
Main Topic: How to Optimise MCMC Choices?

In theory, MCMC works with essentially any update rules, as long
as they leave ⇡ stationary.

• Any symmetric proposal distribution Q. (Choices!)

• Non-symmetric proposals, with a suitably modified acceptance
probability. (“Metropolis-Hastings”) (e.g. Independent, Langevin)

• Update one coordinate at a time. (“Componentwise”)

• Update from full conditional distributions. (“Gibbs Sampler”)

But what choice works best? e.g. What � in [APPLET]?

• If � too small (say, � = 1), then usually accept, but move very
slowly. (Bad.)

• If � too large (say, � = 50), then usually ⇡(Yn+1) = 0, i.e.
hardly ever accept. (Bad.)

• Best � is between the two extremes, i.e. acceptance rate
should be far from 0 and far from 1. (“Goldilocks Principle”)

(21/54)

Example: Metropolis for N(0,1)

Target ⇡ = N(0, 1). Proposal Q(x , ·) = N(x ,�2).

How to choose �? Big? Small? What acceptance rate (A.R.)?

� = 0.1? � = 25? � = 2.38?
too small! too big! just right!

A.R. = 0.962 A.R. = 0.052 A.R. = 0.441

The Goldilocks Principle in action!

What about higher-dimensional examples? If d increases, then �
should: decrease. But how quickly? On what scale? Theory?

(22/54)

Theoretical Progress: Di↵usion Limits

Recall: if {Xn} is simple random walk, and Zt = d�1/2Xdt (i.e., we
speed up time, and shrink space), then as d ! 1, the process
{Zt} converges to Brownian motion (i.e., a di↵usion). [GRAPHS]

Do similar limits hold for a Metropolis algorithm, in dimension d ,
as d ! 1? Yes!

(23/54)

Di↵usion Limits for the Metropolis Algorithm

[Roberts, Gelman, Gilks, AAP 1997]

• Consider a d-dimensional Metropolis algorithm {X d
t }t�0, with

proposal distribution N(x , (`2/d)Id) for some fixed ` > 0 (i.e.,
with proposal size shrinking as 1/

p
d).

• Assume it starts in stationarity, i.e. X d
0 ⇠ ⇡.

• Let Ud
t = X d

PP(td),1 be the first component of the algorithm,

at time t ⇥ d (i.e., Ud is sped up by a factor of d , and is converted
to continuous-time via a Poisson Process).

• Assume (for now) that the target density ⇡d takes on a very
special/unrealistic form, namely ⇡d(x) =

Qd
i=1 f (xi) where f is a

fixed positive one-dimensional well-behaved (i.e., f 0/f Lipschitz,
Ef [(f 0/f)8] < 1, Ef [(f 00/f)4] < 1) density function.

• Then as d ! 1, the process Ud converges (weakly, in the
Skorokhod topology) to a fixed one-dimensional di↵usion
process U, defined by . . .

(24/54)

Di↵usion Limits for Metropolis (cont’d)

• This limiting process U has dynamics

dUt =
p
h(`) dBt + h(`)

f 0(Ut)

2 f (Ut)
dt ,

where h(`) = 2 `2�(�`
p
I /2) with �(y) =

R y
�1

1p
2⇡
e�z2/2dz

and I = Ef [(f 0/f)2].

• The process U is thus a Langevin di↵usion, with stationary
density f , and “speed” h(`).

• Indeed, equivalently, Ut = Vh(`) t is a speeded up (by a factor
of h(`)) version of a Langevin di↵usion V of unit speed, satisfying

dVt = dBt +
f 0(Vt)

2 f (Vt)
dt .

• So, to optimise the algorithm, we should maximise h(`).

• The maximisation gives: `opt
.
= 2.38/

p
I.

• Then we compute that: AR(`opt)
.
= 0.234. (constant!)

(25/54)

Di↵usion Limits for Metropolis (cont’d)

• So, for a Metropolis algorithm in d dimensions, with
Q(x , ·) = N(x ,�2Id), it is optimal to choose �2 = `2opt / d.
= (2.38)2 / Id , corresponding to an (optimal) acceptance rate of
0.234. Clear, simple “0.234” rule. Good! Useful! (Used in BUGS!)

• The unrealistic form of ⇡d was later generalised to:
inhomogeneous product form (Bédard & R., CJS 2008),
infinite-dimensional absolutely continuous distributions (Stuart et
al.), discrete hypercubes (Roberts, Stoch Rep 1998), spherical
targets (Neal and Roberts, MCAP 2008), elliptically symmetric
targets (Sherlock and Roberts, Bernoulli 2009), and discontinuous
targets (Neal et al., AAP 2012).

• Numerical studies (e.g. Roberts and R., Stat Sci 2001): same
optimality appears to “approximately” hold for more general ⇡d .

• Di↵erent optimal AR of 0.574 for Langevin di↵usion
algorithms (Roberts & R., JRSSB 1998).

(26/54)

New Generalisations?

(Yang, Negrea, Roberts, R., work in progress)

In the original RGG result, the unrealistic i.i.d. nature of ⇡d was
used to apply Laws of Large Numbers when taking limits of the
generators of the processes Ud .

Can the same proof techniques be used under weaker conditions?

It appears that if, as d ! 1:

• in ⇡d , the dependence of x1 on x2, . . . , xd goes to zero, and

• ⇡d and its derivatives satisfy strong moment order bounds,

then di↵usion limits similar to the i.i.d. case still hold.

In particular, 0.234 is still the optimal acceptance rate.

Anyway, 0.234 is a very useful rule of thumb.

But it is just a “one-dimensional” guideline.

What about further optimality, beyond “0.234”?
(27/54)

Example: ⇡ = N(0,⌃) in dimension 20

First try: Q(x , ·) = N(x , I20) (A.R. = 0.006)

Horrible: ⌃11 = 24.54, E (X 2
1) = 1.50. Need smaller proposal! (28/54)

Second try: Q(x , ·) = N
⇣
x , (0.0001)2I20

⌘
(A.R.=0.9996)

Also horrible: ⌃11 = 24.54, E (X 2
1) = 0.0053.

Need bigger proposal!
(29/54)

Third try: Q(x , ·) = N
⇣
x , (0.02)2I20

⌘
(A.R.=0.234)

Still terrible: ⌃11 = 24.54, E (X 2
1) = 3.63.

But acceptance rate is “just right”. What gives?
(30/54)

Fourth try: Q(x , ·) = N
⇣
x , [(2.38)2/20]⌃

⌘
(A.R.=0.263)

Much better: ⌃11 = 24.54, E (X 2
1) = 25.82.

Not perfect, but fairly good. Why?
(31/54)

Optimising the Proposal Covariance (Shape)

Theorem [Roberts and R., Stat Sci 2001]: If ⇡ is any orthogonal
transform of any density satisfying the RGG conditions, then the
optimal Gaussian proposal distribution as d ! 1 is:

Q(x , ·) = N
⇣
x , [(2.38)2/d]⌃t

⌘

where ⌃t is the target covariance. (Not N(x , �2Id).)

So, want proposal covariance proportional to target covariance!

The corresponding asymptotic acceptance rate is again 0.234.

This turns out to be nearly optimal for many other high-
dimensional densities, too. Very useful advice . . . if ⌃t is known!

But what if the target covariance ⌃t is unknown?

Can we make use of this optimality result anyway?

Perhaps . . . if we “adapt” . . . (coming soon!).

(32/54)

Implications for Computational Complexity

• Above results say, if we speed up the Metropolis algorithm by
a factor of O(d), then it converges to a dimension-free di↵usion,
and hence must converge in time O(1).

• So, this seems to imply that Metropolis converges in O(d).
Right?

• Problem #1: Result is only for very special forms of the target
⇡. (But we’re working to generalise this!)

• Problem #2: Result just gives weak convergence, not total
variation distance. (But we can work with that!)

• Problem #3: How to define computational complexity on
continuous unbounded state spaces? What initial distribution
should be used? (Can’t use “worst case”.)

What to do?

(33/54)

Weak Convergence Complexity Result

• Use the Kantorovich-Rubinstein (KR) distance measure,

kLx(Xt)� ⇡kKR := sup
f 2Lip11

���Ex [f (Xt)� ⇡(f)
���

where Lip11 = {f : X ! R, |f (x)| 1, |f (x)� f (y)| dist(x , y)},
which metricises weak convergence.

• And average over starting values X0 ⇠ ⇡, i.e. use

EX0⇠⇡kLX0(Xt)� ⇡kKR :=

Z

x2X
⇡(dx) kLx(Xt)� ⇡kKR .

• Theorem [Roberts and Rosenthal, JAP 2016]: If X (d) ! X (1)

weakly, for any choice of X (d)
0 , and X (1) is càdlàg (or continuous),

and X (1) ! ⇡, then E
X

(d)
0 ⇠⇡

kL
X

(d)
0
(X (d)

t)� ⇡kKR ! 0 in O(1)

time, i.e. for any ✏ > 0, there are D < 1 and T < 1 such that

E
X

(d)
0 ⇠⇡

kL
X

(d)
0
(X (d)

t)� ⇡kKR < ✏ , 8 t � T , d � D .
(34/54)

Computational Complexity of Metropolis

• Combining this complexity result with the Metropolis weak
convergence results immediately shows that:

– The speeded-up processes Ud
t converge to ⇡ in O(1) time.

• But Ud
t equals the original Metropolis algorithm’s first

coordinate process X d
n,1, sped up by a factor of d .

• Hence, the original Metropolis algorithm’s first coordinate
process X d

n,1 must converge to ⇡ in O(d) time.

• Hence, the Metropolis algorithm converges (coordinatewise at
least) in time O(d). Right?

• One technicality: we need weak convergence from any starting
point X0, not from stationarity X0 ⇠ ⇡ . . . but that also holds if
the powers of the target density f in the moment assumptions are
increased slightly (from 8 and 4, to 12 and 6). Phew!

• Also, still requires unrealistic conditions on ⇡ . . . but we’re
working on that. Then have: convergence in O(d) iterations!

(35/54)

How to Use the Optimality Information?

Recall: We have guidance about optimising MCMC in terms of
acceptance rate, target covariance matrix ⌃t , etc.

In particular:

1. Want acceptance rate around 0.234.

2. Optimal Gaussian RWM proposal is N
⇣
x , (2.38)2 d�1⌃t

⌘
,

where ⌃t is the covariance matrix of the target ⇡.

Great, except . . . we don’t know what proposal will lead to a
desired acceptance rate. And, we don’t know how to compute ⌃t .

So, what to do?

Trial and error? (di�cult, especially in high dimension)

Or . . . let the computer decide, on the fly!

(36/54)

