utline	Stochastic Perpetuity	Markov Chain	Dominating Process	References
00000000	000	0000	000000	

Exact Simulation of the Supremum of a Stable Process

Jorge González Cázares^{1 2}

Talk for LMS Invited Lecture Series and CRISM Summer School in Computational Statistics 2018

July 10, 2018

¹King's College London and The Alan Turing Institute

² Joint work with: Aleksandar Mijatović & Gerónimo=Uribe Bravo> (=> = -) ۹ (

Supremum of Stable Processes (slide 1)

Outline •00000000	Stochastic Perpetuity 000 00	Markov Chain 0000 0	Dominating Process	References

The Problem

- Simulation of the supremum of Lévy processes is a tough problem:
 - Few cases with exact simulation in the infinite activity case (even worse for the infinite variation case!)
 - It is not known how good discretisations are.

Outline •00000000	Stochastic Perpetuity 000 00	Markov Chain 0000 0	Dominating Process	References

The Problem

- Simulation of the supremum of Lévy processes is a tough problem:
 - Few cases with exact simulation in the infinite activity case (even worse for the infinite variation case!)
 - It is not known how good discretisations are.

Stable processes:

- Often used as classical examples because their self-similarity often allow for closed form formulas.
- Even here, only spectrally one-sided cases seem feasible from the literature [BDP11]

Outline	Stochastic Perpetuity	Markov Chain	Dominating Process	References
000000000	000	0000	000000	

The Ingredients and the Strategy

- ▲日 > ▲ 国 > ▲ 国 > ▲ 国 > ろんら

Supremum of Stable Processes (slide 3)

Outline 000000000	Stochastic Perpetuity 000 00	Markov Chain 0000 0	Dominating Process	References

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ●

Supremum of Stable Processes (slide 4)

Outline 000000000	Stochastic Perpetuity 000 00	Markov Chain 0000 0	Dominating Process	References

▲ロト ▲母 ▶ ▲目 ▶ ▲目 ▶ ● 日 ● ● ●

Supremum of Stable Processes (slide 5)

Outline 000000000	Stochastic Perpetuity 000 00	Markov Chain 0000 0	Dominating Process	References

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 ろん⊙

Supremum of Stable Processes (slide 6)

Outline 0000000000	Stochastic Perpetuity 000 00	Markov Chain 0000 0	Dominating Process	References

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 ろん⊙

Supremum of Stable Processes (slide 7)

Outline 000000●000	Stochastic Perpetuity 000 00	Markov Chain 0000 0	Dominating Process	References

Supremum of Stable Processes (slide 8)

Outline 0000000●00	Stochastic Perpetuity 000 00	Markov Chain 0000 0	Dominating Process	References

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Supremum of Stable Processes (slide 9)

Outline	Stochastic Perpetuity	Markov Chain	Dominating Process	References
0000000000	000	0000	000000	

The Ingredients and the Strategy

Supremum of Stable Processes (slide 10)

Outline	Stochastic Perpetuity	Markov Chain	Dominating Process	References
00000000	000	0000	000000	

Outline of the Talk

Stochastic Perpetuity

Markov Chain

Dominating Process

▲□▶▲□▶▲≡▶▲≡▶ ≡ めへの

Supremum of Stable Processes (slide 11)

Outline 0000000000	Stochastic Perpetuity	Markov Chain 0000 0	Dominating Process	References

Preliminary

Stable Processes

Using Zolotarev's (C) form, given any $\alpha \in (0,2]$ and any skewness parameter $\beta \in [-1,1]$

$$\rho = \mathbb{P}(Y_1 > 0) = \frac{\theta + 1}{2}, \quad \theta = \beta\left(\frac{\alpha - 2}{\alpha}\mathbf{1}_{\alpha > 1} + \mathbf{1}_{\alpha \le 1}\right),$$

then

$$\log\left(\mathbb{E}\left(e^{itY_{1}}\right)\right) = -\left|t\right|^{\alpha}e^{-i\frac{\pi\alpha}{2}\theta\operatorname{sgn}(t)}.$$

Outline 000000000	Stochastic Perpetuity 000 00	Markov Chain 0000 0	Dominating Process	References
Preliminary				

Concave Majorant

Fix a Lévy process $\{Y_t\}$. Its concave majorant is the (random) smallest concave function $\{C_t\}$ that dominates $\{Y_t\}$.

Outline 000000000	Stochastic Perpetuity 00● 00	Markov Chain 0000 0	Dominating Process	References
Preliminary				

Concave Majorant

Fix a Lévy process $\{Y_t\}$. Its concave majorant is the (random) smallest concave function $\{C_t\}$ that dominates $\{Y_t\}$.

Outline 000000000	Stochastic Perpetuity	Markov Chain 0000 0	Dominating Process	References
Stochastic Perpetuity				

Concave Majorant

Discover the faces of C independently at random, uniformly on lengths. Then the faces satisfy [PUB12]:

$$\left\{\left(d_{n}-g_{n},C_{d_{n}}-C_{g_{n}}\right)\right\}_{n}\stackrel{d}{=}\left\{\left(\ell_{n},Y_{L_{n}}-Y_{L_{n-1}}\right)\right\}_{n}\stackrel{d}{=}\left\{\left(\ell_{n},\ell_{n}^{\frac{1}{\alpha}}Z_{n}\right)\right\}_{n},$$

for independent iid $U_n \sim U(0,1)$, $\ell_n = U_n(1 - L_{n-1})$, and $L_n = \sum_{i=1}^{n-1} \ell_i$ (stick-breaking process) and an independent iid sequence $Z_n \stackrel{d}{=} Y_1$. Then $\overline{Y}_1 := \sup_{t \in [0,1]} Y_t$ satisfies

$$\overline{Y}_{1} = \sum_{n=1}^{\infty} \ell_{n}^{\frac{1}{\alpha}} Z_{n}^{+} = \ell_{1}^{\frac{1}{\alpha}} Z_{1}^{+} + (1 - \ell_{1})^{\frac{1}{\alpha}} \sum_{n=2}^{\infty} \left(\frac{\ell_{n}}{1 - \ell_{1}}\right)^{\frac{1}{\alpha}} Z_{n}^{+}$$

$$\stackrel{d}{=} U^{\frac{1}{\alpha}} \overline{Y}_{1} + (1 - U)^{\frac{1}{\alpha}} Z_{1}^{+}.$$

Outline 000000000	Stochastic Perpetuity ○○○ ○●	Markov Chain 0000 0	Dominating Process	References
Stochastic Perpetuity				

Stochastic Perpetuity

Let $S^+(\alpha, \rho)$ and $\overline{S}(\alpha, \rho)$ be the laws of Y_1 conditioned on being positive and of \overline{Y}_1 respectively. Then, the relation for the faces of C and the scaling property of stable processes then yield [GCMUB18]:

$$\overline{\mathbf{Y}}_{\mathbf{1}} \stackrel{d}{=} \left(1 + B\left(V^{\frac{1}{\alpha\rho}} - 1\right)\right) \left(U^{\frac{1}{\alpha}}\overline{\mathbf{Y}}_{\mathbf{1}} + (1 - U)^{\frac{1}{\alpha}}S\right),$$

where $(B, U, V, S, \zeta) \sim Ber(\rho) \times U(0, 1)^2 \times S^+(\alpha, \rho) \times \overline{S}(\alpha, \rho)$. And $\overline{S}(\alpha, \rho)$ is the unique solution.

Outline 0000000000	Stochastic Perpetuity 000 00	Markov Chain ●000 ○	Dominating Process	References
Update Function				

First Update Function

Let Θ = (U, W, Λ, S) for an independent W ~ U(0, 1). Then the perpetuity may be summarised as

$$\overline{\mathbf{Y}}_{\mathbf{1}} \stackrel{d}{=} \phi\left(\overline{\mathbf{Y}}_{\mathbf{1}}, \Theta\right),$$

where $\Lambda = 1 + B\left(V^{1/
ho} - 1
ight)$ and

$$\phi(\mathbf{x},\theta) = \lambda^{\frac{1}{\alpha}} \left(u^{\frac{1}{\alpha}} \mathbf{x} + (1-u)^{\frac{1}{\alpha}} \mathbf{s} \right).$$

Consider the functions

$$\begin{aligned} \mathbf{a}\left(\theta\right) &= \left(\lambda^{-\frac{1}{\alpha}} - 1\right) u^{-\frac{1}{\alpha}} \left(1 - u\right)^{\frac{1}{\alpha}} \mathbf{s}, \\ \psi\left(\mathbf{x}, \theta\right) &= \mathbf{1}_{\left\{\mathbf{x} \leq \mathbf{a}(\theta)\right\}} w^{\frac{1}{\alpha\rho}} \left(1 - u\right)^{\frac{1}{\alpha}} \mathbf{s} + \mathbf{1}_{\left\{\mathbf{x} > \mathbf{a}(\theta)\right\}} \phi\left(\mathbf{x}, \theta\right). \end{aligned}$$

Outline 0000000000	Stochastic Perpetuity 000 00	Markov Chain ○●○○ ○	Dominating Process	References
· · · · · · · · · · · · · · · · · · ·				

Update Function

Update Functions

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - つへで

Supremum of Stable Processes (slide 18)

Outline 0000000000	Stochastic Perpetuity 000 00	Markov Chain oo●o ○	Dominating Process	References
Update Function				

Update Functions

Supremum of Stable Processes (slide 19)

Outline 0000000000	Stochastic Perpetuity 000 00	Markov Chain ○○○● ○	Dominating Process	References

Update Function

Second Update Function

• Then
$$X \sim \overline{S}(\alpha, \rho)$$
 is the unique solution to

$$X\stackrel{d}{=}\psi(X,\Theta).$$

The difference between φ and ψ is that the latter has positive probability of ignoring the specific value of X.

Outline 000000000	Stochastic Perpetuity 000 00	Markov Chain ○○○○ ●	Dominating Process	References
Mada Chair				
IVIARKOV Chain				

Markov Chain

Consider a Markov chain on stationarity $\{X_n\}_{n\in\mathbb{Z}}$ driven by the i.i.d. sequence $\{\Theta_n\}_{n\in\mathbb{Z}}$ satisfying

$$X_{n+1}\stackrel{d}{=}\psi\left(X_n,\Theta_n\right).$$

If we were able to find a time $-\tau < 0$ such that $X_{-\tau} \leq a(\Theta_{-\tau})$, then

$$X_{0} = \underbrace{\psi\left(\cdots\psi\left(W_{-\tau}^{\frac{1}{\alpha\rho}}\left(1-U_{-\tau}\right)^{\frac{1}{\alpha}}S_{-\tau},\Theta_{-\tau+1}\right),\cdots,\Theta_{-1}\right)}_{\tau-1 \text{ times}},$$

◆□ ◆ □ ◆ □ ◆ □ ◆ □ ◆ □ ◆

so we can compute $X_0 \sim \overline{S}(\alpha, \rho)$ from $\{\Theta_n\}_{n \in \{-\tau, \dots, -1\}}$.

Supremum of Stable Processes (slide 21)

Outline 000000000	Stochastic Perpetuity 000 00	Markov Chain 0000 0	Dominating Process •00000	References
The Dominating Pro	cess			

Dominating Process

.....

Recall that if τ_n is the last time $\{X_{n-k} \leq a(\Theta_{n-k})\}$, then

$$\begin{split} X_n &= \sum_{k=\tau_n+1}^{n-1} e^{\frac{1}{\alpha} \sum_{j=k+1}^{n-1} \log(\Lambda_j U_j)} \Lambda_k^{\frac{1}{\alpha}} \left(1 - U_k\right)^{\frac{1}{\alpha}} S_k \\ &+ e^{\frac{1}{\alpha} \sum_{j=\tau_n+1}^{n-1} \log(\Lambda_j U_j)} W_{\tau}^{\frac{1}{\alpha \rho}} \left(1 - U_{\tau}\right)^{\frac{1}{\alpha}} S_{\tau} \\ &\leq e^{R_n} \sum_{k=-\infty}^{n-1} e^{-(n-1-k)d} (1 - U_k)^{\frac{1}{\alpha}} S_k \\ &\leq e^{R_n} \left(\frac{e^{(d-\delta)(\chi_n - n)}}{1 - e^{\delta - d}} + \sum_{k=\chi_n}^{n-1} e^{-(n-1-k)d} (1 - U_k)^{\frac{1}{\alpha}} S_k \right) =: D_n \end{split}$$

▲口▶▲圖▶▲圖▶▲圖▶ ■ のQの

Supremum of Stable Processes (slide 22)

Outline 0000000000	Stochastic Perpetuity 000 00	Markov Chain 0000 0	Dominating Process ○●○○○○	References

The Dominating Process

The Algorithm

1: Sample backwards in time $\{(D_n, \Theta_n)\}$ until $-\sigma$, the first time in which $\{D_n \leq a(\Theta_n)\}$

2: Put
$$X_{-\sigma+1} = \psi(a(\Theta_{-\sigma}), \Theta_{-\sigma})$$

- 3: Compute recursively $X_n = \psi(X_{n-1}, \Theta_{n-1})$
- 4: return X_0 \triangleright Here $X_0 \sim \overline{S}(\alpha, \rho)$

Outline 000000000	Stochastic Perpetuity 000 00	Markov Chain 0000 0	Dominating Process 00●000	References
The Dominating Pro	cess			

Sanity Check $(\alpha, \beta) = (1.3, -1)$

- Average sampling-time for each r.v.:0.011774 seconds
- ► Kolmogorov-Smirnov test *p*-value: 0.9213

Supremum of Stable Processes (slide 24)

Outline 000000000	Stochastic Perpetuity 000 00	Markov Chain 0000 0	Dominating Process	References
The Dominating Pro	cess			

Sanity Check $(\alpha, \beta) = (1.3, -1)$

- Average sampling-time for each r.v.:0.011774 seconds
- Kolmogorov-Smirnov test p-value: 0.9213

▲□▶▲□▶▲□▶▲□▶ ■ のの⊙

Outline 000000000	Stochastic Perpetuity 000 00	Markov Chain 0000 0	Dominating Process 0000€0	References

The Dominating Process

Discretisation $(\alpha, \beta) = (1.3, -1)$

Kolmogorov distances for N = 8,000 and 2,000 are 0.253 and 0.174 respectively

3

Supremum of Stable Processes (slide 26)

00000	
	00000

The Dominating Process

Discretisation $(\alpha, \beta) = (1.3, 1)$

Kolmogorov distances for N = 8,000 and 2,000 are 0.125 and 0.088 respectively

Outline 000000000	Stochastic Perpetuity 000 00	Markov Chain 0000 0	Dominating Process	References
References				

References

[BDP11] Violetta Bernyk, Robert C. Dalang, and Goran Peskir, Predicting the ultimate supremum of a stable Lévy process with no negative jumps, Ann. Probab. 39 (2011), no. 6, 2385–2423. MR 2932671

- [GCMUB18] Jorge I. González Cázares, Aleksandar Mijatović, and Gerónimo Uribe Bravo, *Exact simulation of the extrema of stable processes*.
 - [PUB12] Jim Pitman and Gerónimo Uribe Bravo, The convex minorant of a Lévy process, Ann. Probab. 40 (2012), no. 4, 1636–1674. MR 2978134