
Introduction Probability Elicitation Conditions Decisions Preferences Games

What do we mean by probability. . . Subjectively?

Subjective Probability

What is the probability of a nuclear war occurring next year?
I First, we must be precise about the question.
I We can’t appeal to symmetry of geometry.
I We can’t appeal meaningful to an infinite ensemble of

experiments.
I We can form an individual, subjective opinion.

If we adopt this subjective view, di�culties emerge:
I How can we quantify degree of belief?
I Will the resulting system be internally consistent?
I What does our calculations actually tell us?
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Introduction Probability Elicitation Conditions Decisions Preferences Games

What do we mean by probability. . . Subjectively?

A Behavioural Definition of Probability

I Consider a bet, b(M, A), which pays a reward M if A
happens and nothing if A does not happen.

I Let m(M, A) denote the maximum that You would be
prepared to pay for that bet.

I Two events A
1

and A
2

are equally probable if
m(M,A

1

) = m(M,A
2

).
I Equivalently m(M,A) is the minimum that You would

accept to o↵er the bet.
I A value for m(M,⌦ \ A) is implied for a rational being. . .

Personal probability must be a matter of action!
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Introduction Probability Elicitation Conditions Decisions Preferences Games

What do we mean by probability. . . Subjectively?

A Bayesian View of Symmetry

I If A
1

, . . . , Ak are disjoint/mutually exclusive, equally likely

and exhaustive

⌦ = A
1

[ · · · [Ak,

I then, for any i,

P(Ai) =
1
k
.

I Think of the examples we saw before. . .

45



Introduction Probability Elicitation Conditions Decisions Preferences Games

What do we mean by probability. . . Objectively?

Balls in Urns

I Let I be (discrete) a set of colours.
I An urn contains ni balls of colour

i.
I The probability that a drawn ball

has colour i is:
niP

j2I
nj

We assume that the colour of the
ball does not influence its

probability of selection.
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Introduction Probability Elicitation Conditions Decisions Preferences Games

What do we mean by probability. . . Objectively?

Spinners

a

✓

I P[Stops in purple] = a

I Really a statement about
physics.

I What do we mean by
probability?
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Introduction Probability Elicitation Conditions Decisions Preferences Games

What do we mean by probability. . . Subjectively?

Discretised Spinners

I Each of k segments is
equally likely:

P[Stops in purple] = 1/k

I k may be very large.
I Combinations of arcs give

rational lengths.
I Limiting approximations

give real lengths.
I We can describe most

subsets this way [ST213].
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Introduction Probability Elicitation Conditions Decisions Preferences Games

Axiomatic Probability

Example (Selling a house)

I You wish to sell a house, for at least £250,000.
I On Monday you receive an o↵er of X.
I You must accept or decline this o↵er immediately.
I On Tuesday you will receive an o↵er of Y .
I What should you do?

I ⌦ = {(x, y) : x, y � £100, 000}
I But, we only care about events of the form:

{(i, j) : i < j} and {(i, j) : i > j}

I Including some others ensures that we have an algebra:

{(i, j) : i = j} {(i, j) : i 6= j} {(i, j) : i  j} {(i, j) : i � j} ; ⌦
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Introduction Probability Elicitation Conditions Decisions Preferences Games

What do we mean by probability. . . Subjectively?

Example (House selling again)

I The three atoms in this case were:

{(i, j) : i > j} {(i, j) : i = j} {(i, j) : i < j}

I No reason to suppose all three are equally likely.
I If our bidders are believed to be exchangeable

P({(i, j) : i > j}) = P({(i, j) : i < j})

I So we arrive at the conclusion that:

P({(i, j) : i > j}) = P({(i, j) : i < j})  1
2

P({(i, j) : i = j}) � 0

I One strategy would be to accept the first o↵er if i > k. . .
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Introduction Probability Elicitation Conditions Decisions Preferences Games

What do we mean by probability. . . Subjectively?

Elicitation

What probabilities does someone assign to a complex event?
I We can use our behavioural definition of probability.
I The urn and spinner we introduced before have

probabilities which we all agree on.
I We can use these to calibrate our personal probabilities.
I When does an urn or spinner bet have the same value as

one of interest.
I There are some di�culties with this approach, but it’s a

starting point.
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Introduction Probability Elicitation Conditions Decisions Preferences Games

What do we mean by probability. . . Subjectively?

A First Look At Coherence

I Consider a collection of events A
1

, . . . , An.
I If

I the elements of this collection are disjoint:
8i 6= j : Ai \Aj = ;

I the collection is exhaustive: [n
i=1Ai = ⌦

then a collection of probabilities p
1

, . . . , pn for these events
is coherent if:

I 8i 2 {1, . . . , n} : pi 2 [0, 1]
I

Pn
i=1 pi = 1

Assertion: A rational being will adjust their personal
probabilities until they are coherent.
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Introduction Probability Elicitation Conditions Decisions Preferences Games

What do we mean by probability. . . Subjectively?

Dutch Books

I A collection of bets which:
I definitely won’t lead to a loss, and
I might make a profit

is known as a Dutch book.
A rational being would not accept such a collection of bets.

I If a collection of probabilities is incoherent, then a Dutch
book can be constructed.
A rational being must have coherent personal probabilities.
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Introduction Probability Elicitation Conditions Decisions Preferences Games

What do we mean by probability. . . Subjectively?

Example (Trivial Dutch Books)

I Consider two cases of incoherent beliefs in the coin-tossing
experiment:

Case 1 P ({H}) = 0.4, P ({T}) = 0.4.
Case 2 P ({H}) = 0.6, P ({T}) = 0.6.

I To exploit our good fortune, in case 1:
I

Place a bet of £X on both possible outcomes.
I Stake is £2X; we win £X/ 2

5 = £5X/2.
I Profit is £(5/2� 2)X = X/2.

I In case 2:
I

Accept a bet of £X on both possible outcomes.
I Stake is £2X; we lose £X/ 3

5 = £5X/3.
I Profit is £(2� 5/3)X = X/3.
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In betting:
Payoff is
Stake/p

Strategy: 
Either way you gain from having placed/accepted a bet (simultaneously on each possible outcome)



Introduction Probability Elicitation Conditions Decisions Preferences Games

What do we mean by probability. . . Subjectively?

Example (A Gambling Example)

Consider a horse race with the following odds:
Horse Odds
Padwaa 7-1
Nutsy May Morris 5-1
Fudge Nibbles 11-1
Go Lightning 10-1
The Coaster 11-1
G-Nut 5-1
My Bell 10-1
Flu↵y Hickey 15-1

If you had £100 available, how would you bet?
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Odds:
offered by       a bookie   



Introduction Probability Elicitation Conditions Decisions Preferences Games

What do we mean by probability. . . Subjectively?

Example
My own collection of bets looked like this:
Horse Odds Stake
Padwaa 7-1 £14.38
Nutsy May Morris 5-1 £19.17
Fudge Nibbles 11-1 £9.58
Go Lightning 10-1 £10.46
The Coaster 11-1 £9.58
G-Nut 5-1 £19.17
My Bell 10-1 £10.45

Flu↵y Hickey 15-1 £7.19
Outcome: profit of

16⇥£7.19�£99.99 = £(115.04� 99.99) = £(15.05)
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Stakes:
my choices
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What do we mean by probability. . . Subjectively?

Example
My own collection of bets looked like this:
Horse Odds Implicit P. Stake
Padwaa 7-1 0.125 £14.38
Nutsy May Morris 5-1 0.167 £19.17
Fudge Nibbles 11-1 0.083 £9.58
Go Lightning 10-1 0.091 £10.46
The Coaster 11-1 0.083 £9.58
G-Nut 5-1 0.167 £19.17
My Bell 10-1 0.091 £10.45

Flu↵y Hickey 15-1 0.063 £7.19
Outcome: profit of

16⇥£7.19�£99.99 = £(115.04� 99.99) = £(15.05)
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What do we mean by probability. . . Subjectively?

Example
My own collection of bets looked like this:
Horse Odds Implicit P. Stake S/P

Padwaa 7-1 0.125 £14.38 £115.04
Nutsy May Morris 5-1 0.167 £19.17 £115.02
Fudge Nibbles 11-1 0.083 £9.58 £114.96
Go Lightning 10-1 0.091 £10.46 £115.06
The Coaster 11-1 0.083 £9.58 £114.96
G-Nut 5-1 0.167 £19.17 £115.02
My Bell 10-1 0.091 £10.45 £115.06

Flu↵y Hickey 15-1 0.063 £7.19 £115.04
Outcome: profit of

16⇥£7.19�£99.99 = £(115.04� 99.99) = £(15.05)
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S

P

Hence have sure (risk-free) profit!

Similarly for the other horses.
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What do we mean by probability. . . Subjectively?

E�cient Markets and Arbitrage

I The e�cient market hypothesis states that the prices at
which instruments are traded reflects all available
information.

I In the world of economics a Dutch book would be referred
to as an arbitrage opportunity: a risk-free collection of
transactions which guarantee a profit.

I The no arbitrage principle states that there are no arbitrage
opportunities in an e�cient market at equilibrium.

I The collective probabilities implied by instrument prices
are coherent.
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Elicitation

57



Introduction Probability Elicitation Conditions Decisions Preferences Games

Elicitation of Personal Beliefs

What does she believe?

We need to obtain and quantify our clients beliefs.
Asking for a direct statement about personal probabilities
doesn’t usual work:

I P(A) + P(Ac) 6= 1
I Recall the British economy: people confuse belief with

desire.

A better approach uses calibration: comparison with a standard.
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Key: use standard presenting probabilities in a way familiar to the person.
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Elicitation of Personal Beliefs

Example (General Election Results)

Which party you think will win most seats in the next general
election?

I Conservative
I Labour
I Liberal Democrat
I Green
I Monster-Raving Loony

Consider the bet b(£1,Conservative Victory):
I You win £1 if the Conservative party wins.
I You win nothing otherwise.
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Just for fun, not examinable!
Voting ballot Bundestagswahl September 2017

The Monster-Raving Loony party was a UK 1980s phenomenon… 
Germany more recently seems to have more and more of such movements - see ballot. 
A minimum of 5% of the votes is needed to be represented in Parliament, so there is a limit to the relevance of this. 

Currently a coalition government is being formed by traditional parties:  Christian democrats, Liberals, Greens, though having a 3 party coalition rather than the typical 2 is unusual, as is its nick name “Jamaica coalition”.

Die Partei - Partei für Arbeit, Rechtsstaat, Tierschutz, Eliteförderung und basisdemokratische Initiative

The Party - Party for work, constitutional stage, animal protection, promotion of elite and grassroot initiative 

V-Party - For change, vegetarians and vegans 

V-Partei - Partei für Veränderung, Vegetarier und Veganer

Translations (attempted…) of some of the rather unusual party names:
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Elicitation of Personal Beliefs

Behavioural Approach to Elicitation

Conservative

Not Conservative

£1

£0

In Arc

Not In Arc

£1

£0

a

✓

I We said that A
1

and A
2

are equally

probable if m(M,A
1

) = m(M, A
2

).
I The probability of a Conservative

victory is the same as the probability
of a spinner bet of the same value.

I What must a be for us to prefer the
spinner bet to the political one?
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Elicitation of Personal Beliefs

Eliciting With Urns Full of Balls

Green

Not Green

£1

£0

Conservative

Not Conservative

£1

£0

I If the urn contains:
I n balls
I g of which are green

I Increase g from 0 to n. . .
I Let g? be such that

I The real bet is preferred
when g = g?.

I The urn bet is preferred
when g = g? + 1.

I This tells us that:
I P(C.) � g?/n
I P(C.)  (g? + 1)/n

I Nominal accuracy of 1/n.
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Axiomatic and Subjective Probability Combined

Why should subjective probabilities behave in the same way as
our axiomatic system requires?

I We began with axiomatic probability.
I We introduce a subjective interpretation of probability.
I We wish to combine both aspects. . .

I We briefly looked at “coherence” previously.
I Now, we will formalise this notion.
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Axiomatic and Subjective Probability Combined

Coherence Revisited

Definition
Coherence An individual, I, may be termed coherent if her
probability assignments to an algebra of events obey the
probability axioms.

Assertion
A rational individual must be coherent.

A Dutch book argument in support of this assertion follows.
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Axiomatic and Subjective Probability Combined

Theorem
Any rational individual, I, must have P(A) + P(Ac) = 1.
Proof: Case 1: P(A) + P(Ac) < 1
Consider an urn bet with n balls.

I Let g?(A) and g?(Ac) be preferred to bets on A and Ac.
I As P(A) + P(Ac), for large enough n and k > 0:

g?(A) + g?(Ac) = n� k.

I (Think of an urn with three types of ball).
I Let bu(n, k) pay £1 if a “k from n” urn-draw wins.
I Bet b(A) pay £1 if event A happens.
I Consider two systems of bets. . .
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Axiomatic and Subjective Probability Combined

I System 1: Su
1

= [bu(n, g?(A)), bu(n, g?(Ac) + k)]

Green

Not Green

£1

£0

Not Green

Green

£1

£0

I System 2: Se
1

= [b(A), b(Ac)]

£1

£0
Ac

A
£1

£0

Ac

A

I I prefers Su
1

to Se
1

and so should pay to win on Su
1

and lose
of Se

1

. . . but everything cancels!
65

k>0 based on (irrational) assumption
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Axiomatic and Subjective Probability Combined

Case2: P(A) + P(Ac) > 1
I Now, our elicited urn-bets must have

g?(A) + g?(Ac) = n + k

I Consider an urn with g?(A) green balls and g?(Ac)�k blue.
I This time, consider two other systems of bets:

Su
2

= [bu(n, g?(A)), bu(n, g?(Ac)� k)]

Se
2

= [A, Ac]

I The stated probabilities mean, I will pay £c to win on Se
2

and lose on Su
2

.
I Again, everything cancels.

A rational individual won’t pay for a bet which certainly
returns £0. So P(A) + P(Ac) = 1.
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[ b(A), b(A )]
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Axiomatic and Subjective Probability Combined

Theorem
A rational individual, I, must set

P(A) + P(B) = P(A [B)

for any A, B 2 F with A \B = ;.
Proof: Case 1 P(A) + P(B) < P(A [B)

I Urn probabilities must be such that:

g?(A) + g?(B) = g?(A [B)� k

I Let
se
3

= [b(A), b(B)]
and

Su
3

= [bu(n, g?(A)), bu(n, g?(B) + k)]
I I will pay £c to win with S3

u which they consider
equivalent to b({A [B} and lose with S3

e . . .
I Hence they will pay to win and lose on equivalent events!

Similar reasoning holds when P(A) + P(B) > P(A [B).
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(This is only a sketch of the proof, see lecture notes for more.)



Introduction Probability Elicitation Conditions Decisions Preferences Games

Axiomatic and Subjective Probability Combined

Caveat Mathematicus

There are several points to remember:
I Subjective probabilities are subjective.

People need not agree.
I Elicited probabilities should be coherent.

The decision analyst must ensure this.
I Temporal coherence is not assumed or assured.

You are permitted to change your mind.

The latter is re-assuring, but how should we update our beliefs?
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