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Hypotheses and Data:

• Alvac had shown no effect

• Aidsvax had shown no effect

Question: Would Alvac as a primer and Aidsvax as a booster work?

The Study: Conducted in Thailand with 16,395 individuals from the
general (not high-risk) population:

• 71 HIV cases reported in the 8198 individuals receiving placebos

• 51 HIV cases reported in the 8197 individuals receiving the treatment
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The test that was likely performed:

• Let p1 and p2 denote the probability of HIV in the placebo and
treatment populations, respectively.

• Test H0 : p1 = p2 versus H1 : p1 > p2

(vaccines were not live, so p1 < p2 can probably be ignored)

• Normal approximation okay, so

z =
p̂1 − p̂2

σ{p̂1−p̂2}
=

.00866− .00622
.00134

= 1.82

is approximately N(θ, 1), where θ = (p1 − p2)/(.00134).
We thus test H0 : θ = 0 versus H1 : θ > 0, based on z.

• Observed z = 1.82, so the (one-sided) p-value is 0.034.
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Bayesian Analysis:

Prior distribution:

• Pr(Hi) = prior probability that Hi is true, i = 0, 1,

• On H1 : θ > 0, let π(θ) be the prior density for θ.

Note: H0 must be believable (at least approximately) for this to be
reasonable (i.e., no fake nulls).

Subjective Bayes: choose these based on personal beliefs

Objective (or default) Bayes: choose

• Pr(H0) = Pr(H1) = 1
2 ,

• π(θ) = Uniform(0, 6.46), which arises from assigning

– uniform for p2 on 0 < p2 < p1,
– plug in for p1 .
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Posterior probability of hypotheses:

Pr(H0|z) = probability that H0 true, given data z

=
f(z | θ = 0) Pr(H0)

Pr(H0) f(x | θ = 0) + Pr(H1)
∫∞
0

f(z | θ)π(θ)dθ

For the objective prior, Pr(H0 | z = 1.82) ≈ 0.337 (recall, p-value ≈ .034)

Posterior density on H1 : θ > 0 is

π(θ|z = 1.82,H1) ∝ π(θ)f(1.82 | θ) = (0.413)e−
1
2 (1.82−θ)2

for 0 < θ < 6.46.
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Robust Bayes: Report the Bayes factor (the odds of H0 to H1) as a
function of πC(θ) ≡ Uniform(0, C):

B01(C) =
likelihood of H0 for observed data

average likelihood of H1
=

1√
2π

e−(1.82)2/2

∫ C

0
1√
2π

e−(1.82−θ)2/2C−1dθ

.
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Note: minC B01(C) = 0.265 (while B01(6.46) = 0.51).
Note: This is the same Bayes factor envelope for nonincreasing priors.
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Outline

• Background on multiplicity

• Bayesian approach to control of multiplicity

• A simple example: multiple testing under exclusivity

• Variable selection (including comparison with empirical Bayes)

• Subgroup analysis
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Multiplicity Arising in SAMSI Programs

• Stochastic Computation / Data Mining and Machine Learning
– Example: Analysis of gene expression microarrays, with tests concerning

the mean differential expression, µi, of genes i = 1, . . . , 10, 000:

H0 : µi = 0 versus H1 : µi 6= 0 .

Multiplicity problem: Even if all µi = 0, one would find that roughly 500

tests reject at, say, level α = 0.05, so a correction for this effect is needed.

• National Defense and Homeland Security
– Example: In Syndromic Surveillance, many counties in the USA perform

daily tests on the ‘excess’ of some symptoms, the goal being early

detection of the outbreak of epidemics or of bio-terrorist attacks.

• Astrostatistics
– Example: 1.6 million tests of CMB radiation for non-Gaussianity in the

spatial distribution.

• Latent Variable Models in the Social Sciences
– Example: Variable selection in structural equation modeling
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• Multiplicity and Reproducibility in Scientific Studies

Additional motivations for the program:

– Multiplicity adjustment is often ignored, because of
∗ lack of understanding of the importance of the issue
· American Scientist (January 2007) article about personalized medicine

barely mentioned the problem.

· Nature (January 2007) article reviewing the status of personalized

medicine didn’t mention multiplicity at all.

∗ the lack of suitable adjustment methodology

– Indications of an increasing problem with reproducibility in science
∗ In the USA, drug compounds entering Phase I development today have

an 8% chance of reaching market, versus a 14% chance 15 years ago

∗ Even our most rigorously controlled statistical analyses do not seem

to be immune:

· 50% phase III failure rates are now being reported, versus a 20%

failure rate 10 years ago

· reports that 30% of phase III successes fail to replicate
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General Approach to Bayesian Multiplicity Adjustment

1. Represent the problem as a model uncertainty problem: Models Mi, with

densities fi(x | θi) for data x, given unknown parameters θi; prior

distributions πi(θi); and marginal likelihoods mi(x) =
∫

fi(x | θi)πi(θi)dθi.

2. Specify prior probabilities, P (Mi), of models to reflect the multiplicity
issues; Bayesian analysis controls multiplicity through P (Mi) a

• Subjective Bayesian Analysis: If the P (Mi) are real subjective

probabilities, or arise from subjective modeling of the probabilities, that’s

it: multiplicity correction has been done.

• Objective Bayesian Analysis: One has to be careful to make choices of the

P (Mi) that ensure multiplicity correction (e.g., specifying equal prior

probabilities does not generally control multiplicity)!

3. Implement Bayesian model averaging (model selection?), based on

P (Mi | x) =
P (Mi) mi(x)∑k

j=1 P (Mj) mj(x)
.

asee, e.g., Jeffreys 1961; Waller and Duncan 1969; Meng and Demptster 1987; Berry
1988; Westfall, Johnson and Utts 1997; Carlin and Louis 2000.
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Simple Example: Multiple Testing under Exclusivity

Suppose one is testing mutually exclusive hypotheses Hi, i = 1, . . . , m, so
each hypothesis is a separate model. If the hypotheses are viewed as
exchangeable, choose P (Hi) = P (Mi) = 1/m.

Example: 1000 energy channels (or 1012 at CERN) are searched for a
signal:

• if the signal is known to exist and occupy only one channel, but no
channel is theoretically preferred, each channel can be assigned prior
probability 0.001.

• if the signal is not known to exist (e.g., it is the prediction of a
non-standard physics theory) prior probability 1/2 should be given to
‘no signal,’ and probability 0.0005 to each channel.

Note: this is the answer regardless of the data structure.
Note: equal prior model probabilities does provide multiplicity control here.
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Variable Selection

Problem: Data X arises from a normal linear regression model, with m

possible regressors having associated unknown regression coefficients
βi, i = 1, . . .m, and unknown variance σ2.

Models: Consider selection from among the submodels Mi , i = 1, . . . , 2m,
having only ki regressors with coefficients βi (a subset of (β1, . . . , βm)) and
resulting density fi(x | βi, σ

2).

Prior density under Mi: Zellner-Siow priors πi(βi, σ
2) in examples.

Marginal likelihood of Mi: mi(x) =
∫

fi(x | βi, σ
2)πi(βi, σ

2) dβidσ2

Prior probability of Mi: P (Mi)

Posterior probability of Mi:

P (Mi | x) =
P (Mi)mi(x)∑
j P (Mj)mj(x)

.
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Common Choices of the P (Mi)

Equal prior probabilities: P (Mi) = 2−m

Bayes exchangeable variable inclusion:

• Each variable, βi, is independently in the model with unknown
probability p (called the prior inclusion probability).

• p has a Beta(p | a, b) distribution, chosen to represent prior beliefs
concerning the unknown p.

• Then, since ki is the number of variables in model Mi,

P (Mi) =

∫ 1

0

pki(1− p)m−kiBeta(p | a, b)dp =
Beta(a + ki, b + m− ki)

Beta(a, b)
.

Empirical Bayes exchangeable variable inclusion: Find the MLE p̂ by
maximizing the marginal likelihood of p,

∑
j pkj (1− p)m−kj mj(x), and use

P (Mi) = p̂ki(1− p̂)m−ki as the prior model probabilities.
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Controlling for multiplicity in variable selection

Equal prior probabilities: P (Mi) = 2−m does not control for multiplicity
here; it corresponds to fixed prior inclusion probability p = 1/2 for each
variable, which is rarely appropriate. (Ley and Steel (2007) show other
inadequacies of this choice.)

Empirical Bayes exchangeable variable inclusion does control for
multiplicity, in that p̂ will be small if there are many βi that are zero.

Bayes exchangeable variable inclusion also controls for multiplicity (see
Scott and Berger, 2008), although the P (Mi) are fixed.

Note: The control of multiplicity by Bayes and EB variable inclusion usually

reduces model complexity, but is different than the usual Bayesian Ockham’s

razor effect that reduces model complexity.

• The Bayesian Ockham’s razor operates through the effect of model priors

πi(βi, σ
2) on mi(x), penalizing models with more parameters.

• Multiplicity correction occurs through the choice of the P (Mi).
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Equal model probabilities Bayes variable inclusion

Number of noise variables Number of noise variables

Signal 1 10 40 90 1 10 40 90

β1 : −1.08 .999 .999 .999 .999 .999 .999 .999 .999

β2 : −0.84 .999 .999 .999 .999 .999 .999 .999 .988

β3 : −0.74 .999 .999 .999 .999 .999 .999 .999 .998

β4 : −0.51 .977 .977 .999 .999 .991 .948 .710 .345

β5 : −0.30 .292 .289 .288 .127 .552 .248 .041 .008

β6 : +0.07 .259 .286 .055 .008 .519 .251 .039 .011

β7 : +0.18 .219 .248 .244 .275 .455 .216 .033 .009

β8 : +0.35 .773 .771 .994 .999 .896 .686 .307 .057

β9 : +0.41 .927 .912 .999 .999 .969 .861 .567 .222

β10 : +0.63 .995 .995 .999 .999 .996 .990 .921 .734

False Positives 0 2 5 10 0 1 0 0

Table 1: Posterior inclusion probabilities for 10 real variables in a simulated data set,

with a uniform prior chosen for p.
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Comparison of Bayes and Empirical Bayes Approaches

Theorem 1 In the variable-selection problem, if the null model (or full model)

has the largest marginal likelihood, m(x), among all models, then the MLE of p is

p̂ = 0 (or p̂ = 1.) (The naive EB approach, which assigns

P (Mi) = p̂ki(1− p̂)m−ki , concludes that the null (full) model has probability 1.)

A simulation with 10,000 repetitions to gauge the severity of the problem:

• m = 14 covariates, orthogonal design matrix

• p drawn from U(0, 1); regression coefficients are 0 with probability p and

drawn from a Zellner-Siow prior with probability (1− p).

• n = 16, 60, and 120 observations drawn from the given regression model.

Case p̂ = 0 p̂ = 1

n = 16 820 781

n = 60 783 766

n = 120 723 747
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Is empirical Bayes at least accurate asymptotically as m →∞?

Posterior model probabilities, given p:

P (Mi | x, p) =
pki(1− p)m−kimi(x)∑
j pkj (1− p)m−kj mj(x)

Posterior distribution of p: π(p | x) = K
∑

j pkj (1− p)m−kj mj(x)

This does concentrate about the true p as m →∞, so one might expect that
P (Mi | x) =

∫ 1

0
P (Mi | x, p)π(p | x)dp ≈ P (Mi | x, p̂) ∝ mi(x) p̂ki(1− p̂)m−ki .

This is not necessarily true; indeed
∫ 1

0

P (Mi | x, p)π(p | x)dp =

∫ 1

0

pki(1− p)m−kimi(x)

π(p | x)/K
× π(p | x) dp

∝ mi(x)

∫ 1

0

pki(1− p)m−kiπ(p)dp ∝ mi(x)P (Mi) .

Caveat: Some EB techniques have been justified; see Efron and Tibshirani (2001),

Johnstone and Silverman (2004), Cui and George (2006), and Bogdan et. al. (2008).
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Theorem 2 Suppose the true model size kT satisfies
kT /m = pT + O(1/

√
m) as m →∞, where 0 < pT < 1. Consider all models

Mi such that kT − ki = O(
√

m), and consider the optimal situation for EB
in which

p̂ = pT + O(
1√
m

) as m →∞ .

Then the ratio of the prior probabilities assigned to such models by the
Bayes approach and the empirical Bayes approach satisfies

PB(Mi)
PEB(Mi)

=

∫ 1

0
pki(1− p)m−kiπ(p)dp

(p̂)ki(1− p̂)m−ki
= O

(
1√
m

)
,

providing π(·) is continuous and nonzero.
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Subgroup Analysis
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Frequentist adjustment for performing 26 hypothesis tests

• Split the data into one part to suggest a subgroup and another part to
confirm (or confirm with a new experiment).

• Bonferonni correction

– To achieve an overall error probability level of 0.05 when conducting
26 tests, one would need to use a per-test rejection level of
α = 0.05/26 = 0.002.

– This is likely much too conservative because of the dependence in
the 26 tests.

• Various bootstrap types of correction to try to account for dependence.
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Bayesian adjustment

Let v be the vector of 25 zeroes and ones indicating subgroup
characteristics.

For each possible such vector, let µv denote the mean of the intersected
subgroup (e.g., young, male, diabetic, non-smoker,...).

Data: x ∼ f(x | {µv , all possible v}).

Two classes of approaches

• Factor-based approaches

• Aggregation-based approaches
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An example factor-based approach

Model the intersected subgroup means additively as

µv = µ + vβ, β = (β1, . . . , β25)′ ,

where µ is an overall mean and βi is the effect corresponding to the ith

subgroup factor.

Conversion to model selection:

• Let γ = (γ0,γ
∗) = (γ0, γ1, . . . , γ25) be the vector of zeroes and ones,

indicating whether µ (corresponding to γ0) and each factor βi is zero or
not.

• This defines the model Mγ .
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An example of choosing the prior model probabilities:

• P (γ0 = 0) = P (µ = 0) = 3/4.

• Independently, P (γ∗ = 0) = 2/3 and γ∗ 6= 0 have probability

P (γ∗) =
26

75
· Beta(1 + r, 1 + 25− r)

Beta(1, 1)
,

where r = #zeroes in γ∗.

• Note that then
– P (no effect) = P (µ = 0, γ∗ = 0) = 1/2

– P (µ 6= 0, γ∗ = 0) = 1/6

– P (µ = 0, γ∗ 6= 0) = 1/4

– P (µ 6= 0, γ∗ 6= 0) = 1/12

– P (γi 6= 0) = 13/75

The experimenter could (pre-experimentally) make different choices here to
reflect beliefs as to which subgroups might most likely exhibit an effect, as
long as P (no effect) is kept at 1/2. Post-experimentally, one cannot allow
the experimenter to choose the prior probabilities of subgroups.
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Possible Bayesian outputs of interest:

• P (effect of factor i 6= 0 | x) =
∑
{γ:γi=1} P (Mγ | x).

• P (effect in subgroup i 6= 0 | x) =
∑
{γ:γ0=1 or γi=1} P (Mγ | x).

• P (a constant effect 6= 0 | x) = P (M(1,0) | x).

Of course, posterior densities for all effects, conditional on their being
nonzero, are also available.
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Aggregation-based approaches

Basic idea: Recall that for every intersected subgroup (e.g., young, male,
diabetic, non-smoker,...) there is an unknown mean µv . Plausible models
involve aggregation of these means into common effects, e.g. µv1 = µv2 .
There are a number of ways to aggregate means, including

• Product partition models (Hartigan and Berry)

• Dirichlet process models (Gopalan and Berry use for multiplicity control)

• Generalized partition models

• Species sampling models

• Tree-based models (our current favorite)

Surmountable problem: Any of these aggregate means could be zero;
with some work, this can typically be handled by adding “zero” to the list.

Harder problem: Not all (not even most) aggregations are sensible
(e.g., µF1G1 = µF2G2 6= µF1G2 = µF2G1 versus µF1G1 = µF2G1 6= µF1G2 = µF2G2).
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Summary (about multiplicity)

• Developing methods for controlling for multiplicity is a dramatically
increasing need in science.

• Approaching multiplicity control from the Bayesian perspective has the
attractions that
– there is a single approach that can be applied in any situation;

– since multiplicity is controlled solely through prior probabilities of

models, it does not depend on the error structure of the model;

– there is flexibility in the assignment of model prior probabilities;

∗ subjective assignments are pre-experimentally encouraged, to bring the

science into the problem;

∗ post-experimental objective assignments are also possible to evaluate

“discovered” effects.

• Associated empirical Bayes analysis exhibits multiplicity control, but
cannot be assumed to be an approximation to the Bayesian analysis.

• Bayesian subgroup analysis is promising, but challenging.
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Thanks!
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