Introduction

Introduction Prob •000000000 0000 0000 0000	ability	Elicitation 0000 0000000000 00	Conditions 0000000 000000 0000000	Decisions 00000000 00000000 000000000000000000	Preferences 000000 0000000000	$\begin{array}{c} \mathbf{Games} \\ \texttt{00000000} \\ \texttt{00000000} \\ \texttt{00000000} \end{array}$
The basis of decision	analysis					0000000

The Problem of the Decision Analyst

This stylised scenario embodies the core problems of decision analysis:

- ▶ You have a client¹.
- ▶ The client must choose one action from a set of possibilities.
- ▶ This client is uncertain about many things, including:
 - ▶ Her priorities.

Conflicting requirements can be difficult to resolve.

▶ What might happen.

Fundamental uncertainty – things not within her control.

▶ How other people may act.

Other interested parties might influence the outcome.

▶ You must advise this client on the best course of action.

¹This may be yourself, but it is useful to separate the two rôles.

Introduction 00000000000	Probability 000000000000000000000000000000000000	Elicitation 0000 0000000000 00	Conditions 0000000 0000000	Decisions 00000000 00000000 000000000	Preferences 000000 0000000000	Games 00000000 00000000 00000000 00000000
The basis of de	cision analysis					
A problem	m of two	parts				
► Eli	citation: Of	otain precis	se answers t	to several o	questions:	

- What is the client's problem?
- ▶ what does she believe?
- ▶ What does she want?
- ▶ Calculation: Given this information
 - What are its logical implications?
 - ▶ What should our client do?

 $\text{Elicitation} \longrightarrow \text{Calculation} \longrightarrow \text{Elicitation} \longrightarrow \text{Calculation} \longrightarrow \dots$

Introduction oo●ooooooooo	Probability 000000000000000000000000000000000000	Elicitation 0000 0000000000 00	Conditions 0000000 000000 0000000	Decisions 00000000 00000000 000000000	Preferences 000000 0000000000	Games 00000000 00000000 00000000 0000000000
The basis of de	cision analysis					
What do	es she rea	ally want	?			

Example (Advising a university undergraduate) What is their objective?

- Getting the best possible degree?
- ▶ Trying to get a particular job after university?
- ▶ Learning for its own sake?
- ▶ Having as much fun as possible?
- A combination of the above?

Introduction 0000000000	Probability 000000000000000000000000000000000000	Elicitation 0000 0000000000 00	Conditions 0000000 0000000 0000000	Decisions 00000000 00000000 000000000000000000	Preferences 000000 0000000000	Games 00000000 00000000 00000000 00000000
The basis of dec	cision analysis					

Example (A small business owner)

What is their objective?

- ► Staying in business?
- Making $\pounds X$ of profit in as short a time as possible?
- Making as much profit as possible in time T?
- ► Eliminating competition?
- ► Maximising growth?

Introduction 00000000000	Probability 0000000000000 0000000000000000000000	Elicitation 0000 0000000000 00	Conditions 0000000 000000 0000000	Decisions 00000000 00000000 000000000000000000	Preferences 000000 00000000000	Games 00000000 00000000 00000000 00000000			
The basis of de	The basis of decision analysis								
What do	es she kn	ow?							

As well as knowing what our client *wants* we need to know what they *know*:

- ▶ What are their options?
- ▶ What are the possible consequences of these actions?
- ▶ How are the consequences related to the action taken?
- ► Are any other parties involved? If so, what are their objectives?

Introduction 00000000000	Probability 000000000000000000000000000000000000	Elicitation 0000 0000000000 00	$\begin{array}{c} \textbf{Conditions} \\ \texttt{0000000} \\ \texttt{000000} \\ \texttt{0000000} \\ \texttt{0000000} \end{array}$	Decisions 00000000 00000000 000000000000000000	Preferences 000000 0000000000	Games 00000000 00000000 00000000 00000000
The basis of de	cision analysis					

Example (Marketing)

- ▶ How can we advertise?
- ▶ What are the *costs* of different approaches?
- ▶ What are the *effects* of these approaches?
- ▶ What volume of production is possible?
- ▶ What competition do we have?

Introduction 000000000000	Probability 000000000000000000000000000000000000	Elicitation 0000 0000000000 00	Conditions 0000000 0000000 0000000	Decisions 00000000 00000000 000000000000000000	Preferences 000000 0000000000	Games 00000000 00000000 00000000 00000000
The basis of de	cision analysis					

Example (Insurance)

Insurance against a particular type of loss...

- Probability of the loss occurring is $p \ll 1$.
- Cost of that lost would be, say, $\pounds 5,000$.
- Insurance premium is $\pounds 10$.

Why are both parties happy with this?

Example (A Simple Lottery)

- ▶ $\mathbb{P}({Win}) = 1/10,000$
- Value (Win) = £5,000
- Ticket price $\pounds 1$.

Why is this acceptable? What about simple variations?

Introduction	Probability	Elicitation	Conditions	Decisions	Preferences	Games
000000000000	000000000000000000000000000000000000000	0000 0000000000000000000000000000000000	0000000 000000 0000000	00000000 00000000 000000000	000000 0000000000	00000000 00000000 00000000 00000000

Is that *really* what she believes?

It is important to distinguish between that which is *believed* from that which is *hoped*, *feared* or simply asserted.

Example (Economic forecasting)

Recent forecasts of British GDP growth in 2009:

- ▶ -0.1% International Monetary Fund
- ▶ -0.75– -1.25% British Government
- \blacktriangleright -1.1% Organisation for Economic Co-operation and...
- ▶ -1.7% Confederation of British Industry

► -2.9% Centre for Economics and Business research Each organisation has different objectives & knowledge. Are they necessarily reliable indications of the underlying <u>beliefs of these organisations²?</u>

 $^2 \mathrm{We}$ will put as ide the philosophical questions raised by this concept...

Introduction	Probability	Elicitation	Conditions	Decisions	Preferences	Games
0000000000000	0000000000000 00000000 000000000000000	0000 0000000000 00	0000000 000000 0000000	00000000 00000000 000000000	000000 0000000000	000000000000000000000000000000000000000

The basis of decision analysis

Quantification of Subjective Knowledge

Our client has beliefs and some idea about her objective. She probably isn't a mathematician. We have to codify things in a rigorous mathematical framework.

In particular, we must be able to encode:

- Beliefs about what can happen and how likely those things are to happen.
- ▶ The cost or reward of particular outcomes.
- ▶ In the case of games: What any other interest parties want and how they are likely to react.

Having done this, we must use our mathematical skills to work out how to advise our client.

Introduction 000000000€0	Probability 000000000000000000000000000000000000	Elicitation 0000 0000000000 00	Conditions 0000000 000000 0000000	Decisions 00000000 00000000 000000000000000000	Preferences 000000 0000000000	Games 00000000 000000000 00000000000000000				
The basis of de	The basis of decision analysis									
Some Ter	rminology	7								

Before considering details, we should make sure we agree about terminology.

- ▶ In a *decision problem* we have:
 - ► A (random) source of uncertainty.
 - A collection of possible *actions*.
 - A collection of *outcomes*.

and we wish to choose the action to obtain a favourable outcome.

► A *game* is a similar problem in which the uncertainty arises from the behaviour of a (rational) opponent.

Introduction 0000000000●	Probability 000000000000000000000000000000000000	$\begin{array}{c} \textbf{Elicitation}\\ 0000\\ 0000000000\\ 00\end{array}$	Conditions 0000000 000000 0000000	Decisions 00000000 00000000 000000000000000000	Preferences 000000 0000000000	Games 00000000 00000000 000000000 000000000		
The basis of decision analysis								
From Que	estions to	Answer	'S					

Now we need to answer some questions:

- 1. How can be elicit and quantify beliefs?
- 2. How can we represent their particular problem mathematically?
- 3. How do we represent her objectives quantitatively?
- 4. What should we advise our client to do?
- 5. What can we do if other rational agents are involved?

We will begin by answering question 1: we can use probability.

Introduction

 Conditions

Decisions 00000000 00000000 00000000 Preferences

Games

Probability

 Conditions 0000000 000000 0000000 **Preferences**000000
00000000000

Games 00000000 00000000 00000000 00000000

Axiomatic Probability

Foundations of An Axiomatic Theory of Probability

The *Russian school* of probability is based on axioms. The abstract specification of probability requires three things:

1. A set of all possible outcomes, Ω .

The *sample space* containing elementary events.

2. A collection of subsets of Ω , \mathcal{F} .

Outcomes of interest.

3. A function which assigns a probability to our events: $\mathbb{P}: \mathcal{F} \to [0, 1]$

The probability itself.

Introduction	Probability	Elicitation	Conditions	Decisions	Preferences	Games
	00000000000000000000000000000000000000	0000 0000000000 00	0000000 000000 0000000	00000000 00000000 000000000	000000 0000000000	00000000 00000000 00000000 00000000
Axiomatic Pro	oability					

Example (Simple Coin-Tossing)

► All possible outcomes might be:

$$\Omega = \{H, T\}.$$

► And we might be interested in all possible subsets of these outcomes:

$$\mathcal{F} = \{\emptyset, \{H\}, \{T\}, \Omega\}.$$

▶ In which case, under reasonable assumptions:

$$\mathbb{P}(\emptyset) = 0 \qquad \mathbb{P}(\{H\}) = \frac{1}{2}$$
$$\mathbb{P}(\{T\}) = \frac{1}{2} \qquad \mathbb{P}(\{H,T\}) = 1$$

-1

Introduction	Probability	Elicitation	Conditions	Decisions	Preferences	Games
	0000000000000 00000000 00000000000000	0000 0000000000 00	0000000 000000 0000000	00000000 00000000 000000000	000000 0000000000	00000000 00000000 00000000 00000000

Axiomatic Probability

Example (A Tetrahedral (4-faced) Die)

- The possible outcomes are: $\Omega = \{1, 2, 3, 4\}$
- ▶ And we might again consider all possible subsets:

$$\begin{aligned} \mathcal{F} = \{ & \emptyset, & \{1\}, & \{2\}, & \{3\}, \\ & \{4\}, & \{1,2\}, & \{1,3\}, & \{1,4\}, \\ & \{2,3\}, & \{2,4\}, & \{3,4\}, & \{1,2,3\}, \\ & \{1,2,4\}, & \{1,3,4\}, & \{2,3,4\}, & \{1,2,3,4\} \end{aligned}$$

• In this case, we might think that, for any $A \in \mathcal{F}$:

$$\mathbb{P}(A) = |A|/|\Omega| = \frac{\text{Number of values in } A}{4}$$

Introduction 00000000000	Probability 000000000000000000000000000000000000	Elicitation 0000 0000000000 00	Conditions 0000000 000000 0000000	Decisions 00000000 00000000 000000000000000000	Preferences 000000 0000000000	Games 00000000 00000000 00000000 00000000
Axiomatic Pro	bability					
Examp	ple (The Na	tional Lot	tery)			
0	()]]		(o 1	<u> </u>	(0))	

- $\Omega = \{ All unordered sets of 6 numbers from \{1, \dots, 49\} \}$
- $\mathcal{F} = \text{All subsets of } \Omega$
- \blacktriangleright Again, we can construct $\mathbb P$ from expected uniformity.
- ► But there are $\binom{49}{6} = 13983816$ elements of Ω and consequently $2^{13983816} \approx 6 \times 10^{6000000}$ subsets!
- ▶ Even this simple discrete problem has produced an object of incomprehensible vastness.
- What would we do if $\Omega = \mathbb{R}$?
- It's often easier not to work with *all* of the subsets of Ω .

Introduction 00000000000	Probability 000000000000000000000000000000000000	Elicitation 0000 0000000000 00	$\begin{array}{c} \textbf{Conditions} \\ \texttt{coccco} \\ \texttt{cocccc} \\ \texttt{coccccc} \\ \texttt{cocccccc} \\ \texttt{cocccccc} \\ \texttt{cocccccc} \\ \texttt{coccccccc} \\ \texttt{coccccccc} \\ \texttt{coccccccccccccc} \\ coccccccccccccccccccccccccccccccccccc$	Decisions 00000000 00000000 000000000000000000	Preferences 000000 0000000000	Games 00000000 00000000 00000000 00000000				
Axiomatic Pro	Axiomatic Probability									
Algebras Given 9 1. Ω	of Sets Ω, \mathcal{F} must set $\in \mathcal{F}$	atisfy certa	in conditio	ns.						
	Th	e event "s	omething h	appening"	is in our se	et.				
2. If	$A \in \mathcal{F}$, then									
		$\Omega \setminus A = \{$	$x\in \Omega: x\not\in$	$A\} \in \mathcal{F}$						

If A happening is in our set then A not happening is too. 3. If $A, B \in \mathcal{F}$ then

$$A \cup B \in \mathcal{F}$$

If event A and event B are both in our set then an event corresponding to either A or B happening is too. A set that satisfies these conditions is called an *algebra* (over Ω).

Introduction 00000000000	Probability Elicitation 000000000000000000000000000000000000	Conditions 0000000 000000 0000000	Decisions 00000000 00000000 000000000000000000	Preferences 000000 0000000000	Games 00000000 00000000 00000000					
Axiomatic Pro	Axiomatic Probability									
σ -Algebr	as of Sets									

If, in addition to meeting the conditions to be an algebra, ${\mathcal F}$ is such that:

• If
$$A_1, A_2, \dots \in \mathcal{F}$$
 then $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$

If any countable sequence of events is in our set, then the event corresponding to any one of those events happening is too.

then \mathcal{F} is known as a σ -algebra.

Introduction	Probability Elicitation	n Conditions	Decisions	Preferences	Games
	00000000000000000000000000000000000000	0000000 0 000000 0000000	00000000 00000000 000000000	000000 0000000000	000000000000000000000000000000000000000

Example (Selling a house)

- ▶ You wish to sell a house, for at least £250,000.
- On Monday you receive an offer of X.
- ▶ You must accept or decline this offer immediately.
- On Tuesday you will receive an offer of Y.
- ▶ What should you do?

$$\blacktriangleright \ \Omega = \{(x,y): x,y \ge \pounds 100,000\}$$

▶ But, we only care about events of the form:

 $\{(i, j) : i < j\}$ and $\{(i, j) : i > j\}$

▶ Including some others ensures that we have an algebra:

$$\{(i,j): i=j\} \ \ \{(i,j): i\neq j\} \ \ \{(i,j): i\leq j\} \ \ \{(i,j): i\geq j\} \ \ \emptyset \ \ \Omega$$

Introduction	Probability	Elicitation	Conditions	Decisions	Preferences	Games		
00000000000	0000000000000 00000000 00000000000000	0000 0000000000 00	0000000 000000 0000000	00000000 00000000 000000000	000000 0000000000	000000000000000000000000000000000000000		
Axiomatic Probability								

Atoms

Some events are *indivisible* and somehow fundamental: An event $E \in \mathcal{F}$ is said to be an atom of \mathcal{F} if:

1. $E \neq \emptyset$ 2. $\forall A \in \mathcal{F}$: $E \cap A = \begin{cases} \emptyset \\ \text{or } E \end{cases}$

Any element of \mathcal{F} contains all of E or none of E. If \mathcal{F} is finite then any $A \in \mathcal{F}$, we can write:

$$A = \bigcup_{i=1}^{n} E_i$$

for some finite number, n, and atoms E_i of \mathcal{F} .

We can represent any event as a combination of atoms.

00000000 00000000000000000000000000000	Introduction	Probability	Elicitation	Conditions	Decisions	Preferences	Games
		00000000000000 00000000 0000000000000	0000 0000000000 00	0000000 000000 0000000	00000000 00000000 000000000	000000 0000000000	00000000 00000000 00000000 00000000

Axiomatic Probability

Example (Selling a house...) Here, our algebra contained:

$$\begin{split} \{(i,j):i < j\} & \quad \{(i,j):i > j\} & \quad \{(i,j):i \neq j\} & \emptyset \\ \{(i,j):i \leq j\} & \quad \{(i,j):i \geq j\} & \quad \{(i,j):i = j\} & \Omega \end{split}$$

Which of these sets are atoms?

- ▶ $\{(i, j) : i < j\}$ is
- $\blacktriangleright \ \{(i,j):i>j\} \ \mathbf{is}$
- $\{(i,j): i \neq j\}$ is not it's the union of two atoms
- \emptyset is not \emptyset is never an atom
- $\{(i,j): i=j\}$ is
- $\{(i,j): i \leq j\}$ is not it's the union of two atoms
- ▶ $\{(i,j): i \ge j\}$ is not it's the union of two atoms
- Ω is not it's the union of three atoms

Introduction	Probability	Elicitation	Conditions	Decisions	Preferences	Games
	00000000000000000000000000000000000000	0000 0000000000 00	0000000 000000 0000000	00000000 00000000 000000000	000000 0000000000	000000000000000000000000000000000000000

The Axioms of Probability – Finite Spaces

 $\mathbb{P}: \mathcal{F} \to \mathbb{R}$ is a probability measure over (Ω, \mathcal{F}) iff:

1. For any $A \in \mathcal{F}$:

Probability

 $\mathbb{P}(A) \geq 0$

All probabilities are positive.

2.

$$\mathbb{P}(\Omega) = 1$$

Something certainly happens.

3. For any³ $A, B \in \mathcal{F}$ such that $A \cap B = \emptyset$:

$$\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B)$$

Probabilities are (sub)additive.

³This is sufficient if Ω is finite; we need a slightly stronger property in general.

Introduction	Probability	Elicitation	Conditions	Decisions	Preferences	Games
	0000000000000000 000000000 0000000000	0000 0000000000 00	0000000 000000 0000000	00000000 00000000 000000000	000000 0000000000	000000000000000000000000000000000000000

Axiomatic Probability

The Axioms of Probability – General Spaces [see ST213] $\mathbb{P}: \mathcal{F} \to \mathbb{R}$ is a probability measure over (Ω, \mathcal{F}) iff: 1. For any $A \in \mathcal{F}$:

 $\mathbb{P}(A) \geq 0$

All probabilities are positive.

2.

 $\mathbb{P}(\Omega) = 1$

Something certainly happens.

3. For any $A_1, A_2, \dots \in \mathcal{F}$ such that $\forall i \neq j : A_i \cap A_j = \emptyset$:

$$\mathbb{P}\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} \mathbb{P}(A_i).$$

Probabilities are countably (sub)additive.

Introduction 00000000000	Probability 0000000000000 0000000000000000000000	Elicitation 0000 0000000000000000000000000000000	Conditions 0000000 000000 0000000	Decisions 00000000 00000000 000000000000000000	Preferences 000000 0000000000	Games 00000000 00000000 00000000 00000000	
Axiomatic Pro	bability						
Mangurag and Magaag							

measures and masses

- ▶ A measure tells us "how big" a set is [see MA359/ST213].
- ▶ A *probability measure* tells us "how big" an event is in terms of the likelihood that it happens [see ST213/ST318].
- ▶ In discrete spaces probability mass functions are often used.

Definition (Probability Mass Function)

If \mathcal{F} is an algebra containing finitely many atoms E_1, \ldots, E_n . A *probability mass function*, f, is a function defined for every atom as $f(E_i) = p_i$ with:

Introduction 00000000000	Probability Eli 00000000000 000 000000000 000 00000000 000 000000000 000 000000000000000000000000000000000000	icitation 00 00000000	Conditions 0000000 000000 0000000	Decisions 00000000 00000000 000000000000000000	Preferences 000000 0000000000	Games 00000000 00000000 00000000 00000000
Axiomatic Pro	bability					
Masses t	o Measures					
► Le	et $S = \{A_1, \ldots, A_n\}$	A_n be s	such that:			

• Let
$$S = \{A_1, \dots, A_n\}$$
 be such that:
• $\forall i \neq j : A_i \cap A_j = \emptyset$

The elements of S are disjoint.

 $\triangleright \ \cup_{i=1}^n A_i = \Omega$

 $S \ covers \ \Omega.$

• We can construct a finite algebra, \mathcal{F} which contains the 2^n sets obtained as finite unions of elements of S.

This algebra is *generated* by S.

- The atoms of the generated algebra are the elements of S.
- A mass function f on the elements of S defines a probability measure on (Ω, \mathcal{F}) :

$$\mathbb{P}(B) = \sum f(A_i)$$

(the sum runs over those atoms A_i which are contained in B).

Introduction 00000000000	Probability ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○	$\begin{array}{c} \textbf{Elicitation}\\ 0000\\ 0000000000\\ 00\\ 00 \end{array}$	Conditions 0000000 000000 0000000	Decisions 00000000 00000000 000000000000000000	Preferences 000000 0000000000	Games 0000000 0000000 0000000
What do we me	Obje	ectively?				
So what?	,					

So far we've seen:

- ▶ A mathematical framework for dealing with probabilities.
- ▶ A way to construct probability measures from the probabilities of every elementary event in a discrete problem.
- ► A way to construct probability measures from the probability mass function of a complete set of atoms.

But this doesn't tell us:

- ▶ What probabilities really mean.
- ▶ How to assign probabilities to *real* events...dice aren't everything!
- ▶ Why we should use probability to make decisions.

Introduction 00000000000	Probability ○○○○○○○○○○○○ ○○○○○○○○○○○○○○○○○○○○○○○	Elicitation 0000 0000000000 00	$\begin{array}{c} \textbf{Conditions} \\ \texttt{0000000} \\ \texttt{000000} \\ \texttt{0000000} \\ \texttt{0000000} \end{array}$	Decisions 00000000 00000000 000000000000000000	Preferences 000000 00000000000	Games 0000000 0000000 0000000
What do we m	ean by probabil	itv			Obi	ectively?

Geometry, Symmetry and Probability

 If probabilities have a geometric interpretation, we can often deduce probabilities from symmetries.

Example (Coin Tossing Again)

- Here, $\Omega = \{H, T\}$ and $\mathcal{F} = \{\emptyset, \{H\}, \{T\}, \{H, T\}\}$
- Axiomatically: $\mathbb{P}(\Omega) = P(\{H, T\}) = 1.$
- The atoms are $\{H\}$ and $\{T\}$.
- ► Symmetry arguments suggest that P({H}) = P({T}). Implicitly, we are assuming that the symbol on the face of a coin does not influence its final orientation.
- Axiomatically: $\mathbb{P}(\{H,T\}) = \mathbb{P}(\{H\}) + \mathbb{P}(\{T\}).$
- Therefore: $\mathbb{P}(\{H\}) = \mathbb{P}(\{T\}) = 1/2.$

Introduction	Probability	Elicitation	Conditions	Decisions	Preferences	Games
	00000000000000000000000000000000000000	0000 0000000000 00	0000000 000000 0000000	00000000 00000000 000000000	000000 0000000000	000000000000000000000000000000000000000
What do we mean by probability				Objectively?		

Example (Tetrahedral Dice Again)

- Here, $\Omega = \{1, 2, 3, 4\}$ and \mathcal{F} is the set of all subsets of Ω .
- The atoms in this case are $\{1\}, \{2\}, \{3\}$ and $\{4\}$.
- ▶ Physical symmetry suggests that:

$$\mathbb{P}(\{1\}) = \mathbb{P}(\{2\}) = \mathbb{P}(\{3\}) = \mathbb{P}(\{4\})$$

- Axiomatically, $1 = \mathbb{P}(\{1, 2, 3, 4\}) = \sum_{i=1}^{4} \mathbb{P}(\{i\}) = 4\mathbb{P}(\{1\}).$
- ► And we again end up with the expected result $\mathbb{P}(\{i\}) = 1/4$ for all $i \in \Omega$.

Introduction 00000000000	Probability 000000000000000000000000000000000000	Elicitation 0000 0000000000 00	$\begin{array}{c} \textbf{Conditions} \\ \texttt{0000000} \\ \texttt{000000} \\ \texttt{0000000} \\ \texttt{0000000} \end{array}$	Decisions 00000000 00000000 000000000000000000	Preferences 000000 000000000000	Games 00000000 00000000 00000000
What do we mean by probability					Objectively?	

Example (Lotteries Again)

- ▶ $\Omega = \{All \text{ unordered sets of } 6 \text{ numbers from}\{1, \dots, 49\}\}$
- $\mathcal{F} = \text{All subsets of } \Omega$
- Atoms are once again the sets containing a single element of Ω.

This is usual when $|\Omega| < \infty$...

- As $|\Omega| = 13983816$, we have that many atoms.
- ▶ Each atom corresponds to drawing one unique subset of 6 balls.
- ▶ We might assume that each subset has equal probability... in which case:

$$\mathbb{P}(\{\}) = 1/13983816$$

for any valid set of numbers $\langle i_1, \ldots, i_6 \rangle$.

Complete Spatial Randomness and π

- Let (X, Y) be uniform over the centred unit square.
- Define

$$E = \left\{ (x,y) : x^2 + y^2 \le \frac{1}{4} \right\}$$

► Now

 $\mathbb{P}((X,Y) \in E) = A_{\text{circle}} / A_{\text{square}}$ $= \pi \times (1/2)^2 / 1^2$ $= \pi/4$

- Let \mathcal{I} be (discrete) a set of colours.
- An urn contains n_i balls of colour i.
- ► The probability that a drawn ball has colour *i* is:

$$\frac{n_i}{\sum_{j \in \mathcal{I}} n_j}$$

We assume that the colour of the ball does not influence its probability of selection. What do we mean by probability...

Spinners

- \triangleright $\mathbb{P}[\text{Stops in purple}] = a$
- ▶ Really a statement about physics.
- ▶ What do we mean by probability?