ST222 2017 TEST ABOUT PART II

- (1) In a two person game, let $D = \{d_1, \ldots, d_n\}$ and $\Delta = \{\delta_1, \ldots, \delta_m\}$ be the moves available to Player I and Player II and R and S be their payoff matrices.
 - A move $d^* \in D$ dominates all other moves if for all $d \in D$ with $d \neq d^*$ and for all $\delta \in \Delta$, $R(d^*, \delta) \ge R(d, \delta)$. TRUE FALSE
 - A move $d_* \in D$ is dominated if for all $d \in D$ with $d \neq d_*$ and for all $\delta \in \Delta$, $R(d_*, \delta) \leq R(d, \delta)$. TRUE FALSE
 - The game is called separable if there are r_1 and r_2 such that for all i = 1, ..., n and j = 1, ..., m, $R(d_i, \delta_j) = r_1(d_i) + r_2(\delta_j)$. TRUE FALSE
 - Assume the game is separable with r_1, r_2 as above. If $d^* \in D$ and $r_1(d^*) \ge r_1(d)$ for all $d \in D$ and there is $j \in \{1, \ldots, m\}$ with $R(d^*, \delta_j) \le R(d^*, \delta_{j'})$ for all $j' \in \{1, \ldots, m\}$, then Player I should not play d^* . TRUE FALSE
 - If the game is separable, then m = n. TRUE FALSE
 - The game is called zero-sum game if $\sum_{j=1}^{m} R(d_i, \delta_j) = 0$ for all i = 1, ..., n. TRUE FALSE
 - If the game is a zero-sum games, then m = n. TRUE FALSE
 - If the game is a zero-sum games, then there is no equilibrium. TRUE FALSE
 - The matrix

$$\begin{bmatrix} 17 & 0 \\ 0 & -17 \end{bmatrix}$$
 defines a separable zero-sum game. True FALSE

- (2) Consider the situation in the previous questions and also assume it is a zero sum game. Use $\overline{x} = (x_1, \ldots, x_n)$ and $\overline{y} = (y_1, \ldots, y_m)$ to denote mixed strategies.
 - Player I's maximin mixed strategy is the \overline{x} that maximises

$$\max_{\overline{x}} \min_{\overline{y}} V_1 = \sum_{i=1}^n \sum_{j=1}^m x_i R(d_i, \delta_j) y_j$$

TRUE FALSE

• Player II's maximin mixed strategy is the \overline{x} that minimises

$$\min_{\overline{y}} \max_{\overline{x}} V_2 = \sum_{i=1}^n \sum_{j=1}^m x_i R(d_i, \delta_j) y_j$$

True False

• $V_1 = V_2$

TRUE FALSE

(3) Consider the game defined by the matrix below.

$$\begin{bmatrix} (1,1) & (0,-1) & (1,1) & (-1,-1) & (1,0) \\ (0,0) & (1,0) & (0,1) & (1,0) & (0,1) \\ (-1,1) & (1,-1) & (-1,0) & (0,-1) & (0,0) \end{bmatrix}$$

• Does this game have a discriminant strategy? If yes, which one? If not, why not?

• Find the equilibria.

(4) Consider the zero-sum game defined by the matrix below.

[1	4	7	8	2]
2	5	8	7	2
3	6	9	6	2

• Does this game have a discriminant strategy? If yes, which one? If not, why not?

• Find the equilibria.