ST222 2017 TEST ABOUT PART II

(1) In a two person game, let $D=\left\{d_{1}, \ldots, d_{n}\right\}$ and $\Delta=\left\{\delta_{1}, \ldots, \delta_{m}\right\}$ be the moves available to Player I and Player II and R and S be their payoff matrices.

- A move $d * \in D$ dominates all other moves if for all $d \in D$ with $d \neq d^{*}$ and for all $\delta \in \Delta, R\left(d^{*}, \delta\right) \geq R(d, \delta)$. True False
- A move $d_{*} \in D$ is dominated if for all $d \in D$ with $d \neq d_{*}$ and for all $\delta \in \Delta, R\left(d_{*}, \delta\right) \leq R(d, \delta)$.

True False

- The game is called separable if there are r_{1} and r_{2} such that for all $i=1, \ldots, n$ and $j=1, \ldots, m$, $R\left(d_{i}, \delta_{j}\right)=r_{1}\left(d_{i}\right)+r_{2}\left(\delta_{j}\right)$.
True False
- Assume the game is separable with r_{1}, r_{2} as above. If $d^{*} \in D$ and $r_{1}\left(d^{*}\right) \geq r_{1}(d)$ for all $d \in D$ and there is $j \in\{1, \ldots, m\}$ with $R\left(d^{*}, \delta_{j}\right) \leq R\left(d^{*}, \delta_{j^{\prime}}\right)$ for all $j^{\prime} \in\{1, \ldots, m\}$, then Player I should not play d^{*}. True False
- If the game is separable, then $m=n$.

True False

- The game is called zero-sum game if $\sum_{j=1}^{m} R\left(d_{i}, \delta_{j}\right)=0$ for all $i=1, \ldots, n$.

True False

- If the game is a zero-sum games, then $m=n$.

True False

- If the game is a zero-sum games, then there is no equilibrium.

True False

- The matrix

$$
\left[\begin{array}{cc}
17 & 0 \\
0 & -17
\end{array}\right]
$$

defines a separable zero-sum game. True False
(2) Consider the situation in the previous questions and also assume it is a zero sum game. Use $\bar{x}=\left(x_{1}, \ldots, x_{n}\right)$ and $\bar{y}=\left(y_{1}, \ldots, y_{m}\right)$ to denote mixed strategies.

- Player I's maximin mixed strategy is the \bar{x} that maximises

$$
\max _{\bar{x}} \min _{\bar{y}} V_{1}=\sum_{i=1}^{n} \sum_{j=1}^{m} x_{i} R\left(d_{i}, \delta_{j}\right) y_{j}
$$

True False

- Player II's maximin mixed strategy is the \bar{x} that minimises

$$
\min _{\bar{y}} \max _{\bar{x}} V_{2}=\sum_{i=1}^{n} \sum_{j=1}^{m} x_{i} R\left(d_{i}, \delta_{j}\right) y_{j}
$$

True False

- $V_{1}=V_{2}$

True False
(3) Consider the game defined by the matrix below.

$$
\left[\begin{array}{ccccc}
(1,1) & (0,-1) & (1,1) & (-1,-1) & (1,0) \\
(0,0) & (1,0) & (0,1) & (1,0) & (0,1) \\
(-1,1) & (1,-1) & (-1,0) & (0,-1) & (0,0)
\end{array}\right]
$$

- Does this game have a discriminant strategy? If yes, which one? If not, why not?
- Find the equilibria.
(4) Consider the zero-sum game defined by the matrix below.

$$
\left[\begin{array}{lllll}
1 & 4 & 7 & 8 & 2 \\
2 & 5 & 8 & 7 & 2 \\
3 & 6 & 9 & 6 & 2
\end{array}\right]
$$

- Does this game have a discriminant strategy? If yes, which one? If not, why not?
- Find the equilibria.

