Subjective Probability

What is the probability of a nuclear war occurring next year?

- First, we must be precise about the question.
- We can't appeal to symmetry of geometry.
- We can't appeal meaningful to an infinite ensemble of experiments.
- We can form an individual, subjective opinion.

If we adopt this subjective view, difficulties emerge:

- How can we quantify degree of belief?
- Will the resulting system be internally consistent?
- What does our calculations actually tell us?

A Behavioural Definition of Probability

- Consider a bet, $b(M, A)$, which pays a reward M if A happens and nothing if A does not happen.
- Let $m(M, A)$ denote the maximum that You would be prepared to pay for that bet.
- Two events A_{1} and A_{2} are equally probable if $m\left(M, A_{1}\right)=m\left(M, A_{2}\right)$.
- Equivalently $m(M, A)$ is the minimum that You would accept to offer the bet.
- A value for $m(M, \Omega \backslash A)$ is implied for a rational being...

Personal probability must be a matter of action!

A Bayesian View of Symmetry

- If A_{1}, \ldots, A_{k} are disjoint/mutually exclusive, equally likely and exhaustive

$$
\Omega=A_{1} \cup \cdots \cup A_{k},
$$

- then, for any i,

$$
\mathbb{P}\left(A_{i}\right)=\frac{1}{k} .
$$

- Think of the examples we saw before...

Balls in Urns

- Let \mathcal{I} be (discrete) a set of colours.
- An urn contains n_{i} balls of colour i.
- The probability that a drawn ball has colour i is:

$$
\frac{n_{i}}{\sum_{j \in \mathcal{I}} n_{j}}
$$

We assume that the colour of the
ball does not influence its probability of selection.

Spinners

- $\mathbb{P}[$ Stops in purple $]=a$
- Really a statement about physics.
- What do we mean by probability?

Discretised Spinners

- Each of k segments is equally likely:
$\mathbb{P}[$ Stops in purple $]=1 / k$
- k may be very large.
- Combinations of arcs give rational lengths.
- Limiting approximations give real lengths.
- We can describe most subsets this way [ST213].

Example (Selling a house)

- You wish to sell a house, for at least $£ 250,000$.
- On Monday you receive an offer of X.
- You must accept or decline this offer immediately.
- On Tuesday you will receive an offer of Y.
- What should you do?
- $\Omega=\{(x, y): x, y \geq £ 100,000\}$
- But, we only care about events of the form:

$$
\{(i, j): i<j\} \text { and }\{(i, j): i>j\}
$$

- Including some others ensures that we have an algebra:

$$
\{(i, j): i=j\} \quad\{(i, j): i \neq j\} \quad\{(i, j): i \leq j\} \quad\{(i, j): i \geq j\} \quad \emptyset \quad \Omega
$$

Example (House selling again)

- The three atoms in this case were:

$$
\{(i, j): i>j\} \quad\{(i, j): i=j\} \quad\{(i, j): i<j\}
$$

- No reason to suppose all three are equally likely.
- If our bidders are believed to be exchangeable

$$
\mathbb{P}(\{(i, j): i>j\})=\mathbb{P}(\{(i, j): i<j\})
$$

- So we arrive at the conclusion that:

$$
\begin{array}{r}
\mathbb{P}(\{(i, j): i>j\})=\mathbb{P}(\{(i, j): i<j\}) \leq \frac{1}{2} \\
\mathbb{P}(\{(i, j): i=j\}) \geq 0
\end{array}
$$

- One strategy would be to accept the first offer if $i>k \ldots$

Elicitation

What probabilities does someone assign to a complex event?

- We can use our behavioural definition of probability.
- The urn and spinner we introduced before have probabilities which we all agree on.
- We can use these to calibrate our personal probabilities.
- When does an urn or spinner bet have the same value as one of interest.
- There are some difficulties with this approach, but it's a starting point.

A First Look At Coherence

- Consider a collection of events A_{1}, \ldots, A_{n}.
- If
- the elements of this collection are disjoint:

$$
\forall i \neq j: A_{i} \cap A_{j}=\emptyset
$$

- the collection is exhaustive: $\cup_{i=1}^{n} A_{i}=\Omega$
then a collection of probabilities p_{1}, \ldots, p_{n} for these events is coherent if:
- $\forall i \in\{1, \ldots, n\}: p_{i} \in[0,1]$
- $\sum_{i=1}^{n} p_{i}=1$

> Assertion: A rational being will adjust their personal probabilities until they are coherent.

Dutch Books

- A collection of bets which:
- definitely won't lead to a loss, and
- might make a profit
is known as a Dutch book.
A rational being would not accept such a collection of bets.
- If a collection of probabilities is incoherent, then a Dutch book can be constructed.

A rational being must have coherent personal probabilities.

Example (Trivial Dutch Books)

- Consider two cases of incoherent beliefs in the coin-tossing experiment:

$$
\begin{aligned}
& \text { Case } 1 P(\{H\})=0.4, P(\{T\})=0.4 . \\
& \text { Case } 2 P(\{H\})=0.6, P(\{T\})=0.6 .
\end{aligned}
$$

- To exploit our good fortune, in case 1:
- Place a bet of $£ X$ on both possible outcomes.
- Stake is $£ 2 X$; we win $£ X / \frac{2}{5}=£ 5 X / 2$.
- Profit is $£(5 / 2-2) X=X / 2$.
- In case 2:
- Accept a bet of $£ X$ on both possible outcomes.
- Stake is $£ 2 X$; we lose $£ X / \frac{3}{5}=£ 5 X / 3$.
- Profit is $£(2-5 / 3) X=X / 3$.

In betting:
Payoff is Stake/p

Strategy:
Either way you gain from having placed/ accepted a bet (simultaneously on each possible outcome)

Example (A Gambling Example)
Consider a horse race with the following odds:

Horse	Odds
Padwaa	$7-1$
Nutsy May Morris	$5-1$
Fudge Nibbles	$11-1$
Go Lightning	$10-1$
The Coaster	$11-1$
G-Nut	$5-1$
My Bell	$10-1$
Fluffy Hickey	$15-1$

Odds: offered by a bookie

If you had $£ 100$ available, how would you bet?

Example

My own collection of bets looked like this:

Horse	Odds	Stake
Padwaa	$7-1$	$£ 14.38$
Nutsy May Morris	$5-1$	$£ 19.17$
Fudge Nibbles	$11-1$	$£ 9.58$
Go Lightning	$10-1$	$£ 10.46$
The Coaster	$11-1$	$£ 9.58$
G-Nut	$5-1$	$£ 19.17$
My Bell	$10-1$	$£ 10.45$
Fluffy Hickey	$15-1$	$£ 7.19$

Stakes: my choices

Outcome: profit of

$$
16 \times £ 7.19-£ 99.99=£(115.04-99.99)=£(15.05)
$$

Example

My own collection of bets looked like this:

Horse	Odds	Implicit P.	Stake
Padwaa	$7-1$	0.125	$£ 14.38$
Nutsy May Morris	$5-1$	0.167	$£ 19.17$
Fudge Nibbles	$11-1$	0.083	$£ 9.58$
Go Lightning	$10-1$	0.091	$£ 10.46$
The Coaster	$11-1$	0.083	$£ 9.58$
G-Nut	$5-1$	0.167	$£ 19.17$
My Bell	$10-1$	0.091	$£ 10.45$
Fluffy Hickey	$15-1$	0.063	$£ 7.19$

Outcome: profit of

$$
16 \times £ 7.19-£ 99.99=£(115.04-99.99)=£(15.05)
$$

Example
My own collection of bets $\quad \mathbf{P} \quad \mathbf{S}$

Horse	Odds	Implicit P.	Stake	S / P
Padwaa	$7-1$	0.125	$£ 14.38$	$£ 115.04$
Nutsy May Morris	$5-1$	0.167	$£ 19.17$	$£ 115.02$
Fudge Nibbles	$11-1$	0.083	$£ 9.58$	$£ 114.96$
Go Lightning	$10-1$	0.091	$£ 10.46$	$£ 115.06$
The Coaster	$11-1$	0.083	$£ 9.58$	$£ 114.96$
G-Nut	$5-1$	0.167	$£ 19.17$	$£ 115.02$
My Bell	$10-1$	0.091	$£ 10.45$	$£ 115.06$
Fluffy Hickey	$15-1$	0.063	$£ 7.19$	$£ 115.04$

Outcome: profit of

$$
16 \times £ 7.19-£ 99.99=£(115.04-99.99)=£(15.05)
$$

Similarly for the other horses. Hence have sure (risk-free) profit!

Efficient Markets and Arbitrage

- The efficient market hypothesis states that the prices at which instruments are traded reflects all available information.
- In the world of economics a Dutch book would be referred to as an arbitrage opportunity: a risk-free collection of transactions which guarantee a profit.
- The no arbitrage principle states that there are no arbitrage opportunities in an efficient market at equilibrium.
- The collective probabilities implied by instrument prices are coherent.

Elicitation

What does she believe?

We need to obtain and quantify our clients beliefs. Asking for a direct statement about personal probabilities doesn't usual work:

- $\mathbb{P}(A)+\mathbb{P}\left(A^{c}\right) \neq 1$
- Recall the British economy: people confuse belief with desire.

A better approach uses calibration: comparison with a standard.

Key: use standard presenting probabilities in a way familiar to the person.

Example (General Election Results)

Which party you think will win most seats in the next general election?

- Conservative
- Labour
- Liberal Democrat
- Green
- Monster-Raving Loony

Consider the bet $b(£ 1$, Conservative Victory):

- You win $£ 1$ if the Conservative party wins.
- You win nothing otherwise.

Just for fun, not examinable! Voting ballot Bundestagswahl September 2017

The Monster-Raving Loony party was a UK 1980s phenomenon...
Germany more recently seems to have more and more of such movements - see ballot. A minimum of 5% of the votes is needed to be represented in Parliament, so there is a limit to the relevance of this.

Currently a coalition government is being formed by traditional parties: Christian democrats, Liberals, Greens, though having a 3 party coalition rather than the typical 2 is unusual, as is its nick name "Jamaica coalition".

Translations (attempted...) of some of the rather unusual party names:

Die Partei - Partei für Arbeit, Rechtsstaat, Tierschutz, Eliteförderung und basisdemokratische Initiative

The Party - Party for work, constitutional stage, animal protection, promotion of elite and grassroot initiative

V-Partei - Partei für Veränderung, Vegetarier und Veganer

V-Party - For change, vegetarians and vegans

Behavioural Approach to Elicitation

- We said that A_{1} and A_{2} are equally probable if $m\left(M, A_{1}\right)=m\left(M, A_{2}\right)$.
- The probability of a Conservative victory is the same as the probability of a spinner bet of the same value.
- What must a be for us to prefer the spinner bet to the political one?

Eliciting With Urns Full of Balls

- If the urn contains:
- n balls
- g of which are green
- Increase g from 0 to $n \ldots$
- Let g^{\star} be such that
- The real bet is preferred when $g=g^{\star}$.
- The urn bet is preferred when $g=g^{\star}+1$.
- This tells us that:
- $\mathbb{P}(\mathrm{C}.) \geq g^{\star} / n$
- $\mathbb{P}(\mathrm{C})<.\left(g^{\star}+1\right) / n$
- Nominal accuracy of $1 / n$.

Why should subjective probabilities behave in the same way as our axiomatic system requires?

- We began with axiomatic probability.
- We introduce a subjective interpretation of probability.
- We wish to combine both aspects...
- We briefly looked at "coherence" previously.
- Now, we will formalise this notion.

Coherence Revisited

Definition
Coherence An individual, \mathcal{I}, may be termed coherent if her probability assignments to an algebra of events obey the probability axioms.

Assertion
A rational individual must be coherent.
A Dutch book argument in support of this assertion follows.

Theorem

Any rational individual, \mathcal{I}, must have $\mathbb{P}(A)+\mathbb{P}\left(A^{c}\right)=1$.
Proof: Case 1: $\mathbb{P}(A)+\mathbb{P}\left(A^{c}\right)<1$
Consider an urn bet with n balls.

- Let $g^{\star}(A)$ and $g^{\star}\left(A^{c}\right)$ be preferred to bets on A and A^{c}.
- As $\mathbb{P}(A)+\mathbb{P}\left(A^{c}\right)$, for large enough n and $k>0$:

$$
g^{\star}(A)+g^{\star}\left(A^{c}\right)=n-k .
$$

- (Think of an urn with three types of ball).
- Let $b^{u}(n, k)$ pay $£ 1$ if a " k from n " urn-draw wins.
- Bet $b(A)$ pay $£ 1$ if event A happens.
- Consider two systems of bets...
- System 1: $S_{1}^{u}=\left[b^{u}\left(n, g^{\star}(A)\right), b^{u}\left(n, g^{\star}\left(A^{c}\right)+k\right)\right]$

$\mathrm{k}>0$ based on (irrational) assumption
- System 2: $S_{1}^{e}=\left[b(A), b\left(A^{c}\right)\right]$

- I prefers S_{1}^{u} to S_{1}^{e} and so should pay to win on S_{1}^{u} and lose of $S_{1}^{e} \ldots$ but everything cancels!

Axiomatic and Subjective Probability Combined

Case2: $\mathbb{P}(A)+\mathbb{P}\left(A^{c}\right)>1$

- Now, our elicited urn-bets must have

$$
g^{\star}(A)+g^{\star}\left(A^{c}\right)=n+k
$$

- Consider an urn with $g^{\star}(A)$ green balls and $g^{\star}\left(A^{c}\right)-k$ blue.
- This time, consider two other systems of bets:

$$
\begin{gathered}
S_{2}^{u}=\left[b^{u}\left(n, g^{\star}(A)\right), b^{u}\left(n, g^{\star}\left(A^{c}\right)-k\right)\right] \\
S_{2}^{e}=\left[\mathrm{b}(\mathrm{~A}), \mathrm{b}\left(\mathrm{~A}^{c}\right)\right]
\end{gathered}
$$

- The stated probabilities mean, \mathcal{I} will pay $£ c$ to win on S_{2}^{e} and lose on S_{2}^{u}.
- Again, everything cancels.

A rational individual won't pay for a bet which certainly returns $£ 0$. So $\mathbb{P}(A)+\mathbb{P}\left(A^{c}\right)=1$.

Theorem

A rational individual, \mathcal{I}, must set

$$
\mathbb{P}(A)+\mathbb{P}(B)=\mathbb{P}(A \cup B)
$$

for any $A, B \in \mathcal{F}$ with $A \cap B=\emptyset$.
Proof: Case $1 \mathbb{P}(A)+\mathbb{P}(B)<\mathbb{P}(A \cup B)$

- Urn probabilities must be such that:

$$
g^{\star}(A)+g^{\star}(B)=g^{\star}(A \cup B)-k
$$

- Let

$$
s_{3}^{e}=[b(A), b(B)]
$$

and

$$
S_{3}^{u}=\left[b^{u}\left(n, g^{\star}(A)\right), b^{u}\left(n, g^{\star}(B)+k\right)\right]
$$

- \mathcal{I} will pay $£ c$ to win with S_{u}^{3} which they consider equivalent to $b\left(\{A \cup B\}\right.$ and lose with $S_{e}^{3} \ldots$

Caveat Mathematicus

There are several points to remember:

- Subjective probabilities are subjective.

People need not agree.

- Elicited probabilities should be coherent.

The decision analyst must ensure this.

- Temporal coherence is not assumed or assured.

You are permitted to change your mind.

The latter is re-assuring, but how should we update our beliefs?

