Theoretical Properties of Quasistationary Monte Carlo Methods

Andi Wang

University of Oxford

a.wang@stats.ox.ac.uk

Joint with Divakar Kumar, Gareth Roberts and David Steinsaltz

11 July 2018

Quasistationary MC

Let $X = (X_t)$ be an ant undergoing a diffusion on \mathbb{R}^d . Introduce killing rate

$$\kappa: \mathbb{R}^d \to [0,\infty).$$

At rate $\kappa(X_t)$ the ant is *killed*; call this time τ_{∂} .

Let $X = (X_t)$ be an ant undergoing a diffusion on \mathbb{R}^d . Introduce killing rate

$$\kappa: \mathbb{R}^d \to [0,\infty).$$

At rate $\kappa(X_t)$ the ant is *killed*; call this time τ_{∂} .

We will consider $\mathbb{P}_{x}(X_{t} \in \cdot | \tau_{\partial} > t)$ for large t.

Let $X = (X_t)$ be an ant undergoing a diffusion on \mathbb{R}^d . Introduce killing rate

$$\kappa: \mathbb{R}^d \to [0,\infty).$$

At rate $\kappa(X_t)$ the ant is *killed*; call this time τ_{∂} .

We will consider $\mathbb{P}_{x}(X_{t} \in \cdot | \tau_{\partial} > t)$ for large *t*.

If these converge to π as $t \to \infty$, π is an example of a *quasistationary* distribution.

Example

Take X to be a standard Brownian motion on \mathbb{R}^2 , $\kappa(y) = ||y||^2$.

Example

Take X to be a standard Brownian motion on \mathbb{R}^2 , $\kappa(y) = ||y||^2$.

Example

Take X to be a standard Brownian motion on \mathbb{R}^2 , $\kappa(y) = ||y||^2$.

What can be said about $\mathbb{P}(X_t \in \cdot \mid \tau_\partial > t)$ for large t?

Andi Wang (Oxford)

Quasistationary MC

11 July 2018 3 / 10

Quasistationary Monte Carlo methods aim to sample from a target distribution π , where π is a quasistationary distribution.

¹Pollock, M., Fearnhead, P., Johansen, A. M., Roberts, G. O. (2016). The Scalable Langevin Exact Algorithm: Bayesian Inference for Big Data. arXiv Preprint: arXiv 1609.03436.

Quasistationary Monte Carlo methods aim to sample from a target distribution π , where π is a quasistationary distribution.

The quasistationary framework enables the principled use of *subsampling* techniques to give exact Bayesian inference with a sub-linear cost in the number of observations¹.

¹Pollock, M., Fearnhead, P., Johansen, A. M., Roberts, G. O. (2016). The Scalable Langevin Exact Algorithm: Bayesian Inference for Big Data. arXiv Preprint: arXiv 1609.03436.

$$\mathrm{d}X_t =
abla A(X_t) \,\mathrm{d}t + \mathrm{d}W_t, \quad X_0 = x \in \mathbb{R}^d.$$

Theorem (Convergence to Quasistationarity)

Under certain assumptions, the diffusion X killed at rate κ has quasilimiting distribution π . That is, for each measurable $E \subset \mathbb{R}^d$ we have as $t \to \infty$,

$$\mathbb{P}_{x}(X_{t} \in E | \tau_{\partial} > t) \rightarrow \pi(E).$$

$$\mathrm{d}X_t =
abla A(X_t) \,\mathrm{d}t + \mathrm{d}W_t, \quad X_0 = x \in \mathbb{R}^d.$$

Theorem (Convergence to Quasistationarity)

Under certain assumptions, the diffusion X killed at rate κ has quasilimiting distribution π . That is, for each measurable $E \subset \mathbb{R}^d$ we have as $t \to \infty$,

$$\mathbb{P}_{x}(X_{t} \in E | \tau_{\partial} > t) \rightarrow \pi(E).$$

Theorem (Rates of convergence)

Additionally, X converges to quasistationarity π at the same rate as the Langevin diffusion targeting $\pi^2/2A$ converges to stationarity.

Suppose we have a killed diffusion X with quasilimiting distribution π . So $\mathbb{P}(X_t \in \cdot | \tau_\partial > t) \to \pi$. How might we simulate try to simulate π ?

Suppose we have a killed diffusion X with quasilimiting distribution π . So $\mathbb{P}(X_t \in \cdot | \tau_\partial > t) \to \pi$. How might we simulate try to simulate π ? Q Rejection sampling. Infeasible. Suppose we have a killed diffusion X with quasilimiting distribution π . So $\mathbb{P}(X_t \in \cdot | \tau_\partial > t) \to \pi$. How might we simulate try to simulate π ?

- Rejection sampling. Infeasible.
- 2 Continuous-time sequential Monte Carlo. Feasible but involved.

Suppose we have a killed diffusion X with quasilimiting distribution π . So $\mathbb{P}(X_t \in \cdot | \tau_\partial > t) \to \pi$. How might we simulate try to simulate π ?

- Rejection sampling. Infeasible.
- 2 Continuous-time sequential Monte Carlo. Feasible but involved.
- 8 ReScaLE: a stochastic approximation approach.

An Example ReScaLE Trajectory

Andi Wang (Oxford)

Quasistationary MC

11 July 2018 7 / 10

Does this algorithm converge to the quasistationary distribution π ?

Does this algorithm converge to the quasistationary distribution π ?

Theorem (Convergence in compact setting)

When the state space is compact, we have that (after time-changing) (μ_t) is an *asymptotic pseudo-trajectory* for a deterministic semiflow Φ almost surely.

It follows that μ_t converges to π almost surely.

Does this algorithm converge to the quasistationary distribution π ?

Theorem (Convergence in compact setting)

When the state space is compact, we have that (after time-changing) (μ_t) is an *asymptotic pseudo-trajectory* for a deterministic semiflow Φ almost surely.

It follows that μ_t converges to π almost surely.

Conjecture (General setting)

We should have that the Proposition holds much more generally: non-compact state space, unbounded killing rate.

Logistic regression example (courtesy of D. Kumar)

If you are interested to learn more, come see my poster!

- Wang, A.Q., Kolb, M., Roberts, G.O. and Steinsaltz, D. (2017) Theoretical Properties of Quasistationary Monte Carlo Methods. arXiv 1707.08036. In revision, Annals of Applied Probability.
- Wang, A.Q., Roberts, G.O. and Steinsaltz, D. Stochastic Approximation of Quasistationary Distributions of Killed Diffusions on Compact Spaces. *In preparation.*