Bayesian Statistics, De Finetti and The Gambler's Fallacy

Fernando Vieira Bonassi

DSS - Duke University
(with R.B. Stern, S. Wechsler and C. Peixoto)
15/Dec/2009

Contents

(1) The Gambler's Fallacy
(2) Previous Studies
(3) A New Model
(4) Conclusion

The Gambler's Fallacy

- A series of studies in Experimental Psychology that indicate systematic bias in human behavior in situations of uncertainty (Kahneman, Slovic e Tversky, 1982).

The Gambler's Fallacy

- A series of studies in Experimental Psychology that indicate systematic bias in human behavior in situations of uncertainty (Kahneman, Slovic e Tversky, 1982).
- The Gambler's Fallacy - as a person observes a long sequence of heads in a coin flipping process, he believes tails becomes more likely on the next flip.

The Gambler's Fallacy

- It is a kind of law of compensation which, more generally, entails when people believe that some tendency will be reverted (in order to keep an overall equilibrium).

The Gambler's Fallacy

- It is a kind of law of compensation which, more generally, entails when people believe that some tendency will be reverted (in order to keep an overall equilibrium).
- It is also known as the law of maturity of chances.

The Gambler's Fallacy

- An important aspect: a fallacy is obtained only when the logical conclusion, given a set of declared conditions, is contrary to the (fallacious) argument.

The Gambler's Fallacy

- An important aspect: a fallacy is obtained only when the logical conclusion, given a set of declared conditions, is contrary to the (fallacious) argument.
- The Bayesian approach can be a very interesting tool for this problem, helping to understand which would be the coherent behavior given a set of assumptions (such as exchangeability, for example).

The Gambler's Fallacy

- Two studies in the Statistics literature that examine this matter:
- O'Neill, P. and Puza, B. (2005) In Defence of the Reverse Gambler's Belief. The Mathematical Scientist, 30.
- Rodrigues, F.W. and Wechsler, S. (1993) A Discrete Bayes Explanation of a Failure-Rate Paradox. IEEE Transactions on Reliability, 42(1), pp 132-133.

Contents

(1) Introduction
(2) The Gambler's Fallacy
(3) Previous Studies
(1) A New Model
(0) Conclusion

O’Neill \& Puza

- O'Neill \& Puza consider a model in which one obsevers a subsequence of discrete random variables ($\mathrm{x}_{n}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$) which take values in $1,2, \ldots, k$ (sides of a dice, for example)
- It is assumed that $\mathrm{x} \equiv\left(x_{1}, x_{2}, \ldots\right)$ is infinitely exchangeable.

O'Neill \& Puza

How would be the Gambler's Fallacy in this context?
n_{i} : frequency of outcomes of the face i in a dice. $p(i)$: predictive probability of the face i in a dice.

$$
\begin{gathered}
n_{5}<n_{1}<n_{2}<n_{6}<n_{3}<n_{4} \\
p(5)>p(1)>p(2)>p(6)>p(3)>p(4)
\end{gathered}
$$

O'Neill \& Puza

Reverse Gambler's Belief

Let n_{a} and n_{b} be the frequencies observed of the characteristics a and b, respectively; Given the previous assumptions (x infinitively exchangeable and exchangeable prior distribution for Θ), for any a, b in $\{1, \ldots, k\}$, we have that:
(1) se $n_{a} \geq n_{b}$ then $\mathrm{p}\left(\mathrm{a} \mid \mathrm{x}_{n}\right) \geq \mathrm{p}\left(\mathrm{b} \mid \mathrm{x}_{n}\right)$; e
(2) se $n_{a}>n_{b}$ e Θ non-degenerate then $p\left(a \mid x_{n}\right)>p\left(b \mid x_{n}\right)$.
=> The opposite to the Gambler's Fallacy!

Rodrigues \& Wechsler

- The model presented in Rodrigues \& Wechsler describes a situation in which one observes a subsequence of 0-1 random variables (failure or success), and supposes the sequence $\mathrm{x}=\left(x_{1}, x_{2}, \ldots\right)$ is infinitely exchangeable.
- In this model, the law of maturity is defined as believing that, the bigger the sequence of consecutive failures one observes, the bigger the predictive probability of success will be.

Rodrigues \& Wechsler

PREDICTIVE PROBABILITY OF A SUCCESS

... success is getting "mature".

Rodrigues \& Wechsler

- However, the main result given by Rodrigues \& Wechsler is opposite to the law of maturity.
- Thus, the bigger the number of consecutively observed failures, the smaller will be the predictive probability of the next trial being a success. This behavior is named belief in reverse maturity.

Considerations on the Studies

	O'Neill \& Puza	Rodrigues \& Wechsler
Variable Type	$1,2, \ldots, k$	0 ou 1
Observations	exchangeable	exchangeable
Priori for Θ	exchangeable	any
Result	reverse gambler's belief	belief in reverse maturity

Considerations on the Studies

- Both studies show that given their assumptions and following a Bayesian approach, the rational behavior should oppose the one found in the gambler's fallacy.

Considerations on the Studies

- Both studies show that given their assumptions and following a Bayesian approach, the rational behavior should oppose the one found in the gambler's fallacy.
- Even so, it is not possible to classify the gambler's behavior as irrational. This would depend on his judgment of reasonability of the assumptions presented.

Considerations on the Studies

- Both studies show that given their assumptions and following a Bayesian approach, the rational behavior should oppose the one found in the gambler's fallacy.
- Even so, it is not possible to classify the gambler's behavior as irrational. This would depend on his judgment of reasonability of the assumptions presented.
- A new model was proposed based on the alteration of the infinite exchangeability assumption.

Contents

(1) Introduction
(2) The Gambler's Fallacy
(3) Previous Studies
(c) A New Model
(0) Conclusion

A New Model

- The assumption of infinite exchangeability of the previous studies can be questionable when regarding average human perception.

A New Model

- The assumption of infinite exchangeability of the previous studies can be questionable when regarding average human perception.
- The main idea of this model is to take that what is observed (0 or 1 - failure or success) is part of a exchangeable finite population.

A New Model

Definitions and assumptions:

- Let $\mathrm{X}_{N}=\left(X_{1}, X_{2}, \ldots, X_{N}\right)$ be a vector of unknown values which can be only 0 or 1 ("population")
- Observations: $x_{1}, x_{2}, \ldots, x_{n}$
- Predictive probability of interest: $p\left(x_{n+1}=x \mid x_{n}\right)$
- let γ be the count of success in X_{N}
- We assume $\mathrm{X}_{N}=\left(X_{1}, X_{2}, \ldots, X_{N}\right)$ exchangeable

A New

- Specification of Prior Distributions Studied for the New Model
(1) Binomial Distribution
(2) Binomial Mixture
(3) Distributions Tighter than the Binomial
(4) Distributions Second-order Tighter than the Binomial

The Binomial Distribution

Indifferent Belief

If the prior distribution for γ is a $\operatorname{Binomial}(N, \pi)$, then:

$$
p\left(x_{n+1}=1 \mid x_{n}\right)=\pi, \text { for any } x_{n} \in\{0,1\}^{n} \text { and } n \leq N
$$

The model is equivalent to an experiment of withdrawal with replacement of black and white balls from an urn in which each ball of the urn has probability π of being black and is independent of the remaining.

Distributions obtained by Binomial Mixture

Equivalence of Models

Let $Q(\pi)$ be a distribution function on $[0,1]$; if the prior distribution chosen for
γ can be expressed as

$$
p(\gamma)=\int_{0}^{1}\binom{N}{\gamma} \cdot \pi^{\gamma} \cdot(1-\pi)^{N-\gamma} d Q(\pi)
$$

then:

$$
p\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\int_{0}^{1} \pi^{\Sigma x_{i}} \cdot(1-\pi)^{n-\Sigma x_{i}} d Q(\pi), \forall n \leq N
$$

Distributions obtained by Binomial Mixture

- This way, for this class (Binomial Mixture) there is some equivalence of learning with the model in which there is the assumption of infinite exchangeability.
- Thus, we can use the results from previous studies to draw the following conclusions:
(1) If $Q(\pi)$ is not-degenerated \Rightarrow belief in reverse maturity
(2) If $Q(\pi)$ is symmetric on $1 / 2 \Rightarrow$ reverse gambler's belief

Distributions Tighter than the Binomial

Maturity according to the prior distribution for γ

Reverse Maturity

Indifference

Maturity

Distributions Tighter than the Binomial

Maturity according to the prior distribution for γ

Distributions Tighter than the Binomial

- This way, one might think there exists a class of priors which share the property of maturity "between" both cases.
- In order to examine this point, we define a class of distributions whose shape is tighter than the Binomial.

Distributions Tighter than the Binomial

A discrete random variable Y has its probability distribution tighter than the Binomial($N, 1 / 2$) if it satisfies the following conditions:
(1) Its support is the same as that of $\operatorname{Binomial}(N, 1 / 2)$;
(2) It is symmetric on $N / 2$;
(3)

$$
\frac{P(Y=y)}{P(Y=y-1)}>\frac{N-y+1}{y}, \quad y=1, \ldots,\lfloor N / 2\rfloor
$$

Distributions Tighter than the Binomial

Examples of Distributions Tighter than the Binomial(10, 1/2)

1-Binomial, 2-Tighter (I) and 3-Tighter (II)

Distributions Tighter than the Binomial

Gambler's Belief

If one chooses a prior distribution tighter than the $\operatorname{Binomial}(N, 1 / 2)$ for γ, then:

$$
\text { if } n_{1}<n_{0} \text { then } p_{n+1}\left(1 \mid x_{n}\right)>p_{n+1}\left(0 \mid x_{n}\right)
$$

In words:
If the number observed of failures is less than of successes
=> p(failure) > p(success)

Distributions Second-order Tighter than the Binomial

- Additionally, we define a subclass within the distributions tighter than the Binomial so that belief in maturity is valid.
- Belief in maturity: the bigger the number of failures consecutively observed, the more one believes in the occurrence of a success in the next trial. This leads to the idea that the success is getting "mature".

Distributions Second-order Tighter than the Binomial

PREDICTIVE PROBABILITY OF A SUCCESS

... success is getting "mature".

Distributions Second-order Tighter than the Binomial

A discrete random variable Y has its probability distribution second-order tighter than the Binomial($N, 1 / 2$) if it satisfies the following conditions:
(1) Its distribution is tighter than the $\operatorname{Binomial}(N, 1 / 2)$;
(2) $\frac{P(Y=y+1) / P(Y=y)}{P(Y=y) / P(Y=y-1)}<\frac{(N-y) /(y+1)}{(N-y+1) / y}$,

$$
y=1, \ldots,\lfloor N / 2\rfloor-1
$$

Distributions Second-order Tighter than the Binomial

Graph of the Binomial(10, 1/2) and two examples which are second-order tighter than it.

1 - Binomial, 2 - Second-order Tighter (I) and 3 - Second-order Tighter (II)

Distributions Second-order Tighter than the Binomial

Belief in Maturity

If the prior distribution chosen for $\gamma(\rho(\gamma))$ is second-order tighter than the Binomial ($N, 1 / 2$), then:

$$
r(m)=p\left(x_{m}=1 \mid x_{1}=0, \ldots, x_{m-1}=0\right) \text { is increasing in } m .
$$

Contents

(1) Introduction
(2) The Gambler's Fallacy
(3) Previous Studies
(9) A New Model
(6) Conclusion

Review of the major points of study

- Specifications of Prior Distributions in this work
(1) Binomial Distribution
\Rightarrow Indifference
(2) Binomial Mixture
\Rightarrow Equivalence of Models
(3) Distributions Tighter than the Binomial \Rightarrow Gambler's Belief

4 Distributions Second-order Tighter than the Binomial \Rightarrow Belief in Maturity

Final Considerations

- As was shown, previous studies proved that reverse gambler's belief and reverse maturity are a logical consequence of the assumption of infinite exchangeability.

Final Considerations

- As was shown, previous studies proved that reverse gambler's belief and reverse maturity are a logical consequence of the assumption of infinite exchangeability.
- In this work we presented a new model in which a finite exchangeable population is considered and, therefore, the main assumption of the previous studies is not verified.

Final Considerations

- The new model proposed is compatible not only with the behavior prescribed by the gambler's fallacy but also with the reverse.

Final Considerations

- The new model proposed is compatible not only with the behavior prescribed by the gambler's fallacy but also with the reverse.
- Because of this, when a person believes in the adopted premises, it is not necessarily unreasonable to behave according to maturity.

Final Considerations

- The new model proposed is compatible not only with the behavior prescribed by the gambler's fallacy but also with the reverse.
- Because of this, when a person believes in the adopted premises, it is not necessarily unreasonable to behave according to maturity.
- These results may contribute on the judgment of how reasonable the assumption of infinite exchangeability is relative to typical human perception.

Thank you for the attention!

Contact: fernando at stat.duke.edu

