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The Problem

I Simulation of the supremum of Lévy processes is a tough
problem:
I Few cases with exact simulation in the infinite activity case

(even worse for the infinite variation case!)
I It is not known how good discretisations are.

I Stable processes:
I Often used as classical examples because their self-similarity

often allow for closed form formulas.
I Even here, only spectrally one-sided cases seem feasible from

the literature [BDP11]
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The Ingredients and the Strategy

MC {Xn}
with

stationary
law Y 1

Dominating
Process

Dn ≥ Xn

Detect
coalescence
time −σ

Sample X0
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The Main Idea
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The Ingredients and the Strategy

MC {Xn}
with

stationary
law Y 1

Update Function

Perpetuity Equation

Dominating
Process

Dn ≥ Xn

RW & Reflected Process

Exponential Bounds

Detect −σ Sample X0
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Outline of the Talk

Stochastic Perpetuity

Markov Chain

Dominating Process
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Preliminary

Stable Processes

Using Zolotarev’s (C) form, given any α ∈ (0, 2] and any skewness
parameter β ∈ [−1, 1]

ρ = P (Y1 > 0) = θ + 1
2 , θ = β

(
α− 2
α

1α>1 + 1α≤1

)
,

then
log
(
E
(
eitY1

))
= − |t|α e−i πα

2 θsgn(t).
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Preliminary

Concave Majorant
Fix a Lévy process {Yt}. Its concave majorant is the (random)
smallest concave function {Ct} that dominates {Yt}.

Yt

Ct

t
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g1

Cg1

d1

Cd1

t
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Stochastic Perpetuity

Concave Majorant
Discover the faces of C independently at random, uniformly on
lengths. Then the faces satisfy [PUB12]:

{(dn − gn,Cdn − Cgn )}n
d=
{(
`n,YLn − YLn−1

)}
n

d=
{(

`n, `
1
αn Zn

)}
n
,

for independent iid Un ∼ U (0, 1), `n = Un (1− Ln−1), and
Ln =

∑n−1
i=1 `i (stick-breaking process) and an independent iid

sequence Zn
d= Y1. Then Y 1 := supt∈[0,1] Yt satisfies

Y 1 =
∞∑

n=1
`

1
αn Z +

n = `
1
α
1 Z +

1 + (1− `1)
1
α

∞∑
n=2

(
`n

1− `1

) 1
α

Z +
n

d= U
1
α Y 1 + (1− U)

1
α Z +

1 .
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Stochastic Perpetuity

Stochastic Perpetuity

Let S+ (α, ρ) and S (α, ρ) be the laws of Y1 conditioned on being
positive and of Y 1 respectively. Then, the relation for the faces of
C and the scaling property of stable processes then
yield [GCMUB18]:

Y 1
d=
(
1 + B

(
V

1
αρ − 1

)) (
U

1
α Y 1 + (1− U)

1
α S
)
,

where (B,U,V , S, ζ) ∼ Ber (ρ)× U (0, 1)2 × S+ (α, ρ)× S (α, ρ).
And S (α, ρ) is the unique solution.
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Update Function

First Update Function
I Let Θ = (U,W ,Λ, S) for an independent W ∼ U (0, 1). Then

the perpetuity may be summarised as

Y 1
d= φ

(
Y 1,Θ

)
,

where Λ = 1 + B
(
V 1/ρ − 1

)
and

φ (x, θ) = λ
1
α

(
u

1
α x + (1− u)

1
α s
)
.

I Consider the functions

a (θ) =
(
λ−

1
α − 1

)
u−

1
α (1− u)

1
α s,

ψ (x, θ) = 1{x≤a(θ)}w
1

αρ (1− u)
1
α s + 1{x>a(θ)}φ (x, θ) .
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Update Function

Update Functions

φ(x , θ)

a(θ)

(1− u) 1
α s

x
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Update Function

Update Functions

φ(x , θ)
ψ(x , θ)

a(θ)
w

1
αρ (1− u) 1

α s

(1− u) 1
α s

x
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Update Function

Second Update Function

I Then X ∼ S (α, ρ) is the unique solution to

X d= ψ (X ,Θ) .

I The difference between φ and ψ is that the latter has positive
probability of ignoring the specific value of X .

Supremum of Stable Processes (slide 20)



Outline Stochastic Perpetuity Markov Chain Dominating Process References

Markov Chain

Markov Chain
Consider a Markov chain on stationarity {Xn}n∈Z driven by the
i.i.d. sequence {Θn}n∈Z satisfying

Xn+1
d= ψ (Xn,Θn) .

If we were able to find a time −τ < 0 such that X−τ ≤ a (Θ−τ ),
then

X0 = ψ

(
· · ·ψ︸ ︷︷ ︸

τ−1 times

(
W

1
αρ

−τ (1− U−τ )
1
α S−τ ,Θ−τ+1

)
, · · · ,Θ−1

)
,

so we can compute X0 ∼ S (α, ρ) from {Θn}n∈{−τ,...,−1}.
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The Dominating Process

Dominating Process
Recall that if τn is the last time {Xn−k ≤ a (Θn−k)}, then

Xn =
n−1∑

k=τn+1
e

1
α

∑n−1
j=k+1 log(Λj Uj )Λ

1
α
k (1− Uk)

1
α Sk

+ e
1
α

∑n−1
j=τn+1 log(Λj Uj )W

1
αρ
τ (1− Uτ )

1
α Sτ

≤ eRn
n−1∑

k=−∞
e−(n−1−k)d (1− Uk)

1
α Sk

≤ eRn

e(d−δ)(χn−n)

1− eδ−d +
n−1∑

k=χn

e−(n−1−k)d (1− Uk)
1
α Sk

 =: Dn
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The Dominating Process

The Algorithm

1: Sample backwards in time {(Dn,Θn)} until −σ, the first time
in which {Dn ≤ a(Θn)}

2: Put X−σ+1 = ψ(a(Θ−σ),Θ−σ)
3: Compute recursively Xn = ψ(Xn−1,Θn−1)
4: return X0 . Here X0 ∼ S(α, ρ)
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The Dominating Process

Sanity Check (α, β) = (1.3,−1)
I Average sampling-time for each r.v.:0.011774 seconds
I Kolmogorov-Smirnov test p-value: 0.9213
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The Dominating Process

Discretisation (α, β) = (1.3,−1)
I Kolmogorov distances for N = 8, 000 and 2, 000 are 0.253 and

0.174 respectively
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The Dominating Process

Discretisation (α, β) = (1.3, 1)
I Kolmogorov distances for N = 8, 000 and 2, 000 are 0.125 and

0.088 respectively
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