An Application of Reification for a Rainfall-Runoff Computer Model

Leanna House

(acknowledge Michael Goldstein, Allen Seheult, and Ian Vernon)

December 16, 2009

For the next 30 minutes...

- Background Computer models/Simulators
- What the heck is Reification?
- Motivation for this work justify reification
- Application: Rainfall-Runoff Model
- Discussion

Why might we use simulated data?

To assess the behavior of complex physical systems,

we often start by collecting data.

Simulator based inferences include...

- When we use simulated data to assess characteristics of a complex system we have/model the following:
 - z: Real world observation(s)
 - y: Characteristic(s) of the complex system
 - f: Deterministic simulator or computer model
 - X: The input variables
- For a Design of Experiments (DOE), we have

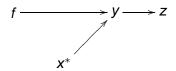
$$X = \{x_1, ..., x_n\} \\ \{f\}_{[n]} = \{f(x_1), ..., f(x_n)\}$$

Example: Assess water runoff from Swiss catchment

- z_t : Measured run-off at time t
- y_t : Actual run-off at time t
- $f_t(x_i)$: Simulated run-off at time t given $X = x_i$

Hierarchical model

- Conditional independence is often desired
- ▶ Given a tuned input *x**,



And, we might have the following hierarchical model

$$\begin{array}{rcl} z &=& h(y) + e_z, \quad e_z \sim \operatorname{No}(0, \sigma_z^2) \\ y &=& f(x^*) + e_y, \quad e_y \sim \operatorname{No}(0, \sigma_y^2) \\ x^* &\sim& \operatorname{Un}(a, b) \\ f(x) &=& g(x)\beta + e(x), \quad e(x) \sim \operatorname{GP}(0, \Sigma_f) \end{array}$$

One Source of Model Uncertainty

The model f itself is uncertain!

► f(x) is inevitably wrong

 \rightarrow depends on theories, assumptions, comp. resources...

In turn, the orthogonal assumption:

 $\operatorname{Cov}[\epsilon_{\mathbf{y}}, \{f, \mathbf{x}^*\}] \neq \mathbf{0}$

is rarely, if ever, appropriate.

- Existence of structural error in f; f does not mimic y perfectly
- What do we do?
 - a) Ignore the data weakness?
 - b) Re-code f and repeat a simulation experiment?

Reification (Goldstein and Rougier, 2008)

- Answer: Take advantage of being a Bayesian and elicit good, prior, expert judgments about the improved model, f*
- The orthogonal assumption may hold for a hypothetical, ideal model f*(xx**) at it's best input (x may represent the same variables as x or the union of x and other variables)

$$y = f^*(\tilde{x}^{**}) + \epsilon_{\gamma}^*$$
, where $\epsilon_{\gamma}^* \perp \{f, f^*, x^{**}\}$.

- So, f* represents our *reified* model (where, f is our *realized* model)
- M-W Dictionary: To reify is to regard (something abstract) as a material or concrete thing
- How do we come up with a good f*?

Two Types of Reification: General

A model reified generally is simply a realized model with more uncertainty.

$$f^*(x) = g(x)\beta^* + e^*(x)$$
 (1)

where $E[\beta^*] = E[\beta]$ and $E[e(x)] = E[e^*(x)]$, but

$$\operatorname{Var}[\beta^*] = \Sigma_{\beta}^* > \Sigma_{\beta}, \qquad \operatorname{Var}[e^*(x)] = \Sigma_{e(x)}^* > \Sigma_{e(x)}$$

Note, emulator (1) can be written as

$$f^*(x) = g(x)(\beta + \beta^+) + e(x) + (e^*(x) - e(x))$$

where $E[\beta^+] = 0$ and $Var[\beta^+] = \Sigma_{\beta}^+$. Judgments about the change in β and e(x) might be easier for an expert than direct judgments about β^* and $e^*(x)$.

Two Types of Reification: Structural

- Structural reification adds one or more hypothetical input variables v to a current, realized simulator/emulator.
- In some cases, there exists a value ν₀, such that the reified outcome f^{*}(x, ν) equals the realized outcome f(x) when ν = ν₀.

$$f^{*}(x,\nu) = g^{*}(x,\nu)\beta^{*} + e^{*}(x,\nu)$$
(2)
= $g(x)\beta + e(x) + g^{+}(x,\nu)\beta^{+} + e^{+}(x,\nu)$
= $f(x) + g^{+}(x,\nu)\beta^{+} + e^{+}(x,\nu),$

where, f(x) is learned from the data; $g(x, \nu_0) = 0$; and $e(x, \nu_0) = 0$.

Combine reification methods

Combine:

- 1. Reify *f* structurally and emulate by f'(x)
- **2**. Reify f'(x) generally and emulate by $f^*(x)$
- We have the following hierarchical model,

► If
$$E[\beta^{+*}] = E[e^{+*}(x,\nu)] = E[\beta^{+'}] = E[e^{+'}(x,\nu)] = 0$$
,

$$\begin{split} & \mathrm{E}[f^*(x)|f'(x), x, \nu] &= f'(x) \\ & \mathrm{E}[f'(x)|f(x), x, \nu] &= f(x) \\ & \mathrm{E}[f(x)|x] &= g(x)\mathrm{E}[\beta] + \mathrm{E}[e(x)]. \end{split}$$

Criticisms of Reification/Motivation of Work

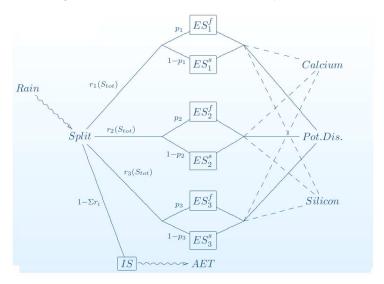
- Quantitative comparisons between a realized and reified model do not exist because reified models are hypothetical
- Only expert critiques can the validate the subjective judgments used to specify a reified model
- So, I asked,

How do we elicit a good f* from experts that other experts and non-experts might accept?

- One idea:
 - 1. Create a reduced vs. complete scenario
 - 2. Reify the reduced model *honestly*
 - 3. Compare the reified and complete models
 - 4. If the reification is successful, repeat for the complete model
- Example...

Graph of the Rainfall-Runoff Model

Three compartment mixing model with parallel transfer (lorgulescu, I., Beven, K.J., and Musy, A., 2005)



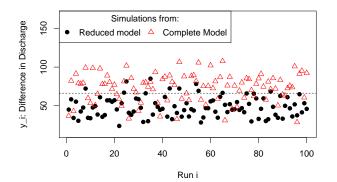
Virginia Tech. VZ/

Details of the Complete Rainfall-Runoff Model

- Research Goal: Assess the true hydrological process for how rainfall becomes runoff, based on estimates of total discharge and tracer concentrations from real-world measurements and computer simulations,.
- Rainfall flows into one of 3 compartments (DP, GW, AS)
- Inputs: 6 parameters per compartment p^(k), c^(k)_f, c^(k)_s, a^(k), b^(k), k^(k), k ∈ [PD, GW, AS] and one constraint totaling to 17 inputs.
- ► Forcing functions: measured rainfall rain(t) and assumed evaporation rates AET(t), t ∈ [1,...,839] hours
- Outputs include 3 time series: water discharged (PD), and the concentration of two tracer chemicals (Ca and Si) at each hour.
- For now, consider only PD(620)

Reduce the RR Model

- Exclude compartment AS; 11, not 17, inputs
- We create a 17 dimensional Latin hypercube (LHC) design, and remove the appropriate columns to create an 11-dimensional LHC



Thus, results from the complete design, could represent what we might have had from the reduced model if it were complete.

Reify (honestly) the RR Model

Judgment:

Conditional on equal rainfalls (water input) and input parameters,

- 1. More compartments \rightarrow more discharge
- 2. Compartment DP behaves similarly to AS
- So, a reified model (which includes AS) might predict 50% more discharge than the realized model or double the output from DP.
- We include these judgments by reifying the reduced RR model

General reification of RR Model

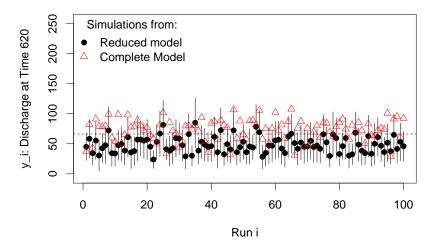
$$f^*(x) = g(x)(eta+eta^{+*}) + h(x)(A+A^{+*}) + e$$

where, $E[\beta^{+*}] = E[A^{+*}] = 0$ and the variances $Var[\beta^{+*}]$ and $Var[A^{+*}]$ are greater than zero. We estimate the variances of β^{+*} and A^{+*} based on $Var[\beta]$, Var[A], and pre-specified constants $c_i \in \Re^+$ for $i \in [1, ..., 4]$:

$$Var[\beta^{+*}] = c_1 Var[\beta] + c_2$$
$$Var[A^{+*}] = c_3 Var[A] + c_4.$$

The size of the constants c_i reflect our judgment that the reified outcomes could equal approximately 1.5 times the realized outcomes.

Graph of general reification of RR Model



56% of the intervals contain the complete model outcomes.

Structure reification of RR Model

Two options:

 β

- 1. Add six new parameters to emulator: $p^{(\text{new})}, c_f^{(\text{new})}, c_s^{(\text{new})}, k^{(\text{new})}, a^{(\text{new})}, b^{(\text{new})}$
- 2. Exaggerate the effect of a compartment (DP) that is both currently in the realized model and expected to behave similarly to the new compartment, and add a *k*-parameter so that $k^{(DP)}+k^{(GW)}+k^{(new)} = 1$.

• We chose 2.
$$f'(x, \nu) = f(x) + g^{+\prime}(x, \nu)\beta^{+\prime} + e^{+\prime}(x, \nu)$$

$$g^{+\prime}(x,\nu) = [\nu_{1}g(x), \nu_{1}\nu_{2}(1-k^{(DP)})]$$

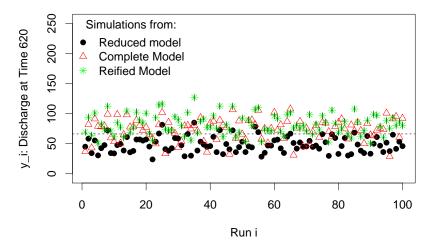
$$e^{+\prime}(x,\nu) = \nu_{1}(\nu_{3}e(x)+\delta^{+})$$

$$\delta^{+} \sim \pi(0,\nu_{4})$$

$$\begin{pmatrix} 0 & \text{if } x_{j} \in (p^{(GW)}, c_{f}^{(GW)}, c_{f}^{(GW)}, a^{(GW)}, b^{(GW)}) \\ \beta_{j} + s_{j} & \text{if } j = 0 \text{ or } x_{j} \in (p^{(DP)}, c_{f}^{(DP)}, c_{f}^{(DP)}, a^{(DP)}, b^{(DP)}, k^{(DP)}) \\ \beta_{k^{(DP)}} + s_{j} & \text{if } j = 12, \end{cases}$$

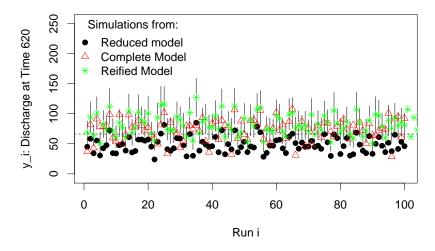
where $E[s_j] = 0$ and $Var[s_j] = v_5$.

Graph of structure reification of RR Model



21% of the intervals contain the three-compartment model outcomes.

Graph of structure and general reification of RR Model



We cover 67% of the complete model outcomes!

Summary/Discussion

- Computer Models and Reification
- I propose a way to, possibly, build confidence in reification
- Possibly justification in it's own right
- Possibly a check that should be used whenever opting to reify a model
- If the latter, the model must be accessible
- Didn't show how to use the reified model for inference
- Future: Extend to the multivariate outputs

Thank you!

