. Therefore, BAIS+L uses an
approximate ratio, which leads to the stationary distri-
bution being an approximation of the intended target.

Algorithm 1 BAIS+L
1: for Iteration t = 1 to t = T do
2: for Mixture component k = 1 to k = K do
3: Compute ok then x̄k then Sk.
4: Generate Σk then µk.
5: end for
6: Generate (π1, . . . , πK).
7: for Sampling chain n = 1 to n = N do
8: Propose w ∼ Categorical(π1, . . . , πK)
9: propose y ∼ N (µw,Σw).
10: Compute α and generate u ∼ U(0, 1).
11: if u ≤ α then
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16: end for
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π = (π1, . . . , πK) ∼ Dirichlet(o1 + 1, . . . , oK + 1)
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where Ik(a) = 1 if a = k and 0 otherwise.
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Lemma

.

A population of samples, generated with a
Metropolis-Hastings [6, 3] sampler that updates each
element of the population using a transition kernel,
with parameters dependent only on the remaining
elements and a standard Metropolis-Hastings accep-
tance ratio, will have the desired target as its station-
ary distribution [1].
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An Exact Sampler

.The Bayesian Adaptive Mixture Independence Sam-
pler (BAMIS), outlined in Algorithm 2, is justified
the preceding Lemma, thus avoiding the need to in-
troduce approximations, as in BAIS+L.

Algorithm 2 BAMIS
1: for Iteration t = 1 to t = T do
2: for Sampling chain n = 1 to n = N do
3: for Mixture component k = 1 to k = K do
4: Compute ok then x̄k then Sk.
5: Generate Σk and µk as for BAIS+L.
6: end for
7: Generate (π1, . . . , πK) as for BAIS+L.
8: Propose w ∼ Categorical(π1, . . . , πK).
9: Propose y ∼ N (µw,Σw).
10: Compute α as for BAIS+L.
11: Generate u ∼ U(0, 1).
12: if u ≤ α then
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16: end if
17: end for
18: end for
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Comparing Approaches

.

Scatter plots of the mean convergence time (top-left) and the
mean ratio of the effective number of samples to the total
number of samples (top-right) of a 5D quartic function [4, 7]
on x ∈ [−1.28, 1.28]5,

f ({x1, . . . , x5}) =
5∑

d=1

(ix2d + η), η ∼ U [0, 1),

with K = 6, suggest that BAIS+L produces faster conver-
gence and mixing than BAMIS but that this improvement
diminishes with N .
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The difference between BAIS+L and BAMIS estimates of
the first four central moments in each dimension (X̄ , middle-
left) decreased with N , especially for large K. This sug-
gests that the stationary distributions of the two samplers
approach each other as N increases.
The bottom two contour plots show kernel density esti-
mates of Shekel’s foxholes [4, 7] without the top-right hole
on x ∈ [−65.536, 65.536]2 (true contour, middle-right).
We generated these examples with the default kde2d func-
tion from R’s [8] MASS library [9] from a poor BAIS+L
run with K = 6, N = 40 and a good BAMIS run with
K = 4, N = 80. The reduction in density around the edges
of the sampled domain is due to the use of a normal kernel
in the density estimation.
A cursory glance over multiple such simulations suggested
that BAIS+L and BAMIS performed comparably, with a
larger N generally producing a clearer representation of the
target for any K with each sampler (not shown).
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