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Notation

Simplex of probability measures

R? := real valued functions on a finite set .2~

(i)0 (S (R‘%)*, xe X, (dual of the canonical basis)

P = {préxe (R'%)* © px >0, przl}

X

Quotient vector space

C := subspace of constant functions

RZ /C = {f+c : feR%}
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P as a Manifold

Tangent and cotangent space of P
@ Tangent space of P:

{goe (R‘%)* :

o Cotangent space of P:

T

o(f) =0 for all f € c}

R*/C = T*
RY/C — T,  f+C = (¢ = o(f)
Remark
U<y, U ={peV": p(f)=0forall feci}
= ViU — U, o+U’ — ¢ly»  natural isomorphism
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P as a Riemannian Manifold
o Scalar product on R? /C:
(f+C,g+C), = cov(f,g) = (f-g),— (), (&),

o Identification of R# /C and 7 with respect to (-, Vp:

¢p: R*/C — T, f+C — pr(fx—<f>p) Ox

@ Natural bundle isomorphism:

T"P=PxR¥/C) & PxT=TP

o Fisher metric, Shahshahani inner product:

1
T xT — R, A B) = — ABy
) A8, =T,
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Vector Fields and Differential Equations

Replicator equations
Consider a map f : P — R? and the induced section
P — R?/C, p — f(p)+C.

in T*P. This can be identified with the vector field

P =T, pe > p(Elp) = (fP),)
and the corresponding differential equations

b = pe(BlP) = (F(R)),),  x€2.

These equations are known as replicator equations.
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Observation

Replicator equations are nothing but ordinary differential equations
expressed in terms of a section in the cotangent bundle T*P instead of a
section in the tangent bundle TP.

Gradient fields

Consider a function F : P — R. Then the gradient of F with respect to
the Fisher metric is given by

(grad,F) = px 8XF(p)—ZpX/ Ox F(p)

@ J. Hofbauer & K. Sigmund. Evolutionary Games and Population Dynamics. Cambridge University Press 2002.
@ N. Ay & |. Erb. On a Notion of Linear Replicator Equations. Journal of Dynamics and Differential Equations 2005.
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Example: Darwinian selection, “survival of the fittest”

Consider a function f : 2" — R (f is called fitness of species x) and

b = px(f—(F),) = grad,(N),  p(0) = p.

Solution curves satisfy the Price-equation and Fisher's fundamental
theorem of natural selection:

d d
a<g>p(t) = cov(f,g) E<f>P(t) = var(f)

Solution curves: t — p(t) = (i;eft;

P

P falls x € argmin(f
lim p(t) = 2 xcargmin(f) Px’ gmin(f)
t——00 0 , sonst
P falls x € argmax(f
lim p(t) = 2 xcargmax(f) Px’ gmax(f)
t—00 , sonst
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Hypercycle dynamics (Eigen und Schuster) with three and four species

=

Hypercycle dynamics with eight species for different initial conditions

1 0.2 0.2
0.5 0.1 0.1\A/
0 0 0 4 12
4 8 12 4 8 12 8
t t t

v
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Natural Connections

Mixture Connection

MNpq: TpP — T4P, (p,A) — (q,A)

Exponential Connection
Mpg: T3P — TiP,  (p,f+C)— (q,f+C)

Nog: TP — TaPs (P, A) — (4, (6q 0 6p 1)(A))

)

Duality

e m
<np,q A,Mp,g B>q = (A B>p
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Differential version

m,e
V aB

1 /me
= Ilmo—( w(t),p( (t))—B,,> e T,P.

p

Geodesics satisfying y (0) = p and n%e (I)=gq

@ m-geodesics:
m
Yp,q: [0,1] — P, t — (1—t)p+tgqg

@ e-geodesics:

[0,1] — P, t

Zp ‘qt
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Corresponding exponential maps

@ m-exponential map:
ep: {(p,q—p)ETP : pgePt — P, (p,A) — p+A,

@ e-exponential map:

TI>

pe

e§p: TP — P, (P, A) —» ———%
prxepx

Relative entropy
« PxIn 2= if supp(p) C supp(q
Diplla) = { Z<"s e

400, otherwise

m -1 -1
exp, (p) = —grad,D(p||-)  exp, (p) = —grad, D(-|| p)

v
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Motivation of the previous relations

@ Squared distance from g:

n

1 1
Dg: R" — R, p = §||q—P|’2 = §Z(qi—Pi)2
i=1

o The differential d,Dg € (R")":

oD,
dpDg: R" — R, vV a—vq(p)

o |dentification of the differential with a vector in R":

—
—grad, Dy = —grad(dqu) =qg—-p = pq )
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P as an Affine Space

Note that eip is not an affine action:

exp (exp (p, A), B) # exp (p, A+ B)

Consider instead the composition
eip

t: PxRY/C)=TP & TP=5p,

(p,f+C) =

{e")p

This is an affine action with difference vector

vec: P x P —R”/C,  (p,q) > vec(p,q) =n (g> e

and P is an affine space over R /C.

Nihat Ay (MPI MIS) Information Geometry 7. April 2010

13 / 34



Definition: Exponential families

An affine subspace £ of P with respect to t is called exponential family.
Given a probability measure g and a linear subspace £ of R, the
following submanifold of PP is an exponential family:

£(q.L) = {% : feﬁ}

Clearly, all exponential families are of this structure. We always assume
C C L and thereby ensure uniqueness of £ . Furthermore, with this
assumption we have dim(€) = dim(L£) — 1.

Remark
An exponential family can be identified with a polytope via the
expectation value map.
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Extension to Polytopes

work in progress with Johannes Rauh
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Consider a polytope C C RY, and its set ext(C) of extreme points.

cC = Z p(x)x € R : peP(ext(C))
x € ext(C)
¢ :Plext(C)) — C, p — o(p) = Z p(x) x

x € ext(C)

The set ¢~ 1({k}) is a convex set. Choose that member p, that has
maximal entropy. This corresponds to the canonical representation.

Information geometry of polytopes, the main idea

The image of the map k — pj is the closure of an exponential family
E = &(C). Take the push-forward of the induced geometry

m e
(€,8lg,V sV |g)- In particular,

D(k o) :== D(px |l ps)-
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Application of this idea to the setting of Markov kernels

Polytope of Markov kernels

C =C(2,%) = {KER‘%X@ . k(x;y) >0, Zn(x;y):l}

y
Fed”, ke(xy) = drnly), ext(C)= {/ff : fe @%}

p:P@?) > C  pr elp) = > p(f)rr
f
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Corresponding exponential family

@2,y Oxy K (xiy)

dfea @2y Oxy 16 (Xiy)

£ = &) =

Proposition

The restriction ¢|z has the inverse

prl: C_ — E,_', K = pg = ®/€(X,)
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Example: Structural equation model and Markov kernels

Structural equation model
Consider Z and F: &' X & —- %

y = F(x,z), z disturbance with distribution p

~  klay) = > p2)rpn(Y) = D p(2) k()

zeZ ze?
= K(x;:) € P(#) forall x

Canonical representation

Given k, choose & := # %

F:2x%% — % (x,f) — f(x), and
pe(F) = T #lx: F(x)
XEX )
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Fisher metric
1

g«(A B) = Z ooy A(x;y) B(x;y)
X,y !
m-Geodesics
A(8) = (1 t)(xiy) + to(xiy) J
e-Geodesics
'Y(e)(t) - ”(X;y)l_to-(X;}/)t

>, k() o (xy)f

Relative entropy

D(x|lo) == D(psllps) = ZH(X;y)In r(xiy)

5 a(x;y)
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Affine action
f,g € RZ*Y.
frg = f—geR?
V = R**Y/R*

nef

_ z
exY G iR = >, k(- y)efty)

Proposition

The affine subspaces of C(Z"; %) are the exponential families in
C(Z;%). Given a subspace L of dimension | 2| + d with

RZ CLC R‘%X@, and given a reference element k, the following
subfamily is a d-dimensional exponential family:

Hef

E(k, L) = {Z (o y) ) : feﬁ}
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Maximization of Entropy Distance from

Exponential Families
based on Ay 2002, Matus & Ay 2003
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Multi-Information as an Example
Family of product distributions

®: P(Zi) % xP(Zn) — P(ZLx- x Zn)

(p17"'7pN) = P QpN

Definition of multi-information

I: P(Zix---xZy) — R, p— I(p) ;= inf D(p|q)
q€im(®)

v
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General problem
Given an exponential family £, maximize the function

De: P — R, p — inf D(p|l q).
qeé

Results
© Support bound: Let p be a local maximizer of Dg. Then

Isupp(p)| < dim(€) +1

In particular, H(p) < In(dim(€) + 1).
@ Extended exponential families: There exists an exponential family E of

dimension B
dim (5) < 3dim(&) + 2

that contains £ and all local maximizers of Dg in its closure.
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Applied to multi-information
@ Let p be a local maximizer of the multi-information. Then
N

lsupp(p)| < Z(!«%‘|—1)+1 (= N+1 << 2N for binary nodes)
=

In particular
N
o) < (3021 -1 +1).
i=1
@ There exists an exponential family of dimension at most
N

3 Z(|3?f,] —1) + 2 (3N + 2 << 2N —1 for binary nodes)
i=1

that contains all local maximizers of the multi-information in its
closure. )
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Multi-Information for Kernels
Factorized kernels

Consider a set [N] of nodes with input symbols .Z; and output symbols %;
and denote with 2" and % the products.

®: [[C(2:%) — C(2:9%)
i€[N]
(5i); = (®iki)(xiy) = r1(xaiy) - en(xni yn)

This is the closure of an exponential family in C(2Z"; %) of dimension

N
> 12124 - 1)
i=1 )
Multi-information
/ = inf D
(x) = _inf D(x]o)

4
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Local maximizers

Let ~ be a local maximizer of /. Then the dimension of the face F(x) of
C(Z; %) in which k is contained is upper bounded by

N
d = Z | Zi(1%;| — 1) (d =2 N for binary nodes)
i=1

The theorem of Carathéodory implies there are at most d + 1 functions so
that x can be written as their convex combination:

K = Zp(f)kc,c
f

This implies
lsuppr(x;-)| < d+1

and therefore H(Y | X) < In(d + 1) for any distribution of X.
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Low-dimesional exponential families

There exists an exponential family £ of dimension at most 3 d + 2 such
that all maximizers of the multi-information are contained in the set

Z p(f)rr : pe€ ) C C(2,%)

fer *
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A second approach based on Stephan Weis' dissertation,

University of Erlangen Nuremberg 2009

A different way to see the previous approach

The previous geometry can also be obtained by the affine embedding
C(X,%) — P(Z x%), K — — K
The more general affine embedding:

K= pek,  (PRK)(xy) = p(x)k(x;y).

It does change the geometry but does not change the results on
maximizers of multi-information.
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Stationarity and the Kirchhoff polytope

Consider B B B
®: P(Z)xC(Z2;,Z2) - P(ZxZ),

(p,r) = (p@r)(xX) = p(x)r(x x)

Remark: This map is surjective but at the boundary not injective.
Assume stationarity:

S(Z) = {pepﬂ&”x%) prx Zp(x’,x)}

We have the following correspondence:

S(Z) — & 2)
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Multi-information
Consider N nodes with state sets Z; and the following map:

X® : 5(%)XX‘§(%N) — 5(%x---x¢%”N)

Note that im(®) is not an exponential family. It is the intersection of an

exponential family with a convex set.

I(p) == inf D(p|q)
q€im(®)
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Extreme points of S(.2")
Consider a set ) # % C 2 and a cyclic permutation 7 : % — % .

N L L) =x
(%, m)(x,x') = ﬁ 0, otherwise

The number of extreme points

|2
oS = 3 (4 )k 11 < 12171 = jeaez 2)

k=1

| 2| || dim || |ext(S(2))] || |ext(C(Z; 2))]

2 2 3 4

3 6 8 27

4 12 24 256

5 20 89 3125

v
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Local maximizers
Each local maximizer p of /| satisfies

N
dim(F(p)) < > (12iP—12i) (= 2N for binary nodes)
i=1

With the Carathéodory theorem there are at most SN (|22 — | 2i]) + 1
cycles so that p can be represented as convex combination of them. This
implies that for all x with )~ , p(x,x") > 0:

N
[suppp(- | x)| < D (12 = 12i) + 1,

i=1

which implies

N
H(X'[X) < In (Z(I%\z—l%l)H)

i=1

v
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