Introduction 00000000000	Probability ○○○○○○○○○ ●○○○○○○○○○○○○○○○○○○○○○○○○○		$\begin{array}{c} \textbf{Conditions} \\ \texttt{0000000} \\ \texttt{000000} \\ \texttt{0000000} \end{array}$	Decisions 00000000 00000000 000000000000000000	Preferences 000000 0000000000	Games 00000000 00000000 00000000 00000000
What do we mean by probability Subject						ectively?

Subjective Probability

What is the probability of a nuclear war occurring next year?

- ▶ First, we must be precise about the question.
- ▶ We can't appeal to symmetry of geometry.
- ▶ We can't appeal meaningful to an infinite ensemble of experiments.
- ▶ We *can* form an individual, *subjective* opinion.

If we adopt this subjective view, difficulties emerge:

- ▶ How can we quantify degree of belief?
- ▶ Will the resulting system be internally consistent?
- ▶ What does our calculations actually tell us?

Introduction 00000000000	Probability 000000000000000000000000000000000000		Conditions 0000000 000000 0000000	Decisions 00000000 00000000 000000000000000000	Preferences 000000 0000000000	Games 000000000000000000000000000000000000
What do we m	ean by probabil	ity			Subj	ectively?

What do we mean by probability...

A Behavioural Definition of Probability

- Consider a *bet*, b(M, A), which pays a reward M if A happens and nothing if A does not happen.
- \blacktriangleright Let m(M, A) denote the maximum that You would be prepared to pay for that bet.
- \blacktriangleright Two events A_1 and A_2 are equally probable if $m(M, A_1) = m(M, A_2).$
- Equivalently m(M, A) is the minimum that You would accept to offer the bet.
- A value for $m(M, \Omega \setminus A)$ is implied for a rational being...

Personal probability must be a matter of action!

Introduction 00000000000	Probability		Conditions 0000000 000000 0000000	Decisions 00000000 00000000 000000000000000000	Preferences 000000 00000000000	Games 000000000 000000000 000000000
What do we me	Subj	ectively?				
A Bayesi	an View o	of Symn	netry			

• If A_1, \ldots, A_k are disjoint/mutually exclusive, equally likely and exhaustive

$$\Omega = A_1 \cup \dots \cup A_k,$$

▶ then, for any i,

$$\mathbb{P}(A_i) = \frac{1}{k}.$$

▶ Think of the examples we saw before...

- Let \mathcal{I} be (discrete) a set of colours.
- An urn contains n_i balls of colour i.
- ► The probability that a drawn ball has colour *i* is:

$$\frac{n_i}{\sum_{j \in \mathcal{I}} n_j}$$

We assume that the colour of the ball does not influence its probability of selection. What do we mean by probability...

Spinners

- \triangleright $\mathbb{P}[\text{Stops in purple}] = a$
- ▶ Really a statement about physics.
- ▶ What do we mean by probability?

Discretised Spinners

• Each of k segments is equally likely:

 $\mathbb{P}[\text{Stops in purple}] = 1/k$

- \blacktriangleright k may be very large.
- Combinations of arcs give rational lengths.
- Limiting approximations give real lengths.
- ▶ We can describe *most* subsets this way [ST213].

Introduction	Probability	Elicitation	Conditions	Decisions	Preferences	Games
	00000000000000000000000000000000000000		0000000 000000 0000000	00000000 00000000 000000000	000000 0000000000	00000000 00000000 00000000 00000000
A 1 11 D						

Example (Selling a house)

- ▶ You wish to sell a house, for at least £250,000.
- On Monday you receive an offer of X.
- ▶ You must accept or decline this offer immediately.
- On Tuesday you will receive an offer of Y.
- ▶ What should you do?

$$\blacktriangleright \ \Omega = \{(x,y): x,y \ge \pounds 100,000\}$$

▶ But, we only care about events of the form:

 $\{(i, j) : i < j\}$ and $\{(i, j) : i > j\}$

▶ Including some others ensures that we have an algebra:

$$\{(i,j): i=j\} \ \ \{(i,j): i\neq j\} \ \ \{(i,j): i\leq j\} \ \ \{(i,j): i\geq j\} \ \ \emptyset \ \ \Omega$$

Introduction 00000000000	000000000000000		Conditions 0000000 000000 0000000	Decisions 00000000 00000000 000000000000000000	Preferences 000000 0000000000	Games 000000000 000000000 000000000
What do we m	\mathbf{Subj}	jectively?				
Examp	ole (House se	elling aga	in)			

▶ The three atoms in this case were:

$$\{(i,j): i > j\} \qquad \{(i,j): i = j\} \qquad \{(i,j): i < j\}$$

- ▶ No reason to suppose all three are equally likely.
- ▶ If our bidders are believed to be *exchangeable*

$$\mathbb{P}(\{(i,j):i>j\})=\mathbb{P}(\{(i,j):i< j\})$$

▶ So we arrive at the conclusion that:

$$\begin{split} \mathbb{P}(\{(i,j):i>j\}) &= \mathbb{P}(\{(i,j):i$$

• One strategy would be to accept the first offer if i > k...

Introduction 00000000000	Probability	Conditions 0000000 000000 0000000	Decisions 00000000 00000000 000000000000000000	Preferences 000000 00000000000	Games 000000000 000000000 000000000
What do we me		Subjectively?			
Elicitatio	n				

What probabilities does someone assign to a complex event?

- ▶ We can use our behavioural definition of probability.
- ▶ The *urn* and *spinner* we introduced before have probabilities which we all agree on.
- ▶ We can use these to *calibrate* our personal probabilities.
- ▶ When does an *urn* or *spinner* bet have the same value as one of interest.
- ▶ There are some difficulties with this approach, but it's a starting point.

Introduction 00000000000	Probability		Conditions 0000000 000000 0000000	Decisions 00000000 00000000 000000000000000000	Preferences 000000 0000000000	Games 000000000 000000000 000000000
What do we m	\mathbf{Subj}	jectively?				
A First I	Look At (Coherend	ce			

• Consider a collection of events A_1, \ldots, A_n .

► If

► the elements of this collection are disjoint: $\forall i \neq j : A_i \cap A_j = \emptyset$

• the collection is exhaustive: $\bigcup_{i=1}^{n} A_i = \Omega$ then a collection of probabilities p_1, \ldots, p_n for these events is *coherent* if:

•
$$\forall i \in \{1, \dots, n\} : p_i \in [0, 1]$$

$$\blacktriangleright \quad \sum_{i=1}^{n} p_i = 1$$

Assertion: A *rational being* will adjust their personal probabilities until they are coherent.

Introduction	Probability		Conditions 0000000 000000 0000000	Decisions 00000000 00000000 000000000000000000	Preferences 000000 000000000000	Games 00000000 00000000 00000000 00000000
What do we m	ean by probabil	ity			Subj	ectively?

Dutch Books

- A collection of bets which:
 - definitely won't lead to a loss, and
 - might make a profit
 - is known as a Dutch book.

A rational being would not accept such a collection of bets.

▶ If a collection of probabilities is incoherent, then a Dutch book can be constructed.

A rational being must have coherent personal probabilities.

Introduc 00000000		bability 000000000000000000000000000000000000		Conditions 0000000 000000 0000000	Decisions 00000000 00000000 000000000000000000	Preferences 000000 0000000000	Games 00000000 00000000 00000000
What do	we mean b	y probabili	ty			Subj	ectively?

Example (Trivial Dutch Books)

Consider two cases of incoherent beliefs in the coin-tossing experiment:

> Case 1 $P({H}) = 0.4, P({T}) = 0.4.$ Case 2 $P({H}) = 0.6, P({T}) = 0.6.$

- ▶ To exploit our good fortune, in case 1:
 - Place a bet of $\pounds X$ on both possible outcomes.
 - Stake is $\pounds 2X$; we win $\pounds X/\frac{2}{5} = \pounds 5X/2$.
 - Profit is $\pounds(5/2-2)X = X/2$.

• In case 2:

- Accept a bet of $\pounds X$ on both possible outcomes.
- Stake is $\pounds 2X$; we lose $\pounds X/\frac{3}{5} = \pounds 5X/3$.
- Profit is $\pounds(2-5/3)X = X/3$.

Strategy: Either way you gain from having placed/ accepted a bet (simultaneously on each possible outcome)

Introduction 00000000000	Probability 000000000000000000000000000000000000		Conditions 0000000 000000 0000000	Decisions 00000000 00000000 000000000000000000	Preferences 000000 0000000000	Games 000000000 00000000 00000000
What do we m	ean by probabil	itv			Subi	ectivelv?

Example (A Gambling Example)

Consider a horse race with the following odds:

Horse	Odds	
Padwaa	7-1	Odds:
Nutsy May Morris	5 - 1	offered by
Fudge Nibbles	11-1	a bookie
Go Lightning	10-1	
The Coaster	11-1	
G-Nut	5 - 1	
My Bell	10-1	
Fluffy Hickey	15-1	

If you had £100 available, how would you bet?

ffy Hickey	15 - 1	$\pounds 7.19$		
come: profit of				
$16 \times \pounds 7.19 - \pounds 9$	99.99 = 1	$\pounds(115.04)$	$(-99.99) = \pounds(15.05)$	
				53

Outcome: profit of

Horse Odds Stake $\pounds 14.38$ Padwaa 7 - 1Nutsy May Morris 5 - 1 $\pounds 19.17$ Fudge Nibbles 11-1 $\pounds 9.58$ Go Lightning 10 - 1 $\pounds 10.46$ The Coaster 11-1 $\pounds 9.58$ G-Nut 5 - 1 $\pounds 19.17$ My Bell 10 - 1 $\pounds 10.45$ Fluffy Hickey 15-1 $\pounds 7.19$

Stakes: my choices

Example

My own collection of bets looked like this:

What do we mean by probability...

Probability

Conditions

Preferences

Games

Subjectively?

Introduction 00000000000	00000000000000000		0000000	Decisions 00000000 00000000 000000000000000000	Preferences 000000 00000000000
What do we m	ean by probability	····			\mathbf{Subj}
Examp My own	ole n collection of	bets loo	ked like this:	:	
Horse	е	Odds	Implicit P	P. Stak	e
Padwa	aa	7-1	0.125	£14.3	38
Nutsy	May Morris	5-1	0.167	£19.1	17
Fudge	Nibbles	11-1	0.083	f95	8

Padwaa	7-1	0.125	$\pounds 14.38$
Nutsy May Morris	5 - 1	0.167	£19.17
Fudge Nibbles	11-1	0.083	$\pounds 9.58$
Go Lightning	10-1	0.091	£10.46
The Coaster	11-1	0.083	$\pounds 9.58$
G-Nut	5 - 1	0.167	£19.17
My Bell	10-1	0.091	$\pounds 10.45$
Fluffy Hickey	15 - 1	0.063	$\pounds 7.19$

Outcome: profit of

 $16 \times \pounds 7.19 - \pounds 99.99 = \pounds (115.04 - 99.99) = \pounds (15.05)$

ectively?

Introduction 00000000000	000000000000000000000000000000000000000	000000000	Conditions 0000000 000000 0000000	Decisions 00000000 00000000 000000000000000000	Preferences 000000 0000000000	Gam 00000 00000 00000
What do we me	ean by probability	7			Subje	ctivel
Examp	ole					
My own	n collection of	f bets	Р	S		
Horse	9	Odds	Implicit I	P. Stake	e = S/P	
Padwa	ia	7-1	0.125	£14.3	8 £115.04	Ŀ
Nutsy	May Morris	5-1	0.167	£19.1	$7 \mid \pounds 115.02$	2
Fudge	Nibbles	11-1	0.083	$\pounds 9.58$	$\pounds 114.96$	5
Go Lig	ghtning	10-1	0.091	£10.4	$6 \mid \pounds 115.06$	5
The C	loaster	11-1	0.083	$\pounds 9.58$	$\pounds \ \pounds 114.96$	5
G-Nut	-	5-1	0.167	£19.1	$7 \mid \pounds 115.02$	2
My B	Bell	10-1	0.091	£10.4	$5 \mid \pounds 115.06$	5
Fluffy	Hickey	15-1	0.063	£7.19	\pounds £115.04	ŀ

Outcome: profit of

 $16 \times \pounds 7.19 - \pounds 99.99 = \pounds (115.04 - 99.99) = \pounds (15.05)$

Similarly for the other horses. Hence have sure (risk-free) profit!

Introduction	Probability		Conditions 0000000 000000 0000000	Decisions 00000000 00000000 000000000000000000	Preferences 000000 0000000000	Games 000000000 000000000 000000000
What do we m	ean by probabil	ity			Subj	ectively?
Efficient	Markets a	and Arb	oitrage			

- ▶ The *efficient market hypothesis* states that the prices at which instruments are traded reflects all available information.
- ▶ In the world of economics a Dutch book would be referred to as an arbitrage opportunity: a risk-free collection of transactions which guarantee a profit.
- ▶ The *no arbitrage principle* states that there are no arbitrage opportunities in an efficient market at equilibrium.
- ▶ The collective probabilities implied by instrument prices are coherent.

Elicitation

Introduction 00000000000	Probability Elicitation 000000000000 ●000 000000000 000000000 000000000000000000000000000000000000	$\begin{array}{c} \textbf{Conditions} \\ \texttt{ooooooo} \\ \texttt{ooooooo} \\ \texttt{ooooooo} \end{array}$	Decisions 00000000 00000000 000000000000000000	Preferences 000000 0000000000	Games 000000000 000000000 000000000
Elicitation of F	Personal Beliefs				
What do	es she believe?				

We need to obtain and quantify our clients beliefs. Asking for a direct statement about personal probabilities doesn't usual work:

- $\blacktriangleright \mathbb{P}(A) + \mathbb{P}(A^c) \neq 1$
- Recall the British economy: people confuse belief with desire.

A better approach uses *calibration*: comparison with a standard.

Key: use standard presenting probabilities in a way familiar to the person.

Introduction 00000000000	Probability 000000000000000000000000000000000000	0000000000	Conditions 0000000 000000 0000000	Decisions 00000000 00000000 000000000000000000	Preferences 000000 0000000000	Games 000000000 000000000 000000000
Elicitation of P	ersonal Beliefs					

Example (General Election Results)

Which party you think will win most seats in the next general election?

- ► Conservative
- ▶ Labour
- Liberal Democrat
- ► Green
- Monster-Raving Loony

Consider the bet $b(\pounds 1, \text{Conservative Victory})$:

- You win $\pounds 1$ if the Conservative party wins.
- ▶ You win nothing otherwise.

Just for fun, not examinable! Voting ballot Bundestagswahl September 2017

The Monster-Raving Loony party was a UK 1980s phenomenon...

Germany more recently seems to have more and more of such movements - see ballot. A minimum of 5% of the votes is needed to be represented in Parliament, so there is a limit to

the relevance of this.

Currently a coalition government is being formed by traditional parties: Christian democrats, Liberals, Greens, though having a 3 party coalition rather than the typical 2 is unusual, as is its nick name "Jamaica coalition".

Translations (attempted...) of some of the rather unusual party names:

Die Partei - Partei für Arbeit, Rechtsstaat, Tierschutz, Eliteförderung und basisdemokratische Initiative

The Party - Party for work, constitutional stage, animal protection, promotion of elite and grassroot initiative

V-Partei - Partei für Veränderung, Vegetarier und Veganer

V-Party - For change, vegetarians and vegans

Introduction	Probability	Elicitation	Conditions	Decisions	Preferences	Games
	000000000000000000000000000000000000000	00000000000	0000000 000000 0000000	00000000 00000000 000000000	000000 0000000000	00000000 00000000 00000000 00000000

Elicitation of Personal Beliefs

Behavioural Approach to Elicitation

- ▶ We said that A_1 and A_2 are equally probable if $m(M, A_1) = m(M, A_2)$.
- ► The probability of a Conservative victory is the same as the probability of a spinner bet of the same value.
- ▶ What must *a* be for us to prefer the spinner bet to the political one?

Elicitation of Personal Beliefs

Eliciting With Urns Full of Balls

- ▶ If the urn contains:
 - \blacktriangleright *n* balls
 - g of which are green
- Increase g from 0 to n...
- Let g^* be such that
 - The real bet is preferred when $g = g^*$.
 - The urn bet is preferred when $g = g^* + 1$.

- ▶ This tells us that:
 - $\mathbb{P}(C.) \ge g^*/n$ • $\mathbb{P}(C.) \le (g^* + 1)/n$
- ▶ Nominal accuracy of 1/n.

Games

Introduction 00000000000	Probability 000000000000000000000000000000000000	000000000	Conditions 0000000 0000000 0000000	Decisions 00000000 00000000 000000000000000000	Preferences 000000 0000000000	Games 00000000 00000000 00000000 00000000
Axiomatic and	Subjective Prob	ability Comb	oined			

Why should subjective probabilities behave in the same way as our axiomatic system requires?

- We began with axiomatic probability.
- ▶ We introduce a subjective interpretation of probability.
- ▶ We wish to combine both aspects...

- ▶ We briefly looked at "coherence" previously.
- ▶ Now, we will formalise this notion.

Introduction	Probability	Elicitation	Conditions	Decisions	Preferences	Games
	000000000000000000000000000000000000000	0000000000	0000000 000000 0000000	00000000 00000000 000000000	000000 0000000000	00000000 00000000 00000000 00000000

Coherence Revisited

Definition

Coherence An individual, \mathcal{I} , may be termed *coherent* if her probability assignments to an algebra of events obey the probability axioms.

Assertion

A rational individual must be coherent.

A Dutch book argument in support of this assertion follows.

Introduction 00000000000	Probability 000000000000000000000000000000000000	0000000000	$\begin{array}{c} \textbf{Conditions} \\ \texttt{0000000} \\ \texttt{000000} \\ \texttt{0000000} \end{array}$	Decisions 00000000 00000000 000000000000000000	Preferences 000000 0000000000	Games 000000000 00000000 000000000
Axiomatic and	Subjective Prol	Dability Comb	oined			

Theorem

Any rational individual, \mathcal{I} , must have $\mathbb{P}(A) + \mathbb{P}(A^c) = 1$. Proof: Case 1: $\mathbb{P}(A) + \mathbb{P}(A^c) < 1$ Consider an urn bet with *n* balls.

- Let $g^{\star}(A)$ and $g^{\star}(A^c)$ be preferred to bets on A and A^c .
- As $\mathbb{P}(A) + \mathbb{P}(A^c)$, for large enough n and k > 0:

$$g^{\star}(A) + g^{\star}(A^c) = n - k.$$

- ▶ (Think of an urn with *three* types of ball).
- ▶ Let $b^u(n,k)$ pay £1 if a "k from n" urn-draw wins.
- Bet b(A) pay $\pounds 1$ if event A happens.
- ▶ Consider two systems of bets...

Axiomatic and Subjective Probability Combined

• System 1:
$$S_1^u = [b^u(n, g^*(A)), b^u(n, g^*(A^c) + k)]$$

k>0 based on (irrational) assumption

▶ System 2: $S_1^e = [b(A), b(A^c)]$

• \mathcal{I} prefers S_1^u to S_1^e and so should pay to win on S_1^u and lose of S_1^e ... but everything cancels!

Introduction	Probability	Elicitation	Conditions	Decisions	Preferences	Games
	000000000000000000000000000000000000000	00000000000	0000000 000000 0000000	00000000 00000000 000000000	000000 0000000000	00000000 00000000 00000000 00000000

Axiomatic and Subjective Probability Combined

Case2: $\mathbb{P}(A) + \mathbb{P}(A^c) > 1$

▶ Now, our elicited urn-bets must have

 $g^{\star}(A) + g^{\star}(A^c) = n + k$

▶ Consider an urn with $g^{\star}(A)$ green balls and $g^{\star}(A^c) - k$ blue.

▶ This time, consider two other systems of bets:

$$S_{2}^{u} = [b^{u}(n, g^{\star}(A)), b^{u}(n, g^{\star}(A^{c}) - k)]$$
$$S_{2}^{e} = [b(A), b(A^{c})]$$

- ▶ The stated probabilities mean, \mathcal{I} will pay $\pounds c$ to win on S_2^e and lose on S_2^u .
- ▶ Again, everything cancels.

A rational individual won't pay for a bet which certainly returns $\pounds 0$. So $\mathbb{P}(A) + \mathbb{P}(A^c) = 1$.

Introduction	Probability	Elicitation	Conditions	Decisions	Preferences	Games
	000000000000000000000000000000000000000	0000000000	0000000 000000 0000000	00000000 00000000 000000000	000000 0000000000	00000000 00000000 00000000 00000000
Axiomatic and	Subjective Prob	oability Comb	pined			

Theorem

A rational individual, \mathcal{I} , must set

$$\mathbb{P}(A) + \mathbb{P}(B) = \mathbb{P}(A \cup B)$$

for any $A, B \in \mathcal{F}$ with $A \cap B = \emptyset$.

Proof: Case 1 $\mathbb{P}(A) + \mathbb{P}(B) < \mathbb{P}(A \cup B)$

▶ Urn probabilities must be such that:

$$g^{\star}(A) + g^{\star}(B) = g^{\star}(A \cup B) - k$$

(This is only a sketch of the proof, see lecture notes for more.)

► Let

$$s_3^e = [b(A), b(B)]$$

and

$$S_3^u = [b^u(n, g^{\star}(A)), b^u(n, g^{\star}(B) + k)]$$

▶ \mathcal{I} will pay $\pounds c$ to win with S_u^3 which they consider equivalent to $b(\{A \cup B\}$ and lose with S_e^3 ...

Introduction 00000000000	Probability 000000000000000000000000000000000000	0000000000	$\begin{array}{c} \textbf{Conditions}\\ \texttt{0000000}\\ \texttt{000000}\\ \texttt{0000000} \end{array}$	Decisions 00000000 00000000 000000000000000000	Preferences 000000 0000000000	Games 000000000 00000000 000000000 00000000
Axiomatic and	Subjective Pro	bability Com	oined			

Caveat Mathematicus

There are several points to remember:

▶ Subjective probabilities are subjective.

People need not agree.

▶ Elicited probabilities should be coherent.

The decision analyst must ensure this.

▶ Temporal coherence is not assumed or assured.

You are permitted to change your mind.

The latter is re-assuring, but how *should* we update our beliefs?