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What others have said about probability

Many returning Warwick mathematics graduates:

Why didn’t someone tell us that probability and statistics are the key

mathematical subjects in applied quantitative work?

A randomly selected first year student:

Given I passed the exam, what is the probability I studied for it?

Another first year student:

Is there any way I can buy that hat off you?

Another student:

You keep telling me to read books.

A rumour:

The exam will only be taken by a sample of 40 students selected at random

from this class.

A coin:

This module tossed me around in my sleep!

Pierre Simon Laplace:

It is remarkable that a science which began with the consideration of games of

chance should have become the most important object of human knowledge.

Niels Bohr:

Einstein, stop telling God what to do with his dice.

Stephen Jay Gould:

Misunderstanding of probability may be the greatest of all impediments to

scientific literacy.

ebay:
Shadowfist CCG Probability Manipulator SE Rare

0 Bids £0.99 + Postage £0.75 12h 21m

Oscar Wilde:

Always be a little improbable.
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1 Preface

Lecture notes

It is very difficult to simultaneously listen to a lecturer, read what is being written on

the blackboard and copy the essential of both sources. First year modules are a good

opportunity to experiment with note taking strategies, because you can get hold of most

of the material (and more) from textbooks and/or lecture notes. In later year module this

may not be the case. In research seminars or meetings (in or outside academia) there will

be no notes and note taking skills will come in handy.

My recommendation for taking notes is to scribble down as much as you can of both the

material on the blackboard and of what is said without worrying about whether it looks

neat and whether you understand it in real-time. Later, you rewrite your notes as a way

of deepening your understanding of the material.

These typed lectures notes are an example of what this might look like. They are very close

to what happened in the actual lectures, but they are not exactly the same. In particularly,

they contain additional examples, details or some proofs that were only sketched in the

lecture and additional background on applications and foundations.

The lectures and the notes are based on a number of other sources. First, there are previous

versions of this module taught by my colleagues. I thank Saul Jacka for sharing his lecture

notes with me – some parts are taken straight from his notes – and I thank Roger Tribe

for providing a sketch about content and motivation for his lectures. Second, some of

the fascinating probability textbooks; as listed below. Third, my notes from teaching at

University of California at Berkeley, Technical University Berlin and Humboldt University

Berlin. Finally, I have been inspired by Hans Föllmer’s lectures who taught me probability

in the first place. Special thanks goes to Charlie and Lola2.

ω’s nickname omi is chosen in memory of my grandmother who passed away during the

first time I taught this module. She introduced me to dice and cards games. She gave me

a set theory kit that had made its way into toy stores in the wake of the 1960s New Math3

movement introducing ∩ and ∪ between sets of colourful triangles, squares and circles to

help 6 year olds doing their math homework.

Websites

There are different websites for this module:

http://www2.warwick.ac.uk/fac/sci/statistics/modules/st1/st111

http://www2.warwick.ac.uk/fac/sci/statistics/modules/st1/st111/resources

The first one is very general and is intended to help students with their module choice or

with anticipating the role of this module within the course program. The second website,

the resources website, is the one that is more relevant for you now. There, I will post lecture

notes, exercise sheets, information about the module organisation, old exams, computer

code and interesting links about probability. In previous years, some of the lecturers have

used the MathStuff website by the Warwick Mathematics Department to post exercises,

2http://www.bbc.co.uk/cbeebies/charlieandlola/stories/
3to get a taste of what this is see www.bbc.co.uk/cbeebies/charlie-and-lola/
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lecture notes, old exams and other information. This could still be useful to you; just go

to ST111 > Module Pages > Archived Material; or at this address:

http://mathstuff.warwick.ac.uk/ST111/archive

Finally, there is my website:

http://www2.warwick.ac.uk/fac/sci/statistics/staff/academic/brettschneider/

Textbooks

Please check out the list on the resources website. Which one is best? Some people say

the one by Ross tends to more or less suit the majority of students. It certainly has a

lot of examples and it covers essentially all the material from this module, as well as a

lot more. The textbook by Pitman teaches you to love probability and to do so with the

minimum of notation and formality. Examples are chose with care and discussed in a way

that connects intuition with mathematically formal language.

By the way, have you experienced the law of the second source? The second source where

you read about a piece of mathematics new to you tends to be the one that explains it

better – regardless of the order of the sources. Interestingly, there is no such law for the

third source. In fact, there seems to be a k ≥ 3 such that while reading the kth source

you end up being more confused than while reading the first one, again regardless of the

order of the sources. Without getting to that point you will never know how well you had

already understood the material before getting hold of source k. For this and many other

reasons,
∞∑
i=1

“read another book”

Cover pictures sources

The cover picture is made using the statistical programming language R which is publicly

available, in source code form, at www.r-project.org

In other words, you can use it, too. A real strength of R is the huge amount of pack-

ages contributed by the community of R Users from all over the world. In 2011, the R

community had their annual conference at Warwick www.warwick.ac.uk/statsdept/user-2011/

Assessment and exams

The one most frequently asked question is: How do I study for the exams?

The answer is, in a nutshell,

∞∑
i=1

“do another exercise”

Apologies about ∞, this is an idealised model. Reality is more complex. You also need

to work through the material until you have embraced all key concepts (i.e., understand

definitions and techniques) and you need to get enough sleep before the day of the exam.
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Synopsis of the lecture

This is a rough plan which may be modified as we move through the term. General remarks

about the place of probability theory within mathematics and about its connections with

the so-called “real world” tend to pop up in the lecture when they to fit in; in the notes

they are summarised in Sections 2.2 to 2.6. The schedule for Part A is detailed below; for

a schedule of Part B see below the notes to Part A.

Week I

1) Probability as a science of patterns, random sequences, birthday problem

2) Three door puzzle, fallacies in dealing with probabilities, two-headed coin example,

connection between probability theory and statistics

Week II

3) Terminology for random events, some classical random experiments

4) Classical probability for equally likely events, summary set theory and event language

5) Combinatorics: counting and sampling

Week III

6) Combinatorics

7) Axioms of probability

8) Deductions from the axioms, examples for probability spaces, cumulative distribu-

tion function

Week IV

9) Conditional probability

10) Total probability theorem, Bayes theorem

11) General multiplication rule, independence

Week V

12) Sequences of independent events: binomial, geometric, negative binomial

13) Poisson approximation to the binomial

14) Poisson distribution, Law of large numbers

Have a great journey into probability spaces!
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2 Motivation

2.1 Observing random phenomena

We start by looking at a few pictures from the “real world” that exhibit random phenom-

ena. The slide show used during this lecture can be downloaded from the ST111 resource

website. It includes ice crystals, animal patterns, genetics, traffic, networks, statistical

mechanics, stock markets, gambling, knitting and more.

The common definition of mathematics as the science of patterns goes back to G.F. Hardy,

if not longer. Number theorist look for patterns in the integers, topologists in shapes,

analysts in motion and change and so on.

Look at the bottom picture on the cover sheet of these lecture notes. Are the black and

white dot sequences regular or not? In which sense (not)?

• Row 1: Yes, it is constant.

• Row 2: Yes, it is periodic.

• Row 3: No, but almost. It is the sequence from row (2) with a few errors.

• Row 4: No, there seems to be no rule that generates this sequence.

• Row 5: No, there seems to be no rule that generates this sequence.

Question 2.1. Statistical regularity in dot sequences. The sequences in Row 4 and Row 5

clearly are not regular in the classical sense: There is no deterministic rule that generates

them. But are they statistically regular in some sense? And if so, do they have the same

kind of statistical regularity in the sense that they show similar statistical characteristics?

One of them has actually been generated by flipping a fair coin 100 times and printing a

white dot for head and a black dot for tail. Can you say which one? And why do you think

so?

ω: But excuse me, I do not like black and white. My very most favourite colour is totally

tomato red and my other favourite colour is bitter chocolate brown with lime green sparkles

in it and YOU should really try this link: http://biscuitsandjam.com/stripe_maker.php

Ω: Speaking of black and white, have you heard that half of the students taking this
module loves us and the other half hates us? I have decided that the most sensible step
for us is to turn grey and to shrink bit, so so we do not overstay our welcome.

About Question 2.1: Most likely, Row 5 is the coin toss. Does the first one look more

random to you? Well, it does switch more often between black and white, and we seem to

take that as a sign for proper randomness. But could this be too much of a good thing?

Consider that staying with the same colour is as likely as switching to another colour we

would expect that a sequence of 100 coin tosses has about 50 colour changes. However,

there are 66 colour changes in Row 4 and 46 Row 5. While we can not say with certainty,

we have argued that the difference in the number of observed colour changes makes Row 5

much more likely to be generated by the coin tossing by than Row 4. This is an example

for statistical thinking (see also Section 2.5).
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2.2 Studying random phenomena

It seems desirable to get more insight into the phenomenon of randomness, but what kind

of discoveries can we expect from studying something as inconceivable as randomness?

The actual science of logic is conversant at present only with things either

certain, impossible, or entirely doubtful, none of which (fortunately) we have to

reason on. Therefore the true logic for this world is the calculus of probabilities,

which takes account of the magnitude of the probability which is, or ought to

be, in a reasonable man’s mind.

— James Clerk Maxwell

How dare we speak of the laws of chance? Is not chance the antithesis of all

law?

— Joseph Bertrand, Calcul des probabilités

Why would anyone want to study randomness? There are a number of reasons including

• describing and understanding patterns in random phenomena,

• unrevealing scientific principles,

• predicting and forecasting events,

• learning and developing degrees of belief about events,

• quantifying and comparing risks,

• taking decisions under uncertain circumstances.

Probability theory provides a formal theory to describe and analyse random phenomena.

2.3 Probability is pure mathematics (with some probability p > 0)

Probability can be practiced as pure math. The birth of of probability theory as a math-

ematical discipline is often associated with the axiomatisation the field underwent during

the twenties and early thirties of the 20th century.

It borders other fields in mathematics. Most obvious are the overlaps with measure the-

ory, analysis, functional analysis, PDEs, geometry, combinatorics, mathematical statistics,

computing, ergodic theory, number theory and mathematical physics. The probability

group at Warwick is among the leading ones in the UK. Their major home is P@W; see

http://www2.warwick.ac.uk/fac/sci/statistics/paw/

2.4 Probability is applied mathematics, with some probability q > 0

The instrument that mediates between theory and practice, between thought

and observation, is mathematics; it builds the bridge and makes it stronger

and stronger. Thus it happens that our entire present day culture, to the

degree that it reflects intellectual achievement and the harnessing of nature, is

founded on mathematics.

— David Hilbert, radio speech (1930)

Probability provides a language and a methodology for the human mind’s inquiries into

random phenomena in a variety of fields.
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Physical world: e.g. astronomy (in particular, theories about measurement error), me-

chanics, statistical physics, quantum mechanics.

Living world: e.g. integrative biology, evolution, genetics, genomics, medicine, neuro-

science.

Social world: e.g. economics (in particular, financial markets), sociology, demography.

Engineering: e.g. computer science (in particular, machine learning), electrical engineer-

ing, risk assessment, reliability, operations research, information theory, communication

theory, control theory, traffic engineering.

Humanities: e.g. epistemology, determinism, philosophy of language, philosophy of

religion, philosophy of logic, political philosophy, belief systems.

Games of chance: e.g. roulette, dice, card games.

Arts: e.g. stochastic music, visual art (inspired by chaos theory and fractals, patterns

simulated by stochastic algorithms).

Probability theory is based on a set of axioms that can be summarised in just a few

lines. What makes it applicable to so many different kinds of applications is a huge

repertoire of probabilistic models. For example: Classical discrete probability models

in games of chance, genetic inheritance, quality control, measurement error, electrical

circuits and lattice modes for particle interaction. Discrete time stochastic processes (often

involving a certain depth of dependency on the past) in queuing, coding and stochastic

composition algorithm. Continuous stochastic processes for particle motion and stock

prices. Probabilistic networks in sociology, mobile phone and genomics.

2.5 Probability as the mathematical foundation of statistics.

“Probability and statistics used to be married, then they separated, then they got di-

vorced and now they hardly see each other,” says the British (actually, Welsh) probabilist

David Williams in his textbook about probability and statistics1. We add that at Warwick

they have moved on to be good friends offering a wide range of research activities. They

cover any possible blend of the two disciplines from pure probability to applied statis-

tics and extending to interdisciplinary collaborations with other Warwick research groups

such at Complexity, Systems Biology, Medical School, Analytical Sciences, Economics and

Finance.

Probability and statistics are connected by studying similar objects from different per-

spectives:

Probability starts out with a model for a random experiment that describes potential

outcomes and assumes certain basic parameters. Probabilities for events of interest are

deduced from these model assumptions.

For statistics, the starting point are the observed outcomes (aka oberservations or data)

of an experiment that has already been performed. The task is to infer characteristics

of an optimal model for the unknown (or partially known) mechanism of the experiment.

The goal is to find the model that is, among a certain class of models, most likely to have

1David Williams (2001), Weighing the odds, Cambridge University Press.
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created the observations. A statistical judgement can not be made with certainty. Instead,

usually come with

We will proceed with a toy example invoking a simple probabilistic model and a first

glance at statistical thinking.

2.5.1 Two-headed coin

Question 2.2. Suppose you have a bag with one two-headed coin (i.e., a coin with heads

on both sides rather than a head on one side and a tail on the other side) and n−1 normal

coins (in particularly, we assume they are fair). You pick a coin at random from this bag.

Without inspecting the coin, you throw it three times. You observe three heads. Do you

think it is the two-headed coin? How sure are you about that?

Answer to Question 2.2: We can not be sure. It seems more likely, though, that it was

the two-headed coin. Unless n was large, as this would make it very unlikely to pick the

two-headed coin. Let us do some explicit computations.

We will compute the probabilities for the two possible ways to obtain the outcome three

heads. Then we will compare them by looking at their ratio R.

If the two-headed coin was picked we certainly get three heads. So the probability for

this possibility is 1/n. If the normal coin was picked, the probability for obtaining three

heads is 1/8, because it is one out of a total of eight possible outcomes of tossing a coin

three times (you can check by listing all of them explicitly). So the probability for this

possibility is (n− 1)/n · 1/8. So we get

Rn =
1/n

(n− 1)/n · 1/8
= 8/(n− 1) (1)

So we obtain R2 = 8, R3 = 4, R4 = 22
3 , R3 = 2 and the series keeps decreasing until it hits

R9 = 1, which means that both possible ways for obtaining three heads are equally like.

For larger n, Rn is even smaller than 1, which means that explaining the outcome by the

two-headed coin is less likely to be true than explaining it by a normal coin.

Say n = 3. Would you be ready to bet £100 that the three heads come from using the

two-headed coin? It’s a bet in your favour, but it’s still somewhat risky. Uncertainty

could be reduced by throwing the coin more often. In the language of statistics, you are

increasing the size of your sample.

Now let us do the math for the general case of throwing the coin k times. The bit that

changes is the likelihood of getting an outcome with all heads when you use a normal coin.

You may know from school that this equals 1/2k. (Otherwise, wait just until next week’s

lectures to see how these things are computed.) This leads to

Rn =
1/n

(n− 1)/n · 1/2k
= 2k/(n− 1) (2)

We can fix n and study the ratio Rn as a function of k. For n of the form n = 2j + 1 for

some integer j the expressions simplify to a convenient expression: Rn(2j+1) = 2k − j, for

example, R2(k) = 2k, R3(k) = 2k−1, R5(k) = 2k−2. We can see that for larger n, we need a
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higher number of k to obtain a higher probability for the explanation that the two-headed

coin was used than that the normal coin was used. Roughly speaking, we have to offset

the low probability that the two-headed coin was selected in the first place.

This question is an example for statistical thinking: given the outcome, what is the most

likely explanation for it. Probability theory was used to compute the different probabilities

involved.

Ω: It is a bit boring with the two-headed coin. I’d have just inspected the coin properly and hence avoided

all this uncertainty!

ω: But sometimes you can not find out everything by just looking at it. I saw someone making loaded dice

on youtube!

Ω: I guess the question above was just a toy example to focus on the most essential. A more subtle version

would involve a biased coins rather than a two-headed coin. The comparison of likelihoods given different

explanation is an example for the kinds of approach used in the paradigm of hypothesis testing.

ω: You know, Omega, the lecturer told me that they had taught hypothesis testing in her school and, as

a result, never looked at statistics again until 15 years later 10,000 miles away from home.

Ω: Maybe, if someone had told her earlier that there is nothing logical about these mysterious 95%, but

it’s just some sort of standard that leading figures make up based on their priorities, like policies regulating

university tuition fees.

2.6 How are we going to study probability in this module?

In his classical book An Introduction to Probability Theory and its Applications, William

Feller stresses that in probability, as in other mathematical disciplines, we must distinguish

three aspects of the theory:

(a) the formal logical content,

(b) the intuitive background,

(c) the applications.

He continues: “The character, and the charm, of the whole structure cannot be appreciated

without considering all three aspects in their proper relation.”

Considering both the history of probability and the fact that this is a first year module

we start with models for equally like probabilities. This approach is minimalistic in the

formal sense but already provides enough mathematical foundation to properly dive into

some interesting examples typical for probability as a field.

While some students are extremely good at solving probability problems intuitively, others

would prefer to see a more formal approach first, which is why we will then introduce the

modern axiomatic approach to probability including the notions of σ-algebras, probability

measures and random variables.

Besides these objects, the mathematical theory of probability includes crucial concepts

such as conditioning and independence, expectations and variances. In the easier examples,

the introduction of such formalism may feel like breaking a butterfly on a wheel. It serves

the purpose to get used to the formalism, which becomes very useful for more complex

questions some of which even have counterintuitive answers.

Along with the theory we will get to know classical probability distributions such as



11

Bernoulli, uniform, binomial and geometric. All of this will be motivated by “real world”

questions and illustrated by further applications and by examples constructed from prob-

abilistic experiments (such as coin tossing or gambling examples).

2.7 Some examples to surprise and enthuse you

ω: Some people use enthuse you as euphemism for confuse you. But it is your birthday, so that’s why I

will stick around.

2.7.1 Birthday problem

Question 2.3. Suppose there are r students in this class. What is the probability that at

least two students in the class have the same birthday?

ω: But I need to know everybody’s birthday first to find out whether any two are on the same day!

Ω: Don’t be silly. In the question they don’t care about exactly which students these are. They just want

to know what are the chances of two identical birthdays in a random class of r students.

ω: You are the one being silly. A random class is how our school teacher calls us for being naughty.

Ω: Not that kind of random. I mean a class picked at random from all the classes of r students in the

universe.

ω: Universe, probability space, outer space – you are just making up funny words. How is the universe

going to help you out? You do not even know who is out there. Maybe on Mars everybody is born in May,

and on Saturn everybody is born on a Saturday, and in the Milky Way everybody is born on a Lucky Day!

Ω: OK. That is a very good point, we do need to be clear on what kind of space we are solving that

problem. I am inclined to assume that every student is equally like to be born an any of the days of the

year, and that it has nothing to do with when others are born.

ω: But excuse me, there are leap years, there are more birthdays in November and twins have the same

birthday!

Ω: You’re absolutely right, but I just want to start somewhere while insuring that my assumptions still

capture the essence of the problem. Once we have solved it this way we can see how important the

assumptions are in the calculation and then tackle it with a different set of assumptions.

ω: OK, so let’s go for it. There are 23 kids in my class. They are all very special, hopefully there no high

risk that any two of us have the same birthday. The probability that Alphie is born on my birthday is

only 1 in 365, for Betty it is also 1 in 365 and so on, which makes 24/365 all together. Now, Alphie makes

the same calculation for her, and so does Betty and and everybody else. Putting it all together makes 25

times 24 divided by 365.

Ω: Which is about 1.64. How can a probability be larger than 100%?

ω: OK, I see, I counted some things twice, like Alphie on the same day as me is the same as me on the

same day as Alphie. Let me try again. . . .

Ω: I know you like questions. But this is actually my question and I will approach it by looking at a

simpler version it. Say there are only three students in a class and we are looking at any two of them

having their birthday in the same month denoted by a, b, c, . . . , l. Now I will figure out all possibilities for

the birthday months of the three students and count how many of them have at least two identical months

in it. I am using two Problem solving techniques: Look at a toy problem, consider all options. Now,

aaa, aab, aac, . . . , aal obviously all belong in this group, makes 12. Now, aba, abb, abc, . . . , abl. Of those,

only two have two identical months. Same for all the once starting with ac or ad and so on up to al. So

far, we have 12 plus 2 times 11. Now, there are baa, bab, . . . , bal and bba, bbb, . . . , bbl. . .

ω: And bla, bla, bla and. . . Omega, I am hungry, and there’s got to be a better way for this!



12

Answer to Question 2.3: We make three assumptions.

(i) The year has n = 365 days.

(ii) Every student in this class is equally likely to be born on any day of the year.

(iii) The birthdays are independent of each other.

Are these assumptions are they realistic enough? (i) is correct for 3 in 4 years, otherwise

it is almost correct. (ii) is a simplification. There is a surge of birthdays in autumn in

the UK, but it’s not that big and we will neglect it for now. To be sure the models suits,

we would also need to check out the data from overseas to account for the students not

born here. Finally, we need to think about how the class was selected from the general

population and whether this might in any way be affected by birthdays. For example, if

the students in a year was split into classes directly or indirectly defined by birthdays.

(iii) is usually realistic, but there may be exceptions such as a meeting of people born as

twins.

To answer the question we first order the students in some way. With the above assump-

tions our model is that the birthdays are equally likely to form any ordered r-tuple with

numbers chosen from {1, 2, . . . , n}.

We want to compute the probability pn,r that there are at least two students with the

same birthday among the r students in the class. Obviously, if r > n this has to happen,

so pn,r = 1. Otherwise, we can compute it by dividing the number of r-tuples containing

repeats by the total number nr of r-tuples from a set of n elements.

Omega attempted to list all possible r-tuples, identify which of them have repeats in them

and count those. Whereas this is a correct way of solving the problem, it is more efficient

to just list and count those r-tuples that do not have any repeats in them. This will allow

us to compute the probability qn,r of the opposite, that is, not any two students have the

same birthday?

Problem solving technique: Check if the opposite event is easier to handle.

In how many ways can birthdays be assigned without ever repeating one? Let the first

student have whatever birthday. Avoiding that day for the second student leaves n − 1

options. The third student has to avoid both previously taken birthdays which leaves n−2

choices. The forth has n − 3 choices and so on up to the n − r + 1 choices for the rth

student. So we have

qn,r = n · (n− 1) · (n− 2) · . . . · (n− r + 1)/nr,

which yields

pn,r = 1− n · (n− 1) · (n− 2) · . . . · (n− r + 1)/nr.

Let us look at some numerical results:

p365,10 ≈ 11.7% p365,40 ≈ 89.1%

p365,20 ≈ 41.1% p365,50 ≈ 97.1%

p365,30 ≈ 70.6% p365,60 ≈ 99.4%

In particular, we can see that the smallest number of students r such that the probability

of having at least two of them with the same birthday is 23:

p365,22 ≈ 47.6% p365,23 ≈ 50.7%
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2.7.2 Door problem

An old kind of problem that became famous worldwide via the Monty Hall game show in

1990. You are being shown three closed doors. Behind one of the doors is a car; behind

each of the other doors is a goat. You choose one of the doors. The show’s host, who

knows which door conceals the car, opens one of the two remaining doors which he knows

will definitively reveal a goat. Then he asks you whether or not you want to switch your

choice to the remaining closed door. What are you going to to? Here are some attempts

to answer this question.

(i) Either the prize is behind the door you bet on originally or behind the other still

closed door makes it a fifty-fifty chance for each, so it doesn’t matter whether you

change or not.

(ii) All doors were equally like originally. That is not going to change because of whatever

that show’s host did. So it doesn’t matter whether you change or not.

(iii) Imagine the same problem but with 100 doors instead of 3. Behind one of the doors

is a car, behind all the other 99 doors is a goat. The show’s host knows where the

prize is and opens all doors but the one you picked and one other one. Now it seems

intuitive, that you would want to switch.

Problem solving technique: Exaggerating the original question helps to reveal

the essential characteristics of a problem. Often, the qualitative aspects of the answer

to the exaggerated question can be carried over to answer the original question.

(iv) We compare the two different strategies stick (with your original choice) and switch.

There are two possibilities:

Case 1: Original choice is door with car. Now you will get a goat.

Case 2: Original choice is a doors with a goat. Now you will get a car.

The probability for Case 1 is 1/3, the probability for Case 2 is 2/3. If your strategy

is stick then your chance of winning the car are 1/3. If your strategy is switch then

your chance of winning the car are 2/3.

Problem solving technique: Distinguishing cases allows to find solutions of the

problem under more constraint conditions. In probability, it is usually done to get

rid of (some of) the randomness.

(v) A qualitative approach. The shop’s host knows where the car is and opens, on

purpose, a door that reveals a goat. If you make use of that information it should

increase your chances of getting the car. At least it should not decrease it.

(vi) A variation of the problem. The show’s host does not know where the car is, he just

happens to reveal a goat when he opens the door. Does this change your answer to

the problem?

2.7.3 Two short questions

Question 2.4. Which one of the following birth orders in a family with six children is

more likely, or are they the same? (G means girls, B means boy.)

GBGBBG BGBBBB

Question 2.5. A hexagonal die with 2 red and 4 green faces is thrown 20 times. You have

to bet on the occurrence of one of the following patterns. Which one would you choose?
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RGRRR GRGRRR GRRRRR

Answers to these two questions are given below. Before you read them, try to come up

with your own answers.

About Question 2.4: Both are equally likely. Experiments with people who have no

training in probability have shown that they tend to believe that the first order is more

likely than the second order. The second sequence is perceived to be too regular. The

answers suggest that the respondents compare the frequency of families with 3 girls and 3

girls with the frequency of families with 5 boys and 1 girl. Yet both exact orders of birth,

GBGBBG and BGBBBB, are equally like, because they both represent one of 64 equally

like possibilities. (See Kahneman and Tversky, 1972b, p.432 see Chapter 5, Neglecting

exact birth order.)

About Question 2.5: Your best bet is (i). Most people bet on (ii), because G is more

likely than R and (ii) has two Gs in it. Yet (i) is more likely, simply because RGRRR is

nested in GRGRRR. This is an example of committing the conjunction fallacy without

realising that there is a conjunction. (See Kahneman and Tversky, 1983, p.303, Failing to

detect a hidden binary sequence.)

The conjunction fallacy has been studied by many researchers using the example about

the (hypothetical) person Linda. The description reads:

Linda is 31 years old, single, outspoken, and very bright. She majored in phi-

losophy. As a student, she was deeply concerned with issues of discrimination

and social justice, and also participated in anti-nuclear demonstrations.

Then people are asked to rank statements about Linda by their probability, in particularly

the following two:

Linda is a bank teller.

Linda is a bank teller and is active in the feminist movement.

People assigned higher probabilities to the second statement. This is not in tune with

the mathematical rules about probability and has stimulated a discussion about how real

people deal with probabilities. (See Kahneman and Tversky, 1982b, p.92.)

ω: People’s minds don’t follow the usual probability rules, incy wincy tiny little particles do not follow

them either; are they of any use?

Ω: Of course they do work a lot of the times, for particles and even for human. It’s just that we enjoy

these curious examples. By the way, for those fractions of elementary particles, well, that’s why quantum

probability was invented.

3 Models for equally probable events

“On Tuesday 9th October 1972, in the first serious lecture given to a group

of 45 second-year mathematicians, entitled Possibilities & Probabilities, the

founding professor tossed a 2p coin high in the air. The coin descended to the

vinyl floor of lecture theatre L5, spun as a perfect sphere, and, in full view,

slowly came to rest on its edge! Stunned silence turned into massive applause.

No further publicity was necessary truly the Statistics Department had ar-

rived in style!”
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— Jeff Harrison, A Brief History of the Early Years of the Statistics Depart-

ment [at Warwick].2

“All models are wrong, but some are useful”

— George Box

In this chapter we develop a classical mathematical framework to model random experi-

ments, i.e. actions with unknowns results. More generally, it serves to model systems that

incorporate uncertainty. The basic ingredients are:

• An outcome is a result of the experiment. It is not known until the experiment has

been performed.

• The set of all possible outcomes is called outcome space or sample space. This set is

known beforehand.

• An event is a collection of outcomes. In other words, a subset of the outcome space.

Often, we are interested in obtaining certain kinds of outcomes (e.g. an odd number)

rather than a specific one.

Typically, we use Ω for the outcome space, ω for its elements and A,B,C, . . . for events.

3.1 Classical random experiments

The probabilists’ favourite example is the coin flip. One coin flip in the easiest non-trivial

example for a probabilistic model. And it can be made more interesting by flipping two

coins. Or many coins, making this a discrete stochastic process.

Example 3.1. Coins. Flip a coin and observe what it is facing. Then Ω = {h, t} with h

for the coin facing heads and t for the coin facing tails. The standard model for flipping

two coins is Ω = {hh, ht, th, tt}. (See homework sheet 1 for a discussion of alternative

models.)

Ω: Look omega, www.btwaters.com/probab/flip/coinmainD.html flips coins for you.

ω: Look! Here you can really see how all of these coins land www.random.org/coins/.

Ω: Thank you, omega. I’ll start with flipping a 1 Pound coin and then go on to a Constatius II - Silver

Siliqua.

ω: What is an East German mark?

Ω: I don’t know, but it says obsolete.

ω: And what about these European coins? Mum said they don’t work anymore either.

Ω: They still do have the 1 Euro coins here. . . Actually, I heard they were going to replace them by dice

reflecting uncertainty of the value.

Example 3.2. Dice. The most common ones are made from Platonic Solids, i.e. regular

convex polyhedrons: the tetrahedron (4 faces), the cube or regular hexahedron (6 faces),

the octahedron (8 faces), the dodecahedron (12 faces) and the icosahedron (20 faces).

The outcome space for rolling an n-faced die and observing the number it faces is Ω =

{1, . . . , n}.
2www.maths.warwick.ac.uk/general/institute/histories-small.pdf
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For a cubic die,Ω = {1, 2, 3, 4, 5, 6}. Here are some events:

A = “number is even” = {1, 3, 5}
B = “number is smaller than 5” = {1, 2, 3, 4}
C = “number is divisible by 3” = {3, 6}

They can be combined using set operations, e.g.

A ∩B = “number is even AND smaller than 6” = {2, 4}
A ∪B = “number is even OR smaller than 6” = {1, 2, 3, 4, 6}

A ∩B ∩ C = “number is even AND smaller than 6 AND divisible by 3” = ∅
A ∪B ∪ C = “number is even OR smaller than 6 OR divisible by 3” = Ω

What all these models have in common is that they have finitely many outcomes. Here is

a model that covers all such situations.

Example 3.3. Finite number of tickets. A box contains a finite number n of tickets

enumerated 1, 2, . . . , n. Draw a ticket at random. The standard choice for an outcome

space is Ω = {1, 2, . . . , n}. Events can be subsets of Ω such as:

“ticket shows 3” = {3}
“ticket shows a number between 5 and 10” = {5, 6, 7, 8, 9, 10}

“ticket shows an even number” = {2k | k ∈ N, k ≤ n/2}

In Examples 3.1 to 3.3 we can define probabilities corresponding to equally like outcomes

as follows. Let Ω = {ω1, . . . , ωn} and set

P (ω1) = 1/n, P (ω2) = 1/n, . . . , P (ωn) = 1/n. (3)

3.2 Classical probability

Classical probability models are based on symmetric characteristics of the random mecha-

nism generating the outcomes. Often, these are physical characteristics such as a die with

faces of the same shape or a box with balls of the same size. Calculations can usually be

performed directly or indirectly using the equiprobable model (3).

The axioms for classical probability we will define below are only a slight extension of that

model with the main difference being the mathematical framework. Rather than defining

probabilities for outcomes, we use events. In other words, we introduce probability as a

function on subsets of the outcome space. First we put up a structure that allows us to

combine events without falling out of that structure.

Definition 3.4. Algebra of sets.

Let Ω be a set of points. A system A of subsets of Ω is called algebra if

(A1) Ω ∈ A
(A2) A,B ∈ A =⇒ A ∪B ∈ A
(A3) A ∈ A =⇒ Ac ∈ A
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To get an idea what such an algebra is, think of it as a system of sets which, whenever it

includes a number of sets, it also includes all combinations of these sets that are obtained

by a finite number of the admissible operations (union and complement). In particularly,

this applies that the algebra is also closed under intersections, because it can be represented

as A ∩B = (Ac ∪Bc)c.

That tells us what other sets are in the algebra, but what sets do we actually start with?

One very common way to create an algebra of sets is to start out with a partition of Ω.

Definition 3.5. Partition.

A system B1, . . . , Bn of subsets of Ω is called partition if it has the following two properties:

(i) B1, . . . , Bn is exhaustive i.e.
⋃n
i=1Bi = Ω

(ii) B1, . . . , Bn is mutually exclusive, i.e. Bi ∩Bj = ∅ for all i 6= j

Example 3.6. Algebra generated by a finite partition. Let B1, . . . , Bn be a partition

of Ω. The algebra A(B1, . . . , Bn) generated by this partition consists of the empty set and

all possible unions of any number of elements of the partition. A consists of 2n subsets

of Ω. In particular, for finite Ω, the partition defined by all possible subsets of containing

exactly one element results in A being the power set P(Ω).

In this situation, any set in the algebra can be represented explicitly by elements of the

partition. For any A ∈ A(B1, . . . , Bn) there is an index set I ⊂ {1, . . . , n} such that

A =
⋃
i∈I Bi. Note that this includes the empty set by using I = ∅.

The finest possible partition is the one consisting of all elements of Ω and the algebra it

generates is P(Ω). On the other extreme, the collection (∅,Ω) is also an algebra.

Definition 3.7. Classical measurable space.

Let Ω be a non-empty set of points and A = A(B1, . . . , Bn) the algebra generated by a par-

tition B1, . . . , Bn of Ω. The pair (Ω,A) is called a classical measurable space. B1, . . . , Bn
are called basic events.

Definition 3.8. Axioms for classical probability.

(Ω,A, P ) is called classical probability space if the following two axioms are fulfilled:

(C1) (Ω,A) is a classical measurable space.

(C2) P : A −→ [0, 1] is a set function such that, for any event A ∈ A which compromises

exactly k distinct basic events Bi, it is P (A) = k/n.

All the classical examples from the last section, i.e. 3.1 to 3.3 with (3), are special cases

of this definition:

Ω = {ω1, . . . , ωn},A = A({w1}, . . . , {wn}) = P(Ω), P ({ωi) = 1/n (i = 1, . . . , n). The next

example shows how we can use this framework when different observations are not equally

likely.

Example 3.9. Balls in a bag. Draw a ball at random from a bag with k black balls and

n− k white balls. More generally, there are nk (k = 1, . . . ,K) balls of colour k in the bag.
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We observe only the colour, but to build an equiprobable model we go back to outcomes.

bki = ith ball of colour k (ik = 1, . . . , nk, k = 1, . . . ,K)

Ω = {bki | k = 1, . . . ,K, i = 1 . . . , nk}
A = A({bki}, k = 1, . . . ,K, i = 1 . . . , nk)

P = (n1 + . . .+ nK)−1

The following model has infinitely many outcomes. Distinguishing only a finite number of

them allows us to model it in the available framework.

Example 3.10. Spinner. A spinner looks like a clock with one hand. The hand is spun

until it comes to rest. The random angle between a reference line and the hand is the

observation, so a natural model. Fix N ∈ N. Then the following model for the spinner

defines a classical probability space.

Ω = [0, 2π), Bi = [(i− 1)/N2π, i/N2π) (i = 1, . . . , N), A = A(B1 . . . , BN )

for A ∈ A with A =
⋃
i∈I

Bi = |I|/N

In examples with a finite outcome space the power set is the default choice for A. The fact

that you could define a probability measures on P(Ω) does not mean you always should.

Sometimes it is more appropriate to look at a smaller collection of subsets.

Definition 3.11. Submodel.

A measurable space (Ω,A∗) is called submodel of a measurable space (Ω,A) if A∗ ⊂ A.

One of the reasons to define P on a submodel (Ω,A∗) of (Ω,P(Ω)) is to reflect limited

knowledge about probabilities. Say we know P for all A ∈ A∗, but we do not have enough

information to uniquely extend P to P(Ω).

Example 3.12. Cards. The deck most often seen in English-speaking cultures, and

common in other countries where the deck has been introduced, is the Anglo-American

poker deck. This deck contains 52 unique cards in the four French suits, Spade (♠), Heart

(♥), Diamond (♦) and Club (♣) and thirteen ranks running from two (deuce) to ten, Jack,

Queen, King, and Ace. For simplicity, introduce the coding Ace=1, Jack=11, Queen=12,

King=13 and choose Draw a card from the deck and observe the suit and the rank.

Ω = {Sk |S = ♠,♥,♦,♣; k = 1, . . . , 13}.

The full model uses P(Ω). The submodel obtained from observing only the suit is the

algebra generated by the partition ({♠k | k = 1, . . . , 13}, {♥k | k = 1, . . . , 13}, {♦k | k =

1, . . . , 13}, {♣k | k = 1, . . . , 13}). The submodel obtained from observing only the number

is the algebra generated by the partition ({Sk |S = ♠,♥,♦,♣}, k = 1, . . . , 13). Both are

submodels of (Ω,P(Ω)), but they are not submodels of each other.

Example 3.13. Flip a coin twice. Use Ω = {hh, ht, th, tt}. A submodel obtained

from observing only the number of heads is A1 = {∅,Ω, {hh}, {ht, th}, {tt}}. A submodel

obtained from observing only the second coin flip is A2 = {∅,Ω, {hh, th}, {ht, tt}}. They

are both are submodels of the full model (Ω,P(Ω)), but they are not submodels of each

other.
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Example 3.14. Heart attack risk. In a certain population, We would like to define

a probability measure describing the probability for a heart attack that distinguishes

between people who had risk factors and those who did not. However, we only know that

from 100 people who regularly see the doctor, 30 turn out to have risk factors for a heart

attack and that 20 in 100 do see the doctor on a regular basis. Define events

D=“see the doctor on a regular basis”

R=“show risk factors for a heart attack”

Based on the information, one can define a probability measure on the algebra generated

by the partition D ∩ R,D ∩ RC and DC . There is no way to distinguish DC ∩ R and

DC ∩RC .

Ω: Stop this equally likely approach to probability! It’s not realistic.

ω: But it’s more fair to give everybody the same chance.

Ω: I didn’t know you are a communist.

ω: I’m not a commo. . . comprumist, I mean I’m not a compunist, eh commponist eh I don’t know what I

am not. But I like equally when they are equally like, because:

All you need is counts, count, counts, is all you need.

All you need is counts (all together now),

All you need is counts (everybody).

3.3 Some results from combinatorics

3.3.1 Counting

“I think you’re begging the question,” said Haydock, “and I can see looming

ahead one of those terrible exercises where six men have white hats and six

men have black hats and you have to work it out by mathematics how likely it

is that the hats will get mixed up and in what proportion. If you start thinking

about things like that, you would go round the bend. Let me assure you of

that!”

— Agatha Christie, The Mirror Crack’d

Question 3.15. Campus residences.

A campus residence unit consists of three two-storey buildings with four rooms in each

storey. What is the total number of rooms in this unit?

Answer: 3 buildings times 2 floors times 4 rooms makes 24 rooms all together.

An easy way to illustrate this is by drawing a three dimensional lattice with one dimension

for the buildings, one dimension for the floors and another dimension for the rooms.

Another way to visualise this is by sketching a tree shaped graph: 3 branches for buildings

with each of them growing 3 branches for the floors which each grow 4 branches for the

rooms.

Let us now formally state the counting methods we have just applied intuitively.

Theorem 3.16. Fundamental Rule.

Given a set of n1 distinct elements a1, . . . , an1 ; a set of n2 distinct elements b1, . . . , bn2 ;

up to a set of nv distinct elements x1, . . . , xnv ; there exist
∏v
i=1 ni distinct ordered v-tupels

(ai1 , . . . , xiv).
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ω: That’s a funny theorem. It only applies to tupels of lengths 2 or 24!

Ω: Don’t take everything so literally, omi. They just want to avoid even more indices, but you can use it

for whatever long tupels you like. See, a, α, β, γ, δ, b, c, . . . , x makes 29-tupels.

Proof. By induction. True for v = 2, just form a rectangular array with pair (ai, bj)

at the intersection of the ith row and the jth column. Now suppose it is true for v − 1.

Expressing the v-tupel as a pair ((ai1 , . . . , wiv−1), xiv) and applying the v = 2 case with

m = n1 · n2 · . . . · niv−1 and n = nv shows the claim for v.

Question 3.17. Group picture.

You want to take a picture of seven people arranged on chairs in a row. How many choices

do you have?

Answer: Put the seven chairs in a row. The first person has the choice between seven

chairs. For the second person, there are six chairs left. (Note: For the number of choices it

does no matter which chair the first person chose.) The the third person, there a five chairs

left. And so on. The sixth person only has a choice between two chairs, and the seventh

person has no choice at all. So, the total number of arrangements is 7 ·6 ·5 · . . . ·2 ·1 = 5040.

ω: But I want to be next to you!

Ω: Why don’t you figure out how many possibilities we have when we restrict the arrangements to those

where you sit next to me.

ω: I think that easier if we sit in a circle.

Definition 3.18. Permutation.

A permutation of a finite set is any ordering of its elements in a list.

Ω: Actually, this it not what I learned in my algebra class. They said, a permutation of a finite set is a

bijective map of that set onto itself.

ω: But it’s all the same, Omega!

Theorem 3.19. Total number of permutations.

A set with n elements has n! different permutations.

Proof. Let a1, . . . , an be the n distinct elements of the set. We compute the number of

permutations following the idea of the calculation in Question 3.17. There are n choices

for an to go, n − 1 choices for an−1, n − 2 choices for an−2, and so on, up to 2 choices

for a2 and just one option for a1. Using the fundamental rule, that makes n! different

orderings.

3.3.2 Sampling

Ω: I am collecting a collection.

Definition 3.20. Sampling types.

Suppose we sample r from n distinct elements in a pool. The sampling method is called

• with replacement if, any element that was drawn is replaced and may be drawn again;

• without replacement if, once drawn, an element cannot be drawn again.

The record (basic event) is called
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• ordered if the order of the draw is recorded (use notation (. . .));

• not ordered if the order of the draw is not recorded (use notation {. . .}).

Typically, we think of experiments involving tossing coins or rolling dice as sampling with

replacement. Simply, because whatever side the coin or the die faces it will not come off

but still be there for the next toss. In experiments involving drawing balls from a bag or

tickets from a box, we have to specify whether or not we are going to throw them back or

not.

Example 3.21. First, second and third prize. A first, second and third prize are given

to three randomly selected people from a group of 200. This is a description in everyday

language. To make it mathematically precise we state the implicitly made assumptions:

The three prizes are different and each person can at most win one prize. In other words,

this is an ordered sample of size r = 3 drawn at random without replacement from

a pool of size n = 200. The number of possibilities can be calculated by considering the

number of options in the stepwise process of selecting the winners, so the total number of

possibilities amounts to 200 · 199 · 198 = 7, 880, 400.

Example 3.22. Three prizes. Three identical prizes are given to three randomly se-

lected people from a group of 200. We assume: Each person can win at most one prize.

In contrast to before, we do not record which of the three winners got which of the three

prizes. Hence this is a not ordered sample of size r = 3 drawn without replacement.

In other words, any possibilities that only differ by the order would be identified. Since

there are 3! possible ways to order the three winners, the total number of possibilities can

be obtained by dividing the result from (i) by 3! which makes 1, 313, 400.

Example 3.23. Tossing a coin three times. Toss a coin three times. A mathematically

precise description would say that we take an ordered sample of size r = 3 at random

with replacement from a pool of n = 2. The number of possibilities is 2 · 2 · 2 = 8. This

can be visualised by a binary tree.

ω: (singing) I do anything for you dear, anything...

Ω: Can you make me a coin that samples without replacement?

Example 3.24. Tossing three coins. Toss three coins at once. In contrast to the

previous example, this description suggests that no record of the order is kept. This is a

not ordered sample of size r = 3 at random with replacement from a pool of n = 2.

Example 3.25. Lottery. Draw 6 out of 49 numbered balls at random. The balls are

drawn by a mechanical system one by one. Once drawn, a ball is not replaced into the

machine. Whereas the mechanism of drawing the balls implies an order, it is not taken

into account for the evaluation. To win the highest prize of the lottery one needs to have

guessed all the 6 numbers correctly. Hence, this is a not ordered sample of size r = 6 from

a pool of size n = 49. drawn at random without replacement. Following the reasoning

from Example 3.22 we obtain that the total number of possibilities is (49 ·48 · . . . ·44)/6! =

13, 983, 816.

Ω: The chance to get this right is only 1 in 13,983,816. Why would you play the lottery?

ω: Because I am special, don’t you see Omega?

Ω: What I see is that you may want to take the module Games and Decisions.
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Theorem 3.26. Total number of samples.

Suppose we sample r ≥ 1 from n distinct elements in a pool {e1, . . . , en}. Let O(r, n) be

the number of distinct ordered records and N(r, n) be the number of distinct not ordered

records.

(i) Suppose the sampling methods is with replacement. Then

O(r, n) = nr and N(r, n) =

(
n+ r − 1

r

)
.

(ii) Suppose the sampling methods is without replacement and r ≤ n. Then

O(r, n) =
n!

(n− r)!
and N(r, n) =

(
n

r

)
Proof.

(ii) (without replacement):

For ordered records we have n choices for the first element, n− 1 for the second, n− 2 for

the third and so on. Using the Fundamental Rule Theorem 3.16,

O(r, n) = n · (n− 1) · (n− 2) · . . . · (n− r + 1) = n!/(n− r)!

Each subset of r distinct elements can produce exactly r! distinct ordered records, which

proves the formula for N(r, n).

(i) (with replacement):

For ordered records we have n choices for each of the elements we draw. Using the

Fundamental Rule 3.16, O(r, n) = nr.

To compute N(r, n) we will use that there is a bijection between the following two sets

• the set of unordered records of the form {ei1 , . . . , eir}
• the set of ordered n-tuplets (N1, N2, . . . , Nn), where Ni is the number of times ele-

ment ei is drawn for i = 1, . . . , n.

It remains to compute the size Ñ of the latter set. Note that N1 + . . . + Nn = r, so

Ñ equals the number of ways to place n − 1 vertical lines between r dots. The dots to

the left of the first line correspond to N1, and for i = 2, . . . , n − 1 the dots between the

(i − 1)th and the ith line correspond to Ni. The dots to the right of the (n − 1)th line

correspond to Nn. To compute the number of possibilities, think of this as r + n− 1 dots

of which n−1 are chosen at random, not ordered and without replacement, to be changed

to lines. According to (ii), this yields Ñ =
(
r+n−1
n−1

)
=
(
n+r−1

r

)
. In the last step we use

n+ r − 1− (n− 1) = r and
(
m
k

)
=
(
m

m−k
)

Remark 3.27. To visualise the last steps look at an example: r = 4, n = 6. This make

r + n− 1 = 9 dots of which 5 are to be replaced by vertical lines. The pattern

• | | • | | • • |

correspondes to N1 = 1, N2 = 0, N3 = 1, N4 = 0, N5 = 2, N6 = 0, and the pattern

| • • | | | • | •

correspondes to N1 = 0, N2 = 2, N3 = 0, N4 = 0, N5 = 1, N6 = 1.
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3.3.3 Balls in buckets

In how many ways can r balls be placed into n buckets? This is a popular way of asking

about the number of diophantine solutions (i.e. in N) to the equation x1 + . . . + xn = r.

A variation is to ask the same question under the additional condition that no bucket is

empty.

Theorem 3.28. Occupancy theorem.

In allocating r indistinguishable elements to n coordinates of a record the number N of

distinct allocations is

(i) (
n+ r − 1

r

)
.

(ii) If r ≥ n and no position to be left unoccupied,(
r − 1

r − n

)
.

Proof. (i) For i = 1, . . . , n let Ni = number of balls in the ith bucket, so
∑n

i=1Ni = r.

(∗) Take r + n− 1 dots and change n− 1 of them into lines.

N1 = number of dots left of line 1.

Ni = number of dots between line i− 1 and line i (i = 2, . . . , n− 1).

Nn = number of dots right of line n.

N equals the number of ways in which (∗) can be done. How many are there?

This is sampling n − 1 from r + n − 1 without replacement. It is not ordered, because

the order in which we pick the dots to be changed into lines does not matter. Hence this

yields (
r + n− 1

n− 1

)
=

(
r + n− 1

r

)
.

(ii) First of all, place n balls into n buckets to satisfy the condition that no bucket is to

be left empty. For the remaining r − n balls use (i) and get(
n+ (r − n)− 1

r − n

)
=

(
r − 1

r − n

)
.

ω: What about eggs in baskets? Or students in sections? Or sweets into children, seeds into pits in

mancala, or money into bank accounts, or. . .

Ω: Hold on! Tell me, why are people so keen on this balls in buckets or balls in bin metaphor? There is

no reason take for granted that buckets or bins are ordered. In fact, the raison d’être of a bucket is that

it can easily be moved around, in particularly with something in it! The occupancy theorem, however, is

about allocating objects to coordinate positions of a record. I would like to see that renamed to something

students in classrooms.

3.3.4 Combinatorics in statistical physics.

This section is just for people interested in physics and its connection to probability the-

ory; it is not necessary for understanding probability theory, let alone for succeeding at
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the exam. There is a number of models representing particles in a space describing their

position and momentum. One possible starting point is a finite number r of indistinguish-

able particles a state space partitioned in a finite number n of distinct cells. The total

number of arrangements of the particles over the cells is given by Theorem 3.28(i) using

particles for balls and cells of buckets. The uniform distribution on the space of all such

arrangements is called Bose-Einstein statistics. It has been experimentally verified for

bosons, that is, particles with integer spin values such as photons and mesons.

Assume there are nl cells at energy level l, (l = 1, . . . , L), so
∑L

l=1 nl = n. The microscopic

state of the system is a record of the states of all the individual particles; the macroscopic

state is a record of the numbers of particles at the different energy levels. Imagine that the

measurement technologies only enable us to observe the macroscopic state, even though

the particles really are distinguishable. The distribution of their energy level allocation is

affected by whether or not they are regarded as distinguishable or not.

Now assume the particles are distinguishable. However, they are still assumed to be similar

in that they are equally likely to allocated to each of the cells. The outcome space for

the unobservable microscopic state of the system is Ωmicro = {1, . . . , n}r. In other words,

a microscopic state is an arrangements of r distinguishable particles in n cells. For each

particle a cell is chosen. This corresponds to sampling with replacement (several particles

allowed per cell) of r cells from a set of n cells. By symmetry (there is no reason why any

of the states should be preferred over another), the distribution is uniform on Ωmicro.

The outcome space for the observable macroscopic state is Ωmacro = {1, . . . , r}L. In other

words, the macroscopic state is a record of the numbers of particles allocated to different

energy levels. For each of the r particles, on of the n cells is chosen it is recorded to which

of the L energy levels that cell belongs. This corresponds to a multinomial distribution

with parameters r for the number of draws (with replacement) and nl/n (l = 1, . . . , L)

for the likelihoods of the types. The validity of this distribution is a classical assumption

in statistical mechanics named Maxwell-Boltzmann statistics referring to these scientists

work on the topic.

The Fermi-Dirac statistics refers to the same set-up but incorporates Pauli’s exclusion

principle which says that there is at most one particle allowed per cell. This applies to

Fermions, that is, particles with half-integer spin values such as electrons, proton and

neutrons. The exclusion principle obviously requires n ≥ r, and the outcome space for

the microscopic states has to be adjusted according to the additional constraint. For each

particle, a cell is chosen and no other particles are allowed in that cell. This corresponds

to sampling without replacement of r cells from a set of n cells.

The outcome space for the macroscopic states remains unchanged. As before, for each of

the r particles, on of the n cells is chosen it is recorded to which of the L energy levels

that cell belongs, but now it is not allowed to use a cell more than once. This corresponds

to a hypergeometric distribution with parameters r for the number of draws (without

replacement) and nl (l = 1, . . . , L) for the likelihoods of the types.

One might think that Pauli’s exclusion principle is only relevant if there is a small number

of cells per energy level. That intuition is actually backed up by a mathematical theorem

which states that, for any r ∈ N fixed, the hypergeometric distribution with parameters

r and nl (l = 1, . . . , L) converges to the multinomial distribution with parameters r and

pl (l = 1, . . . , L) for n→∞ and nl/n→ pl (l = 1, . . . , L).
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4 Axioms of mathematical probability

The set-up for probability developed in Chapter 3 is build on top of a basis of equally

likely events representing the classical thinking about probabilities until about the early

20th century. We will discuss the limitations of this approach in the next section and

devote the following three sections to an introduction to the modern axiomatic approach

to probability. We conclude this chapter by introducing cumulative distribution functions

as a way of representing probability measures on the real line (and subsets of the real

line).

The axioms of mathematical probability go back to the work of the young Russian mathe-

matician Andrey Kolmogorov. They were laid out in his seminal work on the foundations

of the theory of probability1. The text was written under the influence of modern set

theory he had studied during his stays as Göttingen, Munich and Paris and published

after his return to Moscow. In the same period of time, other people offered axiom system

of a similar flavour; the time was ripe for what became the platform of modern probability

theory, the a set theoretic formalisation for the already well developed and applied existing

calculus of probability. The place of Kolmogorov’s work in the philosophy and history of

mathematics is reviewed in a recent article by Vladimir Vovk and Glenn Shafer2.

4.1 Uses and limitations of the classical approach to probability

We will go through a few examples to discuss our current approach to probability.

Example 4.1. Tossing a coin three times. Standard outcome space is Ω3 = {ω1, ω2, ω3 |ωi =

h, t}. Using Theorem 3.26 n = 2 and r = 3, with replacement and ordered, yields

|Ω3| = 23 = 8. Standard model uses A = P(Ω3), i.e. the algebra generated by the partition

induced by all outcomes.

A1 = “all heads” = {hhh}, P (A1) = |A1|/|Ω3| = 1/8

A2 = “second toss is heads” = {hhh, hht, thh, tht}, P (A2) = |A2|/|Ω)3| = 1/2

|A2| can be calculated using Theorem 3.26 for n = 2 and r = 2, with replacement and

ordered, because one position being fixed leaves a reduced version of the original case

(n = 2 and r = 3).

Example 4.2. Tossing a coin three times. Outcomes with the same number of heads

are indistinguishable, so a natural outcome space would be Ωh = {0, 1, 2, 3}. However,

these outcomes are not equally likely. We can still handle this situation by simply going

1Andrey Kolmogorov, “Grundbegriffe der Wahrscheinlichkeitsrechnung”, Berlin: Julius Springer,

1933. Translation: “Foundations of the Theory of Probability” (2nd ed.), New York: Chelsea, 1956,

www.mathematik.com/Kolmogorov/index.html
2Vladimir Vovk and Glenn Shafer, “The Sources of Kolmogorov’s Grundbegriffe, Statistical Science,

Vol. 21 (2006), No. 1. www.probabilityandfinance.com/articles/STS154.pdf. Longer version: “Kol-

mogorov’s contributions to the foundations of probability”, Problems of Information Transmission 39

(2003), www.probabilityandfinance.com/articles/06.pdf.



26

back to the outcome space Ω3 from Example 4.1.

P (0) = P ({ttt}) = 1/8

P (1) = P ({tth, tht, htt}) = 3/8

P (2) = P ({thh, hth, hht}) = 3/8

P (3) = P ({hhh}) = 1/8

Example 4.3. First, second and third prize. There are N people from which to select

three to give the prizes to. We assume this is without replacement, because no person is

supposed to win more than once, and we assume the order matters, because the prizes are

different. Hence we model it by Ω = {(i, j, k) | i, j, k = 1, . . . , N, i 6= j, j 6= k, k 6= i} and

A = P(Ω). Ω = N !
(N−3)! using Theorem 3.26 for n = N and r = 3. Now assume N = 10

and 4 of the are in the last row.

A = “all winners are from the last row” P (A) = |A|/|W | = 4!/10 · 9 · 8 = 1/30

Example 4.4. . Same assumptions as in Examples 4.3, except we assume the order does

not matter, because the prizes are all the same. Again, to actually perform calculations

we go back to the ordered model in Example 4.3.

Ω: We keep seeing examples were the records are not naturally ordered, but then go on to an ordered

model. I don’t understand this at all.

ω: But I do. My teacher does this. Whenever she wants to count us at a field trip, she shouts ‘Don’t

move!!!’

Example 4.5. Biased coin. How can we model a coin that does not show heads and

tails equally often? It would be natural to use Ω = {h, t} and A = P(Ω) as in the case of

a fair coin, but this would automatically constrain us to the case of a fair coin.

Start with a simply case, a coin that shows heads twice as often as tails. Use Ω =

{h1, h2, t}, with h1, h2 both denoting heads. A = P(Ω) and P (ω) = 1/3 for all ω ∈ Ω.

For any bias that can be expressed as a rational number we can proceed the same

way. To model a coin that, on average, shows heads k times in l tosses, k ≤ l, use

Ω = {h1, . . . , hk, t1, . . . , tl−k} and A = P(Ω). Again, identify h1 = . . . = hk = h and

t1, . . . , tl−k = t and set P (ω) = 1/l for all ω ∈ Ω. Any other bias, can be approximated

arbitrarily closely by a rational number.

Example 4.6. Coin tossing until heads come up. A coin is tossed until heads come

up. Any particular outcomes observed consists of a finite number of tails and one heads

at the end, so we can choose Ω = {h, th, tth, ttth, tttth, ttttth, . . .}. Note that while there

are infinitely many different outcomes, each individual outcome is finite. Ω is countable.

To proof that you could use the one-to-one map from Ω to N given by the number of tails

in each ω ∈ Ω. Examples for events are:

“it takes 3 trials to get a head” = {tth}
“it takes at least 3 trials to get a head” = {tth, ttth, tttth, . . .}
“it takes at most 3 trials to get a head” = {h, th, tth}

Their are infinitely many outcomes. One way to get around that is to introduce and upper

limit N of tosses allowed, e.g. ΩN = {h, th, tth, . . . , t . . . th} with the the last outcome there

having length N. In each of the WN , however, the outcomes are not equally likely requiring

a strategy along the lines of Example 4.5.
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Example 4.7. Spinner. We have discussed finite models for the spinner in Example

3.10. This can be done arbitrarily fine by increasing the number N of segments of the

circle. However, we end up distinguishing a finite number of classes for a continuum of

possible angles.

In summary, the classical approach imposes too many constraints:

• Being tied to equally likely probabilities dictates the choice of the outcome space.

In Example 4.2 it would be convenient of have a probability measure P defined on

the most natural outcome space Ωh rather than making the detour of going back to

Ω3 from Example 4.1.

• Unequal probabilities in examples with finitely many outcomes can be modelled in

the classical approach along the lines of Example 4.5, but it potentially gets rather

lengthy and may only result in an approximate model.

• Infinitely many outcomes can only be modelled by finite approximations, along the

lines discussed in Examples 4.6 and 4.7.

We will now develop a generalised framework for mathematical probability.

4.2 Which collection of subsets?

A probability measure is defined on a collection of subsets (describing the events) of the

outcome space. First we need a suitable structure of sets. This is going to be only a slight

extension of the set algebra structure in Definition

Definition 4.8. σ-algebra of sets.

Let Ω be a set of points. A system A of subsets of Ω is called σ-algebra if

(A1) Ω ∈ A
(A2)∗ Ai ∈ A (i ∈ N) =⇒

⋃
i∈NAi ∈ A

(A3) A ∈ A =⇒ Ac ∈ A

The pair (Ω,A) is called measurable space.

To see what is the point of extending (A2) in the definition of an algebra to the form

(A2)∗ to cover countably infinite unions think of Example 4.6.

“first heads in ith toss” = Ai

“it takes an even number of times until first heads” =
⋃
i∈N

Ai

Example 4.9. σ-algebra generated by a partition. A system Bi (i ∈ N) of subsets

of Ω is called partition if it is exhaustive (i.e. their union is Ω) and mutually exclusive

(i.e. Bi ∩ Bj = ∅ for all i 6= j). The σ-algebra σ(Bi, i ∈ N) generated by this partition

consists of the empty set and all possible unions of any number of elements of the partition.

In this situation, any set in the σ-algebra can be represented explicitly by elements of the

partition. For A ∈ σ(Bi, i ∈ N), there is an index set I ⊂ N such that A =
⋃
i∈I Bi. Note

that this includes the empty set by using I = ∅.
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But what is the point in defining a structure like a σ-algebra when we could just use the

power set P(Ω), that is the set of all subsets of Ω?

One reason was already discussed in Section 3.2. It is sometimes more appropriate to use

submodel of (Ω,P(Ω)). In particular in situations where the probability is only known for

a system of subsets.

The other reason for not always using P(Ω), however, is that is that paradoxes, or at least

surprising hurdles, are in store when dealing with a not countable Ω. Even in situations

that look as harmless as the following one.

Let Ω = {0, 1}N. This is an outcome space for infinitely many coin tosses. If P was a

probability measure on Ω modelling infinitely many tosses by a fair coin, some of the

properties we would expect are:

• P (Ω) = 1.

• P is additive, and the additivity should also work out for countably infinite numbers

of events.

• The probability of an event does not change under an operation that flips the out-

come of a certain toss. For example, P (“forth toss heads and fifth toss heads”) =

P (“forth toss tails and fifth toss heads”).

The Guiseppe Vitali proved in 1905, that there is no such P. The proof is rather elementary,

but it does require the axiom of choice1.

Similar issues arise in attempts to construct measures on other spaces. Felix Hausdorff

showed in his classic text about the foundations of set theory2 essentially the following:

The surface of the unit ball in R3 can be decomposed in three parts A, B and C in a

way such that each of them is congruent with each of the others (and can be moved into

exactly the same position by a 120 degree rotation around a suitable axis), while each of

them is also congruent to the union of the other two (and can be moved into the same

position by a 180 degree rotation around a suitable axis). Hence, each of these sets is both

a half and a third of the surface of the unit ball. Assuming there was a rotation invariant

measure assigning the value 1 to the surface of the unit ball, the measure of the sets A, B

and C would have to be both 1/2 and 1/3. Hence the construction of such a measure is

not possible3.

The result is known as Hausdorff paradox. More general and deaper results of the same

flavour of have been published by Stefan Banach and Alfred Tarski4 and have become

widely known under the name Banach-Tarski paradox. As summarised in by John von

Neumann5, one palpable consequence of their results is that one could slice up a unit ball

in R3 into 9 pieces such that, after some suitable rotations, five of them put together again

1See, for example, Hans-Otto Georgii, “Stochastics, Introduction to Probability and Statistics”, de

Gruyter, 2008
2“Grundzüge der Mengenlehre”, Verlag Veit & Co, Leipzig, 1915. Reprints: Chelsea Pub. Co. (1949,

1965, 1978), also in Hausdorff-Edition Vol. II (2002), edited by E. Brieskorn, F. Hirzebruch, W. Purkert,

R. Remmert, E. Scholz.
3From a summary in John von Neumann, “Zur allgemeinen Theorie des Masses”, Fundamenta Mathe-

maticae 13 (1929). matwbn.icm.edu.pl/ksiazki/fm/fm13/fm1316.pdf.
4Stefan Banach and Alfred Tarski, “Sur la décomposition des ensembles de points en parties respective-

ment congruentes”, Fundamenta Mathematicae 6 (1924). matwbn.icm.edu.pl/ksiazki/fm/fm6/fm6127.

pdf.
5As 3.
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make a unit ball, and the remaining four make another unit ball.

ω: This is an arbitrage opportunity, Omega. We can get 1/2 for the price of a 1/3.

Ω: My new financial smart product SphereShares and BallBash. I am selling the right to slice up a unit

sphere or cut up a unit ball and put them together again with the promiss they’ll be bigger than. I’m

hoping to pay back my student loan that way.

The results by Vitali, Hausdorff and Banach and Tarski remain a bit mysterious, because

our imagination for subsets is somewhat limited. Anything subsets of R people typically

can think of is contained in the σ-algebra generated by open intervals (named after Emile

Borel) which is the default set system for defining probabilities on R.

Example 4.10. Borel σ-algebra. The Borel σ-algebra on R is smallest σ-algebra on

R that contains all open intervals. By Definition 4.8 it automatically includes all closed

intervals (using (A3)), all countable unions of open and closed intervals (using (A2∗), all

countable intersections of open and closed intervals (using (A2∗) and (A3)). Iterating

those mechanisms one obtains a lot more, such as unions of intersections of unions of

intersections of open sets and so on. In particularly, half open intervals, infinite intervals

and sets with only one point in it:

[a, b) =
∞⋃
n=1

[
a, b− 1

n

]
, [a,∞) =

∞⋃
n=1

[a, a+ n], {a} =
∞⋂
n=1

(
a− 1

n
, a
]
.

Short notation is B(R). By the same token, Borel σ-algebras can be defined on Rn by

replacing open and closed intervals with open and closed n-dimensional balls.

4.3 Mathematical probability

Definition 4.11. Axioms for mathematical probability.

Let (Ω,A) be a measurable space. A set function P : A −→ [0, 1] is called probability

measure if the following two axioms are fulfilled:

(P1) P (Ω) = 1.

(P2)∗ P is σ-additive, i.e., for all Ai ∈ A (i ∈ N) with Ai ∩Aj = ∅ for any i 6= j,

P
( ⋃
i∈N

Ai

)
=
∑
i∈N

P (Ai).

The triple (Ω,A, P ) is called probability space.

Example 4.12. Coin tossing (with bias) aka Bernoulli experiment. This is the

simplest possible random experiment that is not trivial. There are two outcomes, often

called 0 and 1 with the latter referred to as “success”. There is a fixed p ∈ [0, 1], the prob-

ability for success. Use Ω = {0, 1} and the σ-algebra generated by the partition ({0}, {1}),
that is, A = { ∅, {0}, {1}, {0, 1} }. Then P ({1}) = p uniquely defines a probability measure

by P ({0}) = 1− P ({1}) = 1− p.

ω: I want p = 1, because then I’ve won! I always win... always, always, always!

Ω: Obviously, this case is very boring, and so is the case p = 0. They are included in the model, but they

are the extreme cases. Such experiments are not actually random, they are deterministic.
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Example 4.13. Finitely many outcomes. Given weights pi ≥ 0 for i = 1, . . . , n with

p1 + . . .+ pn = 1,

P ({wi}) = pi (i = 1, . . . , n) (4)

defines a probability measure on Ω = {w1, . . . , ωn} with σ-algebra P(Ω).

If pi = 1/n for all i = 1, . . . , n then this is called the uniform distribution.

A few explicit situations where it arises naturally:

(i) An n-faced die with pi specifying the probability for the ith face to show up. If

pi = 1/n for all i = 1, . . . , n then the die is fair. Otherwise it is loaded. (This refers

to methods of inserting small quantities of metal into some of the sides of the die to

increase the likelihood it lands the other side up.)

(ii) Drawing a ball at random from a box with a finite number of coloured balls. With

m different colours and Ni (i = 1, . . . ,m) balls of colour i, N = N1 + . . .+Nm, the

probabilities are pi = Ni/N.

Example 4.14. Countable number of outcomes. Given weights pi ≥ 0 (i ∈ N) with∑∞
i=1 pi = 1,

P ({wi}) = pi (i = 1, 2, . . .) (5)

defines a probability measure on Ω = {w1, w2, . . .} with σ-algebra P(Ω).

ω: I need to invite infinitely many friends to my birthday party. Because, whenever I think I will invite

these n friends I realise I forgot one! I want to have a game at the party where everybody has the same

chance of winning. What are the pi (i ∈ N) to make that happen?

Ω: I’m afraid you can not find such a game. Also, you just can not have infinitely many friends. Look, at

every given time you only have a finite number of friends. Actually, there are only finitely many people in

the whole world, omi!

ω: But you forgot my imaginary friends, Omega.

Remark 4.15. No uniform distribution on a countable set. There is no uniform

distribution on a countably infinite set. Why? If there was a uniform distribution than

there would be a c ∈ [0, 1] such that P (ωi) = c for all i = 1, 2, . . . By the properties of

a measure, P (Ω) =
∑∞

i=1 c (that means adding up c infinitely often). If c > 0 the series

diverges and if c = 0 the series equals 0. Both cases contradict the axiom that P (Ω) = 1.

Ω: In Section 4.5 you will learn how to make this work for a continuum of friends.

ω: But I do not have a continuum of friends. Even if I added all my imaginary ones.

Ω: Try nextgenerationfacebook.

Here is a general method how to create a probability measure.

Lemma 4.16. Probability measure defined on a partition.

Let Bi (i ∈ N) be a partition of Ω and A = σ(Bi, i ∈ N). Let pi ≥ 0 with
∑

i∈N pi = 1.

Using the representation in Example 4.9, set P (A) =
∑

i∈I pi.

Proof. We need to show (P1) and (P2). About (P1):

P (Ω) = P (
⋃
i∈N

Bi =
∑
i∈N

pn = 1.
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About (P2)∗: Let Ai ∈ A (i ∈ N) with Ai ∩ Aj = ∅ for any i 6= j. Then there are

I(i) ⊂ N (i ∈ N) with Ai =
⋃
n∈I(I) Bn, (i ∈ N). Hence, using I =

⋃
i∈N I

(i),

P
( ⋃
i∈N

Ai

)
= P

( ⋃
n∈I

Bn

)
=
∑
i∈I

pn =
∑
i∈N

∑
n∈I(i)

pn =
∑
i∈N

P (Ai)

4.4 Deductions from the axioms

The axioms really come to live by all the useful rules that can be derived from them.

(i) Empty sets: P (∅) = 0

(ii) Finite additivity: For all Ai ∈ A (i = 1, . . . , n) with Ai ∩Aj = ∅ for any i 6= j,

P
( n⋃
i=1

Ai

)
=

n∑
i=1

P (Ai).

(iii) Complement: P (Ac) = 1− P (A)

(iv) Partition by another event: P (A) = P (A ∩B) + P (A ∩Bc)

(v) Difference: P (A \B) = P (A)− P (A ∩B)

(vi) Subset: B ⊂ A =⇒ P (A \B) = P (A)− P (A ∩B)

(vii) Monotony: B ⊂ A =⇒ P (B) = P (A)

(viii) Addition rule: P (A ∪B) = P (A) + P (B)− P (A ∩B)

(ix) Subadditivity:

P
( ⋃
i∈N

Ai

)
≤
∑
i∈N

P (Ai)

Note that the last two statements are about the union of sets that are not assumed to be

disjoint. There is also an addition rule for more than two sets (see exercise sheets).

Proofs:

(i) Apply σ-additivity to the mutually exclusive sets Ai = ∅ (i ∈ N)

P (∅) = P
( ⋃
i∈N
∅
)

=
∑
i∈N

P (∅).

c := P (∅) ∈ [0, 1] by definition. If c > 0 then the series diverges, hence c = 0.

ω: This sounds like a joke about mathematicians. They come up with the most complicated proof for

something that is obvious to everybody else!

Ω: And then they complain about headlines like “Mathematicians proved fact known to vegetable grocers

for centuries” after Thomas Hales tackled Kepler’s conjecture in 1998.

(ii) Define Ãi = Ai for i = 1, . . . , n, and Ãi = ∅ for i ≥ n+1 and apply (P2)∗ (σ-additivity)

and (i).

(iii) A∩Ac = ∅ and A∪Ac = Ω, hence 1 = P (Ω) = P (A∪Ac) = P (A) +P (Ac) using (ii).

(iv) (A∩B)∩(A∩Bc) = ∅ and (A∩B)∩(A∩Bc) = A, hence P (A) = P ((A∩B)∩(A∩Bc)) =

P (A ∩B) + P (A ∩Bc) using (ii).
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(v) A \B = A ∩Bc and use (iv).

(vi) Use (v).

(vii) Follows from (vi).

(viii) Using (iv),

P (A ∪B) = P (A ∩Bc) + P (A ∩B) + P (Ac ∩Bc)

P (A) = P (A ∩Bc) + P (A ∩B)

P (B) = P (Ac ∩B) + P (A ∩B)

Comparing terms completes the proof.

(ix) Construct mutually exclusive sets B1 = A1, B2 = A2∩Ac1, and Bi = Ai∩Aci−1∩· · ·∩Ac1.
Note that their union equals the union of the original sets Ai (i ∈ N). Hence, using σ-

additivity,

P
( ⋃
i∈N

Ai

)
=
∑
i∈N

P (Bi).

Using monotony shows that P (Bi) ≤ P (Ai).

4.5 Probability measures on R or subsets of R

4.5.1 Random numbers on [0, 1]

How do you pick a digital number between 0 and 1 at random? Different approaches have

been practiced to do that in practice:

• Use a spinner that creates a random angle which can be converted into a number be-

tween 0 and 1. Measuring the angle will work up to some degree of precision, so only

finitely many numbers in [0, 1] can be covered. This corresponds to the finite models

discussed for the spinner in Example 3.10. However, they are evenly distributed over

the entire interval and with increasing the precision of the measurement instruments

will refine the outcome space.

• Toss a coin n times recording 1 for heads and 0 for tails to create a sequence

x1, x2 . . . xn with xi ∈ {0, 1} (i = 1, . . . , n) Interpret this as coefficients of a number

in base 2, i.e. x =
∑n

i=1 xi2
−i and convert that number into base 10. You will only

flip the coin a finite number n of times, hence your outcome space will not actually

be [0, 1], but just {0, 1}n.
• Between the 1920s and the 1950s random number tables were produced using a

mixture of manuel and automatic procedures.

• With the rise of computer sciences, pseudo-random number generators replaced the

tables. They use initial values together with iterations of certain suitable functions.

The mathematical background for this is a branch of analytic number theory in

concerned with uniform distributions mod 1. Operating on the basis of numbers

with finitely many decimal places, computer based generation of random numbers

will always be restricted to a finite outcome space.

All practiced methods are constraints to finite outcome spaces, though each may be tai-

lored to cover [0, 1] to any desired degree of precision. In these finite outcome spaces, each
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outcome has the same probability. This is what we understand by “picking a number at

random”.

Now we build an idealised model using the outcome space Ω = [0, 1]. For any ω ∈ Ω,

P ({ω}) = 0. This can be seen by the following argument (similar to what we used to

prove that there is no equally likely probability on countably infinite outcome spaces in

4.15): If P ({ω}) = c then P ({ω′}) = 0 for any other ω′ ∈ Ω. Hence we can find a sequence

ωi (i ∈ Ω) with P ({ωi}) = c for all i ∈ N. Using σ-additivity of P,

1 = P ([0, 1]) ≥ P (
⋃
i∈N
{ωi}) =

∑
i∈N

P ({ωi}).

If c > 0, the last sum would be infinite, hence c = 0.

It is therefore sensible to think of probabilities of intervals rather than of probabilities of

individual outcomes. For example, what is the probability that the random number is

contained in the interval [0.2, 0.3]. The intuitive answer is 1/10. Why? Because [0, 1] can

actually be partitioned in 10 such intervals and each should be equally likely, as they only

differ from each other by a translation. (The intersections in the boundary points can be

ignored in this discussion, as we have just argued that the probability for single points.)

Using additivity yields that the probability has to be 1/10 for each.

By the same token, we can do that for other partitions of [0, 1]. Fix n ∈ N, consider

[(i− 1)/n, i/n) (i = 1, . . . , n) and show that P ([(i− 1)/n, i/n)) = 1/n for all i = 1, . . . , n.

Generally, the probability for the random number to be in an interval [a, b] ⊂ [0, 1] is equal

to its length b− a. If a and b are rational, a partition can be defined accordingly and [a, b]

can be represented as an element of that partition or as unions of some of them. Otherwise,

[a, b] can be approximated by intervals with rational endpoints (technical details omitted

here). Note that we do not need to distinguish between open, half open and closed

intervals, because the probability of the endpoint is 0 anyway.

I summary, the idealised process of picking a random number between 0 and 1 can be

modelled as follows:

Ω = [0, 1],A = B([0, 1]), P ([a, b]) = b− a for all a, b ∈ [0, 1], a ≤ b. (6)

This measure could be fully described by a function that takes tracks the accumulated

likelihood as x moves up the interval from 0 to 1 :

F (x) = x for x ∈ [0, 1] (7)

This idea will be further developed in the next section.

4.5.2 Cumulative distribution functions

Let P be a probability measure on (R,B(R)). It can be shown that the function

F (x) = P
(
(−∞, x]

)
(x ∈ R) (8)

has the following three properties:

(i) F is nondecreasing, i.e., x > y =⇒ F (x) ≥ F (y).
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(ii) F (−∞) := limx↓∞ F (x) = 0 and F (+∞) := limx↑∞ F (x) = 1

(iii) F is continuous from the right.

F is called cumulative distribution function (c.d.f.) for P.

A proof will be omitted here, but here is a sketch: All the properties of F follow from the

axioms of P. (i) follows from the monotony of P (Section 4.4(vii)), because increasing the

interval (−∞, x] in (8) results in increasing its probability. To show the second statement in

(ii) it is practical to first show that σ-additivity of P implies a condition called σ-continuity

of P with respect to increasing sequences of sets, which says that for a sequence of sets

Ai (n ∈ N) with A1 ⊂ A2 ⊂ A3 . . . it yields P
(⋃

n∈NAi
)

= limn→∞ P (An). Then apply

this to An = (−∞, n] (n ∈ N) and use Definition 4.11(P1). For the first statement in

(ii) show a corresponding condition for decreasing sets and their intersection, apply it to

An = (−∞,−n] (n ∈ N) and use Section 4.4(i). To show (iii) note that for continuity from

the right it is suffices to prove that for all x ∈ R,

lim
n→∞

F (x+ xn) = F (x) for all sequences xn (n ∈ N) with xn > x and lim
n→∞

xn = x

This follows from σ-continuity of P applied to the sequence of sets An = (−∞, x+xn].

If F is discontinuous in x0 ∈ R then the mass in x0 equals the height of the jump of F in

x0, i.e.

P ({x0}) = F (x0)− lim
x→x0,x<x0

F (x) > 0

There is a one-to-one correspondence between probability measures on (R,B(R)) and

functions with the properties (i), (ii) and (iii) above. The connection between them is

given by (8) and

P
(
(a, b]

)
= F (b)− F (a) for all −∞ ≤ a < b <∞ (9)

The proof of the one-to-one correspondence is beyond the scope of this lecture.

Probability distributions can be classified in three categories based on their cumulative

distribution functions:

(i) Discrete. F is a step function. It has atoms xi (i ∈ I), where I is a finite or

countably infinite index set, with P ({xi}) > 0 for i ∈ I, and P ({x}) = 0 for all

x ∈ R \ {xi|i ∈ I}.
(ii) Continuous. F is differentiable. Then the derivate of F can be used to describe P.

It is called density and will be studied in more detail in Probability B.

(iii) Mixed discrete and continuous. Such situations do come up in examples such

as traffic queue waiting times that have a positive mass in 0 but are otherwise

continuous.

Example 4.17. General form of a c.d.f. for the discrete case. Let S be a finite or

countable infinite subset of R and

ps ≥ 0 (x ∈ S) with
∑
s∈S

ps = 1

Then this defines a probability measure via P ({s}) = ps. The corresponding c.d.f. is a

step function with the representation

F (x) =
∑

s∈S,s≤x
ps (x ∈ R)



35

Example 4.18. Pick a point at random from an interval. What is the probabil-

ity measure that describes picking a random number from an interval [a, b]. The above

discussion on [0, 1] can be generalised to an interval [a, b]. It just needs an additional

normalisation to insure that P ([a, b]) = 1.

P ([x, y]) =
y − x
b− a

(a ≤ x < y ≤ b)

For the c.d.f. this yields

F (x) =


0 if x < a,
x−a
b−a if a ≤ x < b,

1 if x ≥ b.

Picking points from half open or open intervals can be done in the same way. Including

endpoints or not does not make a difference for the probabilities, because individual points

have probability zero under continuous measures like this one.

Example 4.19. Spinner. (Continuation of Example 3.10.) A precise model for the

spinner corresponds to picking a random number of the interval [0, 2π), which is covered

by Examples 4.18. A model for the approximation of the actually observed angle by

only finitely many cases is covered by Example 4.17. More specifically, S = {1, . . . , N},
ps = 1/N and

F (x) =


0 if x < 0,
i
N if x ∈ [ i−1N 2π, iN 2π) for an i ∈ {1, . . . , N}
1 if x ≥ 2π

In all examples so far F is either a step function or a continuous function. There are also

mixed cases such as this one.

Example 4.20. Waiting in traffic. The following c.d.f. is an example for a the waiting

time in a traffic light queue with no waiting time for those who come in while it is green.

F (x) =


0 if x < 0,

x+ 1
2 if x ∈ [0, 1)

1 if x ≥ 1

5 Conditioning

Here are a few reasons for learning about conditional probabilities:

(1) Getting on top of trickster games.

There are three coins one of which is copper on both sides, one is black on both

sides, and one is black on one sides and copper on the other side. You are asked to

pick a coin at random, put it on the table and look at what colour it faces. It shows

black. What is the probability the other side is black?

Many people would reason as follows: One side is black means it can not be the

coin with two sides copper. Of the remaining two coin each is equally likely. So the

answer is 1/2. This is wrong. Can you tell why?
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You picked the coin at random. The fact that you have already seen a black side −
and this is crucial! − means one of the following two options happened: You picked

the black/black coin or you picked the black/copper coin and got the black side up.

So, of the initial six sides you already narrowed it down to three sides. These three

are all equally likely. In two of the three cases the other side will also be black.

Hence the answer is 2/3.

Draw a tree illustrating all the possible paths of this experiment to make it more

obvious. Actually, we have seen a similar reasoning in the goat problem in the

introduction.

(2) Updating probabilities.

Here are some examples how additional information could alter a probability assign-

ment:

(i) A medical test indicates you have kidney cancer with a 75% chance to survive at

least another 10 years. A few months later, metastasis are located in another

organ. Given that information, you chances of surviving the 10 years will

decrease.

(ii) You invested in stocks of the company BuyOurStuff. They have been on a

steady upwards trend during the last few years and you assume it is highly

likely that they will continue that way. You actually need to sell them off

by the end of next month to finance the downpayment for a house and you

are about 90% confident they will at last stay at their current value, which is

exactly what you need to rise for the downpayment. Then a systematic tax

fraud is discovered in the companies records resulting in them having to pay

large amount of taxes by the end of the year. How does this affect your chances

to get enough money for your downpayment from selling the stocks?

(iii) You start studying mathematics and find the material rather difficult compared

to the material you did in school. You give it about 10% to get an Upper

Second in your first year overall. Then you receive your Winter Analysis and

Foundation exam results. While the average was rather low, you actually got

scores as hight as 71% and 75%. You now believe that your chances to get an

Upper Second in your first year overall are well above 50%.

(3) Modelling different degrees of knowledge, circumstances or attitudes.

A random number between 0 and 1 is drawn. What is the probability that the

number is smaller than 0.25?

– Ann has no further information. She answers p = 0.25.

– Ben got a message saying the number is between 0 and 0.5. He answers p = 0.5.

– Cem got a message saying the number is larger than 0.7. He answers p = 0.

– Deb was told the number is between 0.1 and 0.2. She answers p = 1.

If people are being given different information, they may come up with different

probability assignments. Furthermore, in cognitive psychology that there is no such

thing as an objective way to absorbe information. The processing of information

includes, among other mechanisms, filtering, modification and emphasising. This

is mostly motivated by a tendency to fit new facts into existing believe systems

while minimising cognitive dissonance, that is, the feeling of discomfort associated

with holding two conflicting beliefs. (Persistant holding of prejudices is explained

by such processes.) As a result of such processes, the evaluation of information
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is a subjective. In particularly, any probability assignments based on a piece of

information are subjective. Even if two people are given the exact same piece of

information, they may come up with different probability assignments.

Mathematically, alternative probability assignments can be represented in terms of

conditional probabilities.

5.1 Conditional probability.

Definition 5.1. Conditional probability.

Let (Ω,A, P ) be a probability space and A,B ∈ A events. Assume P (B) > 0. The condi-

tional probability of A with respect to B is given by

P (A |B) =
P (A ∩B)

P (B)
.

Remark 5.2. Conditional probability is a probability measure.

We call P (A |B) conditional probability, but is it actually a probability as defined in

Section 4? The answer is yes, because for any fixed B, the set function

P ( · |B) : A −→ [0, 1] with A 7→ P (A |B),

defines a probability measure. The proof amounts to showing the two properties in (P2).

(i) is obvious: P
(
Ω |B

)
= P (Ω ∩B)/P (B) = 1.

(ii) follows from basic set operations: For Ai ∈ A (i ∈ N) with Ai ∩Aj = ∅ for all i 6= j,

P
( ⋃
i∈N

Ai

∣∣∣B) =
P
((⋃

i∈NAi
)
∩B

)
P (B)

=
P
(⋃

i∈N(Ai ∩B)
)

P (B)

=

∑
i∈N P (Ai ∩B)

P (B)
=
∑
i∈N

P (Ai |B).

Note the the σ-additivity of P could be used, because (Ai∩B)∩ (Aj ∩B) = ∅ for all i 6= j,

ω: Why does the left-hand side in Defintion 5.1 look symmetric, but then the right-hand side is not?!

Ω: P (A |B) is just a short form for the right-hand side and it is not symmetric. But I agree, that the

symbolic expression (A |B) is misleading in terms of its symmetric appearance. But what actually is the

relationship between P (A |B) and P (B |A)?

Some implications of the definition are both easy to proof and very frequently used:

Multiplication rule

P (A ∩B) = P (A |B) · P (B) ∀A,B ∈ A with P (B) > 0 (10)

= P (B |A) · P (A) ∀A,B ∈ A with P (A) > 0 (11)

“Flip around” formula

P (A |B) =
P (A)

P (B)
· P (B |A) ∀A,B ∈ A with P (A) > 0, P (B) > 0 (12)

Averaging conditional probabilities

P (A) = P (A |B) · P (B) + P (A |Bc) · P (Bc) ∀A,B ∈ A with 0 < P (B) < 1 (13)
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Bayes’ rule

P (B |A) =
P (A |B) · P (B)

P (A |B) · P (B) + P (A |Bc) · (1− P (B))

(14)

∀A,B ∈ A with P (A) > 0, 0 < P (B) < 1

The first two statements are immediate consequences of Definition 5.1. The last two

statements are special cases of more general Theorems 5.4 and 5.5 shown in the next

section. Here is an example for the use of the first statement.

Question 5.3. Pick a box and pick a ticket.

There are two boxes. One has three tickets with the numbers 1, 3 and 5, the other one has

tickets with the numbers 2 and 4. First toss a fair coin. If heads come up choose the box

with the odd numbers, if tails come up choose the box with the even numbers. Then you

pick a ticket at random from the chosen box. What is the probability you get a 3?

We will present two solutions, a naive approach and one based on the multiplication rule.

Answer 1: There are five different outcomes defined by the number of the ticket drawn,

so Ω = {1, 2, 3, 4, 5}. Since the two boxes are equally like, P ({1, 3, 5}) = 1/2 = P ({2, 4}).
Since the tickets within each box are equally like, using the addition axiom, P ({1, 3, 5}) =

P ({1}) + P ({3}) + P ({5}) = 3 · P ({3}). Putting this all together yields P ({3}) = 1/6.

Answer 2: Denote the outcomes by two-character combinations: bo and be for boxes with

odd and even numbered tickets in it, followed by the number on the ticket. So the outcome

space is Ω = {bo1, bo3, bo5, be2, be4}. We want to find the probability for bo3. Define events:

Bo :=“box with odd numbered tickets was chosen”= {bo1, bo3, bo5},
Be :=“box with even numbered tickets was chosen”= {be2, be4},
Ti :=“ticket with number i was drawn” (i = 1, 2, 3, 4, 5).

By assumption, P (Bo) = P (Be), so both must be 1/2. The only way to draw a ticket with

the number 3 is by choosing the box with odd numbers first. If drawing from that box,

chances for each of the numbers are equal; in other words, P (Ti |Bo) = 1/3 for i = 1, 3, 5.

Using (10), P ({bo3}) = P (T3 |Bo) · P (Bo) = 1/3 · 1/2 = 1/6.

Theorem 5.4. Total probability

Let (Ω,A, P ) be a probability space and B1, . . . , Bn ∈ A a partition of Ω. Assume that

P (Bi) > 0 for i = 1, . . . , n. Then

P (A) =

n∑
i=1

P (A |Bi)P (Bi) (15)

Proof. Since A∩B1, . . . , A∩Bn are mutually exclusive, P (A) =
∑n

i=1 P (A∩Bi). Applying

Definition 5.1 transforms the addends to P (A |Bi)P (Bi).

5.2 Bayes theorem and applications

Theorem 5.5. Bayes

Let (Ω,A, P ) be a probability space and B1, . . . , Bn ∈ A a partition of Ω with P (Bk) > 0
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for k = 1, . . . , n. Then

P (Bk |A) =
P (A |Bk)P (Bk)

P (A |B1)P (B1) + . . .+ P (A |Bn)P (Bn)
(16)

Proof. Fix k ∈ {1, . . . , n}. Formula (12) yields P (Bk |A) = P (A |Bk)P (Bk)/P (A), which

results in (16) after replacing P (A) by the right-hand side in Theorem 5.4.

Terminology

P (Bi) are called prior probabilities – that’s because it’s before knowing about A

P (A |Bi) are called likelihoods – probabilities of A given the different options Bi
P (Bi |A) are called posterior probabilities – that’s because it’s after knowing about A

ω: How comes a theorem that is so easy to proof is so famous?

Ω: It’s not the technique that made it famous. The novelty was the sheer idea to reverse the perspective.

The “flip around” formula and Bayes theorem then just tell you how to crunch the numbers accordingly.

In many applications it’s about using the information about the probability for A given a few different

Bi’s to reverse engineer which of the Bi’s has happened in the first place. And it also helped that it would

sort out answers for very practical questions.

Example 5.6. Balls in boxes. There are three boxes:

Box 1 has 1 white ball and 2 black balls.

Box 2 has 2 white balls and 1 black ball.

Box 3 has 3 white balls and 0 black balls.

You pick a ball from one of the three boxes at random. Given the ball is white, what is

the probability is was from Box 1? from Box 2? from Box 3?

Let A be the even that the ball is white and Bi the event Box i was chosen (i = 1, 2, 3).

Using total probability theorem,

P (A) =
n∑
i=1

P (A |Bi)P (Bi) =
1

3
· 1

3
+

2

3
· 1

3
+

3

3
· 1

3
=

2

3

Using Bayes’ Theorem,

P (Bi |A) =
P (A |Bi)P (Bi)

P (A)
= P (A |Bi) ·

1

3
· 3

2
= P (A |Bi)/2

In particularly,

P (B1 |A) =
1

3
· 1

2
=

1

6
, P (B2 |A) =

2

3
· 1

2
=

1

3
, P (B3 |A) = 1 · 1

2
=

1

2

Note that the three conditional probabilities add up to 1 (as they should).

Example 5.7. Medical diagnostics. A lab test for the disease VerySick is conducted

on blood samples and has the potential outcomes “positive” and “negative”. We consider

a certain population that has an incidence rate of 1% for the disease. We have experience

with applying the test in this population: In the past, 95% of the people with the disease

produce a positive test result, and 2% of the people without the disease produce a positive

test result.

What is the probability that an individual chosen at random from that population will

have the disease given his or her test was positive?
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Let D be the event the individual has the disease and let + and − be events that the

individual has a positive or negative test, respectively.

Using Bayes theorem,

P (D |+) =
P (+ |D)P (D)

P (+ |D)P (D) + P (+ |Dc)(1− P (D))
=

0.95 · 0.01

0.95 · 0.01 + 0.02 · 0.99
≈ 32%

Discussion of this result. In words, it means that given a positive test, the chance to

have the disease is about 32%. Only 1 out of 3 people in this situation will be given the

correct message.

Why is the number so low? The reason is the small prevalence P (D) = 1% of the disease.

As a result, the nominator is small even if P (+ |D) = 95% is quite high. The denominator,

on the other hand, is inflated by the factor 1− P (D) = 99%.

What are the practical implications for conducting such tests? 2 out of 3 people will

be given a wrong result. If VerySick is not curable or life-threatening this is a terrifying

message. It is therefore questionable to test the people in the first place. The disadvantages

of testing may be outweighed by the existing treatment options at early diagnosis or by

precaution in the case of infectious diseases. In many cases, further methods can be used

to obtain a more reliable diagnosis, but they may be costly or invasive (and have potential

side effects or risks). Also, the 2 out of 3 people who were given the wrong diagnosis

still have to live with these news during a many weeks or months long waiting time until

further results are obtained. Typical examples are screening tests for cancer.

A particular extreme example is antenatal care, because every pregnant woman undergoes

many routine tests about medical problems or risks throughout the 9 months of pregnancy.

With each of them carrying some amount error, she can more or less expect to get one or

the other wrong result. This is an example for what is known as multiple testing problem

in statistics. Ironically, with anxiety and stress having negative impacts on the pregnancy,

wrong diagnostic results may manifest in real physiological problems counteracting the

intention of antenatal care. A particular emphasis therefore need to be put on the way

such results are communicated.

A small disease prevalence is typical for applying a screening test in an unspecific pop-

ulation. However, things look very differently when it is know that the individual to be

tested comes from a population at higher risk for the disease. For example, with the same

test accuracy probabilities as above, if P (D) = 30%, then P (D |+) ≈ 95.3%. That means

less than 5 out of 100 such people were given the wrong diagnosis.

ω: I want to tell you something. I really very much hate word problems.

Ω: Why?

ω: Either I do math or I do writing.

Ω: You mean one part of your brain is in charge of math and the other part of your brain is in charge of

the “real world”, and the two don’t mix?

ω: Yes, that’s it.

Ω: You are basically saying that applied mathematics can not be done.



41

5.3 General multiplication rule and independence

If the occurrence of the event B has no impact on the occurrence of the event A then

P (A |B) = P (A). Using the multiplication rule (10), this can be expressed as P (A∩B) =

P (A) · P (B). Or it could be expressed as P (B |A) = P (B). Note that in formulations

using conditional probabilities we need to assume that the probability of the event that

comprises the condition is not zero.

Definition 5.8. Independence of two events.

Let (Ω,A, P ) be a probability space and A,B ∈ A. A and B are called independent, if

P (A ∩B) = P (A) · P (B) (17)

and dependent otherwise.

ω: I see, I see, it means they have nothing to do with each other! If I want a coin to come up heads and

you want it to come up tails, than you and me are independent.

Ω: I’m not sure really what this means. Why don’t you check?

ω: P ({h}) · P ({t}) = 1/2 · 1/2 = 1/4 and P ({h} ∩ {t}) = P (∅) = 0, oh, it doesn’t work out...

Ω: They are disjoint, but they are not independent.

ω: Ah I get it, by being disjoint they actually have a lot to do with each other. If it’s heads implies it’s

not tails!

Example 5.9. Independent and dependent events.

Roll a die. In Example 3.2 define the events Odd = {1, 3, 5} and Gk = {1, . . . , k}. Then

Odd and Gk are independent if k is even, otherwise they are dependent. Just check (17),

for example: P (Odd ∩G2) = P ({1}) = 1/6 and P (Odd) ·P (G2) = 1/2 ·1/3 = 1/6, so they

are independent, but P (Odd ∩G1) = P ({1}) = 1/6 and P (Odd)·P (G1) = 1/6·1/6 = 1/36.

Flip two coins. See Example 3.1. The assumption of equiprobable outcomes implies

independency of the events Hk =“kth toss is heads” (k = 1, 2), because

P (H1 ∩H2) = P ({hh}) = 1/4 = 1/2 · 1/2 = P ({hh, ht}) · P ({hh, th}) = P (H1) · P (H2).

This technical property reflects our idea that, if the coin flipping is conducted properly,

the coin has no memory.

Remark 5.10. Real world applications. Independency is an assumption very often

made for one or more of the following reasons:

(i) It is justified by theoretical considerations.

(ii) It is empirically justified (i.e. justified by data).

(iii) It simplifies calculations.

Reason (iii) is fine as long as the “real world application” only serves as an inspiration for

a mathematical mind’s desire to create beautiful problem and subsequently solve them.

Before applying results of such creative processes to make statements about the “real

world” additional study is required. In particularly, the magnitude and the direction of

the error introduced by the simplification need to be addressed. A recent example of

substantial errors caused by inappropriate independence assumptions occurred in models

of the default risks of mortgages (even when they were secured by houses located in socio-

economically highly homogeneous neighbourhoods). Such oversimplified risk models lead
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to the subprime mortgage crisis in the US real-estate market that is believed to have

triggered the 2007 global financial crises.

Reason (i) is often the case in science or engineering applications. Independence may be

grounded in scientific knowledge or it may reflect technological constructions (e.g. elec-

trical circuits). However, it does bear the risk that partial knowledge or an inappropriate

weighing of existing knowledge leads to incorrect independence assumptions.

Reason (ii) is convincing and sometimes the only choice. However, the collection of data

and the testing of independence in data bear their own challenges. Among other issues,

model development based on empirical knowledge only can be misled by chance variation

or bias in data. A simple but striking example is the empirical “proof” that the area of a

rectangle is a linear function of the sum of the lengths of its edges1.

Ideally, independence assumptions are based on both theoretical and empirical justifica-

tions. In some applications, independence assumptions are wrong, but can still play a

role. For example in obtaining upper or lower bounds of an unknown true probability.

The multiplication rule (10) can be generalized to more than two events. This will be used

to define a notion of independence for more than two events.

Theorem 5.11. General multiplication rule.

Let (Ω,A, P ) be a probability space and A1, . . . , An ∈ A with P (A1∩ . . .∩An−1) > 0. Then

P (A1 ∩ . . . ∩An) = P (A1) · P (A2 |A1) · . . . · P (An |A1 ∩ . . . ∩An−1). (18)

Proof. Exercise. (Hint: The result can be shown by induction based on multiple applica-

tion of (10).)

Definition 5.12. Pairwise independence.

Let (Ω,A, P ) be a probability space and A1, . . . , An ∈ A events. The events are called

pairwise independent, if

P (Aj ∩Ak) = P (Aj) · P (Ak) for all j, k ∈ {1, . . . , n} with j 6= k. (19)

Remark 5.13. Pairwise and mutual independence are different.

Mutual independence implies pairwise independence. The reverse is not true. For example,

take two independent coin tosses and consider the events Hk =“kth toss is heads” and

B =“both tosses are the same”. Then

P (H1 ∩H2) = P ({hh}) = 1/4 = 1/2 · 1/2 = P ({hh, ht}) · P ({hh, th}) = P (H1) · P (H2),

so H1 and H2 are independent. Also

P (H1 ∩B) = P ({hh}) = 1/4 = 1/2 · 1/2 = P ({hh, ht}) · P ({hh, tt}) = P (H1) · P (B),

so H1 and B are independent and, similarly, H2 and B are independent. However,

P (H1 ∩H2 ∩H3) = P ({hh}) = 1/4 6= 1/2 · 1/2 · 1/2 = P (H1) · P (H2) · P (B), so they are

not mutually dependent.

1David Freedman, Robert Pisani, Roger Purves, “Statistics”, third edition, Norton.
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6 Repeated experiments

ω: I’ve won! I always win... always, always, always!

Consider independent repetitions of the same kind of experiment. In advanced probability

modules such as stochastic processes you will encounter more general models. In partic-

ularly, there will be models of processes that allow future repetitions to depend on the

present (Markov processes) or on the present and a finite window of the past (higher order

Markov processes).

We consider a series of independent Bernoulli trials (see Example 4.12). This is an abstract

version of a model for repeated independent coin tosses.

Model 6.1. Bernoulli trials process.

A Bernoulli trials process is a finite or infinite sequence of random experiments with the

following characteristics:

(B1) Each experiment has two possible outcomes, referred to as “success” and “failure”.

(B2) The probability p ∈ [0, 1] for “success” is the same for each experiment; in particu-

larly, it is not affected by the outcome of any of the other experiments.

The probability 1− p for “failure” is often denoted by q.

The standard outcome space for a Bernoulli trials process of length n is Ω = {0, 1}n, where

1 refers to “success” and 0 refers to “failure”. The standard outcome space for an infinite

Bernoulli trials process is Ω = {0, 1}N, but (countable) submodels are also used.

The following toy examples from “mathematical finance” illustrate the main kinds of

events considered in the study of repeated trials.

Example 6.2. Can you spare some change? Penny needs some cash. She asks

everybody who passes by for some change. Each person gives her £1 with probability p

and nothing with probability 1−p. Assume that people react to her request independently

of each other. Compute the probabilities for the following events:

• She asks 12 people. A =“4 of 12 people them give her £1.”

• She keeps asking until her first success. B =“She ends up asking 5 people until her

first success.”

• She keeps asking until she has £4. C =“She ends up asking 57 people until she has

got £4.”

A is specifies the number of successes (see Section 6.1), B specifies the waiting time until

first success, (see Section 6.2) and C specifies the waiting time until a certain number of

successes (see Section 6.3).

6.1 Number of successes

Consider a Bernoulli trials process of fixed length n with success probability p ∈ [0, 1]

and failure probability q = 1 − p as described in Model 6.1. In this section we calculate

probabilities for events defined by the number of successes, i.e.

Sk = “k successes in n trials” (k = 0, 1, . . . , n) (20)
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They can be represented using the 0-1-coding representing failure and success. For ω ∈ Ω

let ω(i) be the ith place in the tuple. Then,

Sk =
{
ω
∣∣∣ n∑
i=1

ω(i) = k
}

(k = 0, 1, . . . , n). (21)

Illustrate the calculation of the probability of Sk by looking at the case n = 3.

Problem solving technique: Consider a special case or an example.

Example 6.3. Three independents Bernoulli trials.

Let n = 3. Using independence we observe

ω 111 110 101 100 011 010 001 000

P (ω) p3 p2q p2q pq2 p2q pq2 pq2 q3

In other words, there are four different probabilities involved:

• P ({111}) = p3

• P ({000}) = q3

• P ({110}) = P ({101}) = P ({011}) = p2 q

• P ({001}) = P ({010}) = P ({100}) = p q2

Return to the general case of a Bernoulli trial process of length n. Because of independence,

the probability of an outcome depends only on the numbers of successes and failures. Given

the total number of trials is fixed, it is enough to record only the number of successes.

This implies

P ({ω}) = pk qn−k for all ω ∈ Sk.

To calculate the probability of the event Sk it remains to count the number of outcomes in

Sk. In how many ways can we choose exactly k successes in n trials? According to Section

3.3, using the formula for “without replacement, not ordered”, this is
(
n
k

)
, so |Sk| =

(
n
k

)
and

P (Sk) =

(
n

k

)
pk qn−k (k = 0, 1, . . . , n). (22)

This defines a probability measure on the outcome space of Model 6.1. It can also be

thought of as a probability measure on the set containing all possible numbers of successes.

Definition 6.4. Binomial distribution.

The probability measure on the measurable space ({0, . . . , n},P({0, . . . , n})) with weights

pk =

(
n

k

)
pk qn−k (k = 0, 1, . . . , n) (23)

is called the binomial distribution with parameters n and p.

Remark 6.5. Special case 1/2.

For p = 1/2 formula (22) simplifies to the following form:

pk =

(
n

k

)
1

2n
(k = 0, 1, . . . , n) (24)
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Answer to Example 6.2 A:

P (A) =

(
12

4

)
p4(1− p)8.

Example 6.6. Library books. You go the the library with a list of 7 books you need

for your class. You would like to know the probability you can get a least 5 of them.

Answers to questions like this one can be computed, but some assumptions have to be

made. Here, we assume that the probability that a book is checked out is 10%, for any

one of the books and independently of any of the other books. (This is a simplification

and whether or not such assumptions are at least approximately true would need to be

verified for a particular library.)

The model for a Bernoulli trials process of length 7 with success probability 1/10 (see

Model 6.1) is suitable for this situation and we can compute the probability of the events

Sk for k successes using (22)). Here, “success” is being used for the book being checked

out.

P (“at least 5 are not checked out”) = P (“at most 2 are checked out”)

= P
( ⋃
k∈{0,1,2}

Sk

)
=

2∑
k=0

P (Sk) =

2∑
k=0

(
7

k

)( 1

10

)k( 9

10

)7−k
=

95

107
· (92 + 7 · 9 + 21) ≈ 0.9743

So the probability that you can get at least 5 of the books from your list is about 97.43%.

Some more examples that could be tackled with a binomial distribution:

• On a given day, 20 babies are born in Coventry. What is the probability that 10 of

them are girls?

• What is the probability that there are 3 left-handers in this classroom?

• What is the probability to get two faulty light bulbs in a pack of 30?

• You guess answers in a multiple choice exam at random. What is the probability

you get 20 out of 50 questions right?

6.2 Waiting time until success

In this section, we look at events defined by the number of trials it needs until the first

success. Events are defined based on the waiting time for the first success:

Wk = “it takes k trials until first success” for k = 1, 2, . . . (25)

We work with the model for infinitely many Bernoulli trials (see Model 6.1). Rather than

using the default outcome space Ω = {0, 1}N, we only record the relevant outcomes, that

is, Ω = {1, 01, 001, 0001, 00001, . . .}. Note that Ω is countable. This can be shown, for

example, by using the one-to-one map between Ω and N0 that is defined by counting the

number of zeros in any outcome ω ∈ Ω.

To calculate the probability for Wk just look at what it means to wait exactly k trials

until first success. The first k − 1 trials are failures and the kth trials is a success. Since
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the trials are independent,

P (Wk) = qk−1 p (k = 1, 2, . . .). (26)

According to Example 4.14, formula (26) does define a probability measure on (Ω,P(Ω)).

The weights pk = P (Wk) are non-negative, and their sum equals 1, because Wk (k ∈ N)

form a partition of Ω. This can also be interpreted as a probability measure on (N,P(N)).

Definition 6.7. Geometric distribution.

The probability measure on (N,P(N)) with weights

pk = qk−1 p (k = 1, 2, . . .)

is called the geometric distribution with parameter p.

To get a feeling for this distribution it is helpful to look at the consecutive odds ratios

(and they are useful to quickly sketch a histogram of the distribution).

P ({k + 1})
P ({k})

= q (k = 1, 2, . . .). (27)

Answer to Example 6.2 B:

P (B) = (1− p)4p

Example 6.8. Floods. You buy a house in a flooding area with the understanding that

the probability it floods in a given year is p = 1%. What is the probability for the event

Ak that the first flood will occur in the kth year after your purchase? Using a geometric

distribution,

P (Ak) = (1− p)k−1p =
99k−1

100k

What is the probability for the event BN that there are at most N floods in 100 years?

To answer this question we do not use a geometric, but a binomial distribution:

P (Bk) =
N∑
k=0

(
100

k

)
pk(1− p)100−k

ω: Why do they think flooding is a success?!

Ω: Well, yes, that is a good question.

Some more examples that could be tackled with a geometric distribution:

• You walk around town trying to find a restaurant that has your favourite dish. What

is the probability it takes no more than 8 restaurants until you find one?

• Every year, the probability for an earthquake in a certain town is p. What is the

probability that it takes at at least another 50 years until the next earthquake?

ω: You are trying to guess Rumpelstilzchen’s name. What is the chance it takes you at most three

attempts?
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6.3 Waiting time for multiple successes

We are interested in the probabilities for waiting a certain number of trials until the rth

success. Keep r ∈ N fixed. Define events based on the waiting time until the rth success:

W
(r)
k = “it takes k trials until rth success” for k = r, r + 1, . . . (28)

As in the last section, consider the model for infinitely many Bernoulli trials (see Model

6.1). Now keep trying until you have obtained r successes. The outcome space Ωr consists

of all 0-1-patterns that have exactly r 1’s in it, one of them at the end.

For example, for r = 2 : Ωr = {11, 011, 101, 0011, 0101, 1001, 00011, 00101, 01001, 10001, . . .}.

Lemma 6.9. Ωr is countable (for any r ∈ N).

Proof. There is no canonical candidate for a one-to-one map f between Ωr and the

integers as in the last section, but it is still easy to do. One could arrange the outcomes

in a triangle and then define a map from the integers to Ω by enumerating the outcomes

row by row. For example, for r = 2 use

11

011 101

0011 0101 1001

00011 00101 01001 10001

. . .

and define f(1) = 11, f(2) = 011, f(3) = 101, f(4) = 0011, . . .

It works similarly for larger r, but the explicit construction of such a map becomes more

cumbersome as r gets bigger. Here is another way to show that Ωr is countable: Every

ω ∈ Ωr can be described by the its length and the location of the first r − 1 successes.

This suggests a surjection from the countable set Nr−1 × N onto Ωr, which implies that

Ωr is countable.

To calculate the probability for W
(r)
k just look at the meaning: The kth trials is a success,

and there are r−1 successes and k−1−(r−1) failures among the first k−1 trials. For any

outcome of this kind the probability is pr−1 qk−1−(r−1) p. So, similarly to the derivation of

(22) we obtain

P (W
(r)
k ) =

(
k − 1

r − 1

)
pr qk−r (k = r, r + 1, . . .). (29)

This probability measure on (Ωr,P(Ωr)) can also be represented as a probability measure

on the possible waiting times itself.

Definition 6.10. Negative binomial distribution.

The probability measure on ({r, r + 1, r + 2, . . .},P({r, r + 1, r + 2, . . .})) with weights

pk =

(
k − 1

r − 1

)
pr qk−r (k = r, r + 1, . . .)

is called the negative binomial distribution with parameters p and r.
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To get a feeling for the probabilities of these events it is helpful to look at the consecutive

odds ratios (and hey are handy to quickly sketch a histogram). A simple calculation yields

P (W
(r)
k+1)

P (W
(r)
k )

=
k

k − 1
(k = r, r + 1, . . .). (30)

Answer to Example 6.2 C:

P (C) =

(
56

3

)
(1− p)53 p4

Example 6.11. Cables. A rope consists of many cables. During a high overload, a cable

may break. We assume that at most one breaks at any given overload, with probability

p, and that they behave independently of each other. The robe has to be replaced when

more than 3 of them are broken. What is the probability of the event Al that the robe

can stand exactly l overloads (and has to be replaced right after woods)?

P (Al) =

(
l − 1

2

)
(1− p)l−3p3.

Some more examples that may be tackled with a negative binomial:

• People come in one-by-one and choose one of the two waiting rooms A and B at

random. What is the chance it takes at least 20 people until there are 5 people in

room A.

• You type text messages. What is the probability it takes 100 characters until you

produce the 7th spelling error?

Ω: If we’re late more than 3 times a term out parents need to come in to see the head teacher. What is

the chance that our parents need to see that head teacher in a six week term?

6.4 Occurrences of independent events

6.4.1 Poisson approximation to the binomial (for rare events)

Example 6.12. Road accidents are rare in the sense that the probability p that a person

selected at random from the population has a road accident on a given day is very small.

For example, historical data for the UK says that p is about 0.000, 000, 21. However, with

about 55 Mio inhabitants, the average number of incidents all over the UK is about 11.

This number is not negligible. For an insurer, this is relevant.

Actuaries need to look at the events of the type

Hk = “exactly k accidents today”

Modelling this as a series of 55 Mio independent Bernoulli trials with parameter p, they

get

P (Hk) =

(
55, 000, 000

k

)
· 0.000, 000, 21k · 0.999, 999, 97955,000,000−k

Actuaries, especially before computers, needed a way to approximate this.
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Theorem 6.13. Poisson approximation

Let λ > 0 and (pn)n∈N a sequence in [0, 1] with npn −→ λ. Then, for all k ∈ {0, 1, 2, . . .},

lim
n→∞

P
(
Hk(n,pn)

)
= e−λ · λ

k

k!

where Hk(n, pn) =“k incidents in n trials with probability pn”.

Proof.

P (Hk) =
n!

k!(n− k)!
pkn(1− pn)n−k

=
1

k!

[ k−1∏
i=0

(n− i)
]

1

nk
(npn)k

(
1− npn

n

)n
(1− pn)−k

The last factor converges to 1, because pn is of the order 1/n. Since (n− i) 1
n = (1− i

n),[ k−1∏
i=0

(n− i)
]

1

nk
=

[ k−1∏
i=0

(
1− i

n

)] n→∞
−−−−→ 1

and for the remaining factors in brackets we have

(npn)k
n→∞
−−−−→ λk and

(
1− npn

n

)n
n→∞
−−−−→ e−λ

which yields

P (Hk)
n→∞
−−−−→ 1

k!
λke−λ

6.4.2 Poisson model

The values e−µ/µkk! (k ∈ {0, 1, 2, . . .}) add up to 1 (series for eµ) and are non-negative,

so they actually define the weight of a probability measure.

Definition 6.14. Poisson distribution.

Let µ > 0. The probability measure on (N0,P(N0)) with weights

pk = e−µ · µk/k!

is called the Poisson distribution with intensity parameter µ.

ω: We use this for counting fish. And the Sauterelle distribution for counting grasshoppers and the de

Chevalier’s distribution for counting horsemen.

Ω: Oh you’re being silly. . . But why don’t you read this old story about Chevalier de Méré... e.g. at

www.ualberta.ca/MATH/gauss/fcm/BscIdeas/probability/DeMere.htm.

Here is a traditional application of the Poisson distribution.

Example 6.15. Earthquakes. Earthquakes are very unpredictable. A common simple

model is to assume that the number of earthquakes in a given time unit follows a Poisson

distribution. Say for a region in the West of the US historical data says that there is

about λ earthquakes per year. The model for the number of earthquakes in a given year

is a Poisson distribution with intensity parameter λ. Let N be the number of earthquakes

next year.



50

(i) What is the probability for at least 3 earthquakes next year?

To avoid dealing with an infinite series go via the complement.

P (N ≥ 3) = 1−
∑2

k=0 P (N = k) = 1− (22/2! + 2 + 1) · e−λ = 1− 5e−λ.

(ii) What is the probability for exactly k earthquakes during the next m years?

This corresponds to changing the unit to m years by using the new intensity param-

eter mλ, hence the probability is e−mλ(mλ)k/k!.

More situations where Poisson distributions potentially provide suitable models:

• number of people who survive age 100

• number of floods in the UK per year

• number of misprint on a book page

• number of particles given off by 1-gram of radioactive material per second

• number of occurrences of a certain pattern in a stretch of DNA

6.5 A first taste of asymptotics

For a Bernoulli trials process as described in Model 6.1 let ω(i) be the outcome of the i

trial and

Sn(ω) =
n∑
i=1

ω(i)

the sum of the first n trials, that is the relative frequency of successes for this particular

ω.

What happens to this expression in the long run? In other words, what is the asymptotic

behaviour of 1
nSn(ω) ?

Thinking of a fair coin, we would expect it to converge to 1/2. More generally, in converges

to the probability p for success in the individual trials. The asymptotic behaviour of

sequences of random variables is one of the main topics in Part B, but we will state the

first result here

Theorem 6.16. Golden Theorem (Weak Law of Large Numbers for Bernoulli

sequences). Use the set-up Bernoulli(p) sequences as set up above, for all ε > 0,

P
(∣∣∣ 1
n
Sn − p

∣∣∣ < ε
) n→∞
−−−−→ 1.

What does that mean in plain English? Does it mean that the relative frequencies of heads

computed along any sequence of coin tosses converge to 1/2?

No! This would be much stronger and is actually wrong. For example, you may end up

tossing heads forever, even with a fair coin. (Of course, very unlikely, but theoretically

not impossible.)

What about excluding those weird cases? Then this turns out to be true, as you can learn

in the Module Random Events in the second year. It is called the Strong Law of Large

Numbers and states convergence of 1
nSn(ω) to p for all ω ∈ Ω \N, where N ∈ A is a set

of measure 0.
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The Weak Law talks just about probabilities of events on a finite horizon:

An =
{∣∣∣ 1
n
Sn −

1

2

∣∣∣ < ε
}

describes the event that the relative frequency of heads in the first n tosses is within an ε

of 1/2. So, in the case of fair coin tosses the theorem says:

The probability that the relative frequency of heads in the first n tosses is within

an ε of 1/2 converges to 1 for n to infinity.

7 Back to the beginning: What is probability?

To conclude Probability A, let us briefly discuss a few of the approaches to defining and

understanding probability. For more about the history of probability see, for example, the

books by Ian Hacking12. A starting point for philosophy of probability could be the new

collection of essays edited by Anthony Eagle3.

7.1 Classical probability

In many physical world examples symmetrical structures can be exploited to define prob-

abilities. This naturally leads to models with equally likely outcomes, though can be

pushed to cover a bit more than that, too. Over many centuries, theory development in

probability has in part been stimulated by questions arising in gambling situations. The

betting on a “double six” in 24 throws of a pair of dice and other problems posed by the

French nobleman Antoine Gombaud, Chevalier de Mr, around 1654 led to an exchange of

letters between Blaise Pascal and Pierre de Fermat in which the fundamental principles of

probability theory were formulated for the first time. Maybe it was for these applications

that von Kries in his work on the principles of probability in the 1880s introduced prob-

ability spaces as Spielräume (Spiel is German for game, Raum is German for space). An

idealised casino serves as a laboratory for the science of random patterns: Coins, dice and

cards to the probabilist what drosophila, arabidopsis and c. elegance are to the biologist.

Pierre-Simon Laplace and the publication of his book Théorie Analytique des Probabilités

in1812 has taken probability theory away from solving disputes between gambling towards

a wide range of scientific, societal and practical applications. The 19th century has seen

probabilistic thinking and modelling entering the theory of errors, actuarial mathematics

and statistical mechanics. One of the first famous examples for the latter is the theory of

idealised gas by Maxwell and Boltzmann. Probability theory is the key to understanding

the interplay between microscopic behaviour of particles systems and observed macroscopic

quantities. In particularly, it has deepened the understanding of central concepts such as

entropy. Quantum mechanics is heavily based on probabilistic thinking. Which concepts

of probability are best suited to describe the phenomena in this fields is still a matter of

debated in physics.

1Ian Hacking (1975), The emergence of probability, Cambridge: Cambridge University Press
2Ian Hacking (1990), The Taming of Chance, Cambridge: Cambridge University Press
3Anthony Eagle (2010), Philosophy of Probability, Contemporary Readings: Routledge
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Genetics has been providing a stream of ever changing questions stimulating research in

both in probability theory, as beautifully presented in the classical probability textbook

by William Feller, and statistics, as impersonalised by Sir Ronald A. Fisher who is claimed

by both professions. Today, probability theory and statistics provide a methodology and

a language for quantitative bioinformatics and genomics.

7.2 Relative frequencies

It is an old intuitive idea that the probability of an event should reflect the relative

frequency. Imagine you find a die, roll it 600 times and get 209 sixes. What do you think

is the chance that will get a six in the next roll? You could say 209/600. Now you roll it

6,000 times and obtain 1,987 sixes. So it should be 1,987/6,000, which is similar but not

the same. The more often, the more your estimates for the “real” probability will resemble

each other. The underlying understanding of this approach is that the “real” probability is

the asymptotic relative frequency, i.e., the limit of the relative frequencies. This tradition

has been shaped, among others, by John Venn, Hans Reichenbach and Richard von Mises.

This understanding builds on the existence of such a limit. It further needs the limit to

be deterministic, i.e. even though for any given finite time horizon the relative frequency

is a random number, the limit of these frequencies will always be the same number. But

it will not. Rolling only sixes is extremely improbable, but not impossible. Now we got

stuck because of some weird cases.

Common sense can be reconciled with theory by focussing on what essentially happens

instead of getting derailed by exceptions. There are so-called Laws of Large Numbers,

which are all different ways of stating some sort of convergence of the relative frequencies

to a limit representing the hypothetical “real probability” of an event. The exact type of

results depends on the structure of the experiment, most of all the amount of dependence

involved in the process. We have seen one of these asymptotic results, the Golden Theorem

or Weak Law of Large Numbers. In order to prove such these kinds of theorems, however,

we need to have already defined probability. Hence the approach of defining probability

risks to result in a cyclic thought process. This has been addressed by an introduction of

suitable axioms.

7.3 Propensity interpretation

Like the relative frequency approach, it is about relating probabilities to some “real word”

phenomenon. In this tradition probability is thought to be a “physical propensity, or

disposition, or tendency of a given type of physical situation to yield an outcome of a

certain kind, or to yield a long run relative frequency of such an outcome”1.

This approach has mainly been developed by Karl Popper who took it further to sees in a

probability the “propensity of a repeatable experiment to produce outcomes of that type

with limiting relative frequency p” collapsing it almost with the frequentist approach2.

However, the angle is different. Propensities are assumed causes of the observed relative

1“Interpretations of Probability”, Stanford Encyclopedia of Philosophy, 2002 (revised 2009). http:

//plato.stanford.edu/entries/probability-interpret/.
2dito.
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frequencies rather than the frequencies themselves. A main difference to the frequentist

approach that only refers to large ensembles is that the propensity interpretation allows to

talk about single-case probabilities. Main criticism of this approach is that the definition

of propensity still seems to be work in progress.

7.4 Axiomatic approach

The development of set theory and measure theory at the end of the 19th and the be-

ginning of the 20th century, has accelerated the transformation from probability calculus

into an axiomatically based mathematical theory about random patterns. The axiomatic

approach has enabled 20th century mathematicians to build probability theory as a co-

herent mathematical discipline using the same formalism for all random experiments. The

central piece, Kolmogorov’s Axioms, were explained in Section 4.

In this mathematical framework, events are subsets of an outcome space and probability

is a measure. The sets are elements of a σ-algebra, a system of sets closed under countably

infinite set operations. The measure is normed and obeys laws reflecting how probabilities

should behave when events are linked.

As a direct consequence of the axiomatisation, probability theory has unfolded enormously

as an abstract mathematical discipline. As a side-effect, probability theory got increasingly

detached from its roots in the manifold fields of applications (see Sections 7.1) with lead

to Kolomogov voicing a complaint in 1963 that his axioms had been so successful on the

purely mathematical side that many mathematicians had lost interest in understanding

how probability theory can be applied3. Ironically, Andrei Kolmogorov and other math-

ematicians of his time had own always minded the connections between mathematical

probabilities and its counterparts in the “real world”.

7.5 Subjective probabilities

At the heart of this perspective is the individual’s personal judgement about the likelihood

of an event. For example: A risk averse personality tends to associate a higher likelihood

with activities involving dangers than a risk taking personality. An insider will have a

different idea about the future development of a certain stock than a regular trader. This

perspective goes back at least as far as Bernoulli who defined probability as a degree of

subjective certainty in the sense of an epistemic judgement.

Subjectivists of the 20th century, such as Frank P. Ramsey, Bruno de Finetti, Leonard

Savage and Richard Jeffrey, added more factors to Bernoulli’s knowledge and information

based concept. Including factors like personality, values and taste, they defined probability

as a measure of rational degree of belief. Using Dutch book arguments along with the

condition of coherence, they derived the same rules for calculating with probabilities as

expressed by the axioms (except they considered only additivity rather than σ-additivity).

The most important technical tool of the subjective approach is conditional probability.

A difficult task is the elicitation of subjective probabilities. Expert opinions and surveys

3Vladimir Vovk and Glenn Shafer, “The Sources of Kolmogorov’s Grundbegriffe, Statistical Science,

Vol. 21 (2006), No. 1. www.probabilityandfinance.com/articles/STS154.pdf.
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including questions that extract probability judgement based on betting metaphors are

common methods. Opened the door to real human’s minds, however, has also revealed that

they do not always perceive and process probabilities as the mathematical definitions and

rules would suggest. We have seen two examples in Section 2.7.3 illustrating a confusion

between regularity and randomness and a misconception of conjunction of events.

The conception of probabilities is particularly difficult for very small probabilities. By

their very nature it is hardly possible, in a finite life time, to experience the corresponding

frequencies in a way that reflects their “real probability”. Hence, learning from experi-

ence does not provide a good strategy for becoming knowledgeable about rare events. In

other words, the epistemological basis for statements about rare events can not be purely

empirical but has to rely on theoretical models, too.

ω: I know an example for rare events! There is a blind sea turtle coming to the surface once every one

hundred years. And there is a yoke with a single hole floating on the surface of the ocean. What is the

probability that it happens to come up with his neck right through that whole?

Ω: Is that what you learn in Foundation stage these days?! It’s a teaching of the Buddha. He compares

your sea turtle probability to the likelihood for be (re-)born as a human being.

ω: On another note, are you going to take probability B?

Ω: I have to sort out some very fundamental doubts about probability theory first. And this starts with

coin flipping. I just read in a paper by Andrew Gelman and Deborah Nolan that claims that it is not

actually possible to make a biased coin1.

ω: I don’t believe this.

Ω: And there is this work by Perci Diaconis, Susan Holmes and Richard Montgomery12. When they tried

to make multiple flips of the same coin independent, they only got as close as to demonstrate that the

other side came up 49% of the time.

ω: The magician Diaconis?

Ω: He did have a bit of a career change. . .

ω: Okay, I’m going to help you sorting out your doubt. I am going to make a biased coin all on my own.

And I’ll test it all on my own. Even if it takes a very long time.

Ω: But look, this is not a very good time for that. First you have to attend all your module lectures

properly. Hey, I will give you a sticker for every homework assignment you turn in! And then you need to

study for the exams. You need to be efficient, you see?

ω: No! I won’t do it. There is no point doing Probability B and any exams for probability if things as simple

as biased coins don’t even exist. I’m not trying to get a degree in science fiction, but in mathematics, you

see? These grown-ups have been telling us for years we have use their methods and answer their questions.

There has never been a good time to think about our own questions, if you ask them. You are not one of

them, Omega, are you? You will help me, will you? Yes, you will? Let’s start right now!

1Andrew Gelman and Deborah Nolan, “Teachers Corner: You Can Load a Die, But You Cant

Bias a Coin”, American Statistician 56 (2002). www.stat.columbia.edu/~gelman/research/published/

diceRev2.pdf.
1Perci Diaconis, Susan Holmes and Richard Montgomery, “Dynamical Bias in the Coin Toss”, Society

for Industrial and Applied Mathematics Vol. 49 (2007), No. 2
2Esther Landhuis, “Lifelong debunker takes on arbiter of neutral choices”, Stanford Report, June 7,

2004. http://news.stanford.edu/news/2004/june9/diaconis-69.html.
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Synopsis of the lecture part B

(Online notes will be posted on the module website shortly after term.)

Week I

1) Random variables and their distributions, discrete and continuous case

2) Combinations of random variables, cumulative distribution functions

3) Indicators, Gamma family of distributions, special case exponential family

Week II

4) Memoryless property of exponential, Normal family, distribution of the transforma-

tion of a discrete r.v.

5) Distribution of the transformation of a continuous r.v., expectation for discrete ran-

dom variables, illustration, expectation of a transformation of a discrete random

variable

6) Linearity of expectation of a discrete r.v., expectation of a geometric r.v., method

of indicators, expectation and prediction, median, mode

Week III

7) Expectation for continuous random variables, heuristics for consistency with concept

of expectation for discrete r.v., linearity, variance, properties of variance

8) Joint distributions, discrete and continuous case, independent r.v., correlated r.v.,

uniform on a disc

9) More examples for joint distributions, expectation of a sum of finitely many r.v.,

covariance, independent r.v.

Week IV

10) Variance of a sum of finitely many r.v., phrase question about sums/averages of r.v.

and their asymptotics,

11) Tail probabilities: Markov’s and Chebychev’s inequality, Weak Law of Large Num-

bers (WLLN)

12) Proof of WLLN, generating functions

Week V

13) Presentation by MMORSE project students about survey, generating functions (prop-

erties and examples)

14) Central Limit Theorem

15) Applications of the Central Limit Theorem


