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Decisions
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What needs to be in a model for decisions under uncertainty?
- Options
- Outcomes and their values (£, time etc)
- Probabilities of the outcomes

Decision maker controls options, but not the outcomes
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Decision Problems

Decision Ingredients

The basic components of a decision analysis are:
I A space of possible decisions, D.
I A set of possible outcomes, X .

By choosing an element of D you exert some influence over
which of the outcomes occurs.

Definition (Loss Function)

A loss function, L : D ⇥ X ! R relates decisions and outcomes.
L(d, x) quantifies the amount of loss incurred if decision d is
made and outcome x then occurs.

An algorithm for choosing d is a decision rule.
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Decision Problems

Example (Insurance)

I You must decide whether to pay c to insure your
possessions of value v against theft for the next year:

d = {Buy Insurance,Don’t Buy Insurance}

I Three events are considered possible over that period:

x
1

={No thefts.} x
2

={Small theft, loss 0.1v}
x

3

={Serious burglary, loss v}

I Our loss function may be tabulated:

L(d, x) x
1

x
2

x
3

Buy c c c
Don’t Buy 0 0.1v v

95



Introduction Probability Elicitation Conditions Decisions Preferences Games

Decision Problems

Uncertainty in Simple Decision Problems

I As well as knowing how desirable action/outcome pairs are,
we need to know how probable the various possible
outcomes are.

I We will assume that the underlying system is independent
of our decision.

I Work with a probability space ⌦ = X and the algebra
generated by the collection of single elements of X .

I It su�ces to specify a probability mass function for the
elements of X .

I One way to address uncertainty is to work with
expectations.
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Decision Problems

Example (Insurance Continued)

I There are 25 million occupied homes in the UK (2001
Census).

I Approximately 280,000 domestic burglaries are carried out
each year (2007/08 Crime Report)

I Approximately 1.07 million acts of “theft from the house”
were carried out.

I We might näıvely assess our pmf as:

p(x
1

) =
25� 1.07� 0.28

25
= 0.946

p(x
2

) =
1.07
25

= 0.043

p(x
3

) =
0.28
25

= 0.011
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“small theft” 

“serious burglary”
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Decision Problems

The EMV Decision Rule

I If we calculate the expected loss for each decision, we
obtain a function of our decision:

L̄(d) = E [L(d,X)] =
X

x2X
L(d, x)⇥ p(x)

I The expected monetary value strategy is to choose d?, the
decision which minimises this expected loss:

d? = arg min
d2D

L̄(d)

I This is sometimes known as a Bayesian decision.
I A justification: If you make a lot of decisions in this way

the you might expect an averaging e↵ect. . .
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Decision Problems

Example (Still insurance)

I Here, we had a loss function:
L(d, x) x

1

x
2

x
3

Buy c c c
Don’t Buy 0 0.1v v

I And a pmf:

p(x
1

) =0.946 p(x
2

) =0.043 p(x
3

) =0.011

I Which give us an expected loss of:

L̄(Buy) =0.946c + 0.043c + 0.011c = c

L̄(Don’t Buy) =0.946⇥ 0 + 0.0043v + 0.011v = 0.0153v
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Decision Problems

I Our decision should, of course, depend upon c and v.
I If c < 0.0153v then the EMV decision is to buy insurance:
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x 104
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Decision Problems

Optimistic EMV

I We can be more optimistic in our approach.
I Rather than defining a loss function, we could work with a

reward function:

R(d, x) = �L(d, x)

I Leading to an expected reward:

R̄(d) = E [R(d, ·)] = �E [L(d, ·)] = �L̄(d)

I And the EMV rule becomes choose

d? = arg max
d2D

R̄(d)
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Alternative Formulation
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Decision Trees

Graphical Representation: Decision Trees

Drawing a decision tree:
1. Find a large piece of paper.
2. Starting at the left side of the page and working

chronologically to the right. . .
2.1 Indicate decisions with a ⇤.
2.2 Draw forks from decision nodes labelled with the decisions.
2.3 Indicate sets of random outcomes with a �.
2.4 Draw edges from random event nodes labelled with their

(conditional) probabilities.
2.5 Continue iteratively until all decisions and random variables

are shown.
2.6 At the right hand end of each path indicate the loss/reward.
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Decision Trees

In the case of the insurance example, start with the first
possible decision and we obtain:

Don’t

0
0.946

0.1 v0.043

v

0.011
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Decision Trees

But we didn’t need to make things that complicated. . . there is
only one outcome if we buy insurance:

cBuy

0.0153v

Don’t
0

0.946

0.1 v0.043

v

0.011
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Decision Trees

In more complex examples, we should label the random events
(say N for no robbery, T for small theft and B for burglary. . .

cBuy

0.0153v

Don’t
N: 0

0.946

T: 0.1 v0.043

B: v

0.011
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Decision Trees

Calculation and Decision Trees
First, we fill in the expected loss associated with decisions:

I starting at the RHS of the graph, trace paths back to �
nodes.

I Fill in the rightmost � nodes with the (conditional4)
expected losses (the probabilities and losses are indicated
at the edges and ends of the edges).

I For each decision node which now has values at the end of
each branch, find the branch with the largest value.

I Eliminate all of the others.
I This produces a reduced decision tree.
I Iterate.
I When left with one path, this is the EMV decision!
4On all earlier events – i.e. ones to the left
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Decision Trees

Do Not Laugh at Notations5

I At this point you may be thinking that this is a silly
picture and that you’d rather just calculate things.

I That’s all very well. . .
I but it gets harder and harder as decisions become more

complicated.
I This graphical representation provides an easy to

implement recursive algorithm and a convenient
representation.

I This lends itself to automatic implementation as well as
manual calculation.

5Invent them, for they are powerful. RP Feynman.
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Decision Trees — Example

More Complicated Cases

Consider this case:
I You may drill (at a cost of £31M) in one of two sites: field

A and field B.
I If there is oil in site A it will be worth £77M.
I If there is oil in site B it will be worth £195M.

I Or you may conduct preliminary trials in either field at a
cost of £6M.

I Or you can do nothing. This is free.
This gives a set of 5 decisions to make immediately. If you
investigate site A or B you must then, further, decide whether
to drill there, in the other site or not at all (we’ll make things
simpler by neglecting the possibility of investigating both).
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Decision Trees — Example

We begin by
constructing the tree
without probabilities.

Drill A

Drill B

Look at A
Look at B

0

Do nothing

-(31 - 77)

-31

-(31 - 195)

-31

Drill A

Drill B

-6Nothing

Drill A

Drill B

-6

Nothing

Drill A

Drill B

-6

Nothing

Drill A

Drill B

-6

Nothing

-(31+6-77)

-(31+6)

-(31+6-195)

-(31+6)

-(31+6-77)

-(31+6)

-(31+6-195)

-(31+6)

-(31+6-77)

-(31+6)

-(31+6-195)

-(31+6)

-(31+6-77)

-(31+6)

-(31+6-195)

-(31+6)

Ac

Ac

Ac

Ac

Ac

A

A

A

A
A

Bc

Bc

Bc

Bc

Bc

B

B

B

B
B

ac

a

bc

b
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Drilling: £31M
Investigation: £6M
Oil in A worth £77M
Oil in B worth £195M
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Decision Trees — Example

Your Knowledge

I The probability that there is oil in field A is 0.4.
I The probability that there is oil in field B is 0.2.
I If oil is present in a field, investigation will advise drilling

with probability 0.8.
I If oil is not present, investigation will advise drilling with

probability 0.2.
I The presence of oil and investigation results in one field

provides no information about the other field.
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Decision Trees — Example

What do you know – formally?

Let A be the event that there is oil in site A and let B be the
event that there is oil in site B. Let a be the event that
investigation suggests there is oil in site a and let b be the event
that investigation suggests that there is oil in site b.
The information on the previous page becomes:

I P(A) = 0.4
I P(B) = 0.2
I P(a|A) = P(b|B) = 0.8
I P(a|Ac) = P(b|Bc) = 0.2
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Decision Trees — Example

We begin by
constructing the tree
without probabilities.
Then work out what
each probability
should be.

Drill A

Drill B

Look at A
Look at B

0

Do nothing

46

-31

164

-31

Drill A

Drill B

-6Nothing

Drill A

Drill B

-6

Nothing

Drill A

Drill B

-6

Nothing

Drill A

Drill B

-6

Nothing

40

-37

158

-37

40

-37

158

-37

40        

-37    

158        

-37

40

-37

158

-37

P(Ac)

P(A)

P(Bc)

P(B)

P(a)c

P(a)

P(bc)

P(b)

P(A|a)

P(Ac|a)

P(B|a)

P(Bc|a)

P(A|ac)

P(Ac|ac)

P(B|ac)

P(Bc|ac)

P(A|b)

P(Ac|b)

P(B|b)

P(Bc|b)

P(A|bc)

P(Ac|bc)

P(B|bc)

P(Bc|bc)
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Decision Trees — Example

Bayes Rule is Needed
We really need to know the probability that oil is present in a
field given that investigation indicates that there is (we know
the converse).

P(A|a) =
P(a|A)P(A)

P(a|A)P(A) + P(a|Ac)P(Ac)

=
0.8⇥ 0.4

0.8⇥ 0.4 + 0.2⇥ 0.6
= 0.727

P(B|b) =
P(b|B)P(B)

P(b|B)P(B) + P(b|Bc)P(Bc)

=
0.8⇥ 0.2

0.8⇥ 0.2 + 0.2⇥ 0.8
= 0.500
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Decision Trees — Example

We begin by
constructing the tree
without probabilities.
Then work out what
each probability
should be numerically.

Drill A

Drill B

Look at A
Look at B

0

Do nothing

46

-31

164

-31

Drill A

Drill B

-6Nothing

Drill A

Drill B

-6

Nothing

Drill A

Drill B

-6

Nothing

Drill A

Drill B

-6

Nothing

40

-37

158

-37

40

-37

158

-37

40        

-37    

158        

-37

40

-37

158

-37

0.6

0.4

0.8

0.2

.56

0.44

0.68

0.32

0.727

0.273

0.2

0.8

0.143

0.857

0.2

0.8

0.4

0.6

0.5

0.5

0.4

0.6

0.059

0.941
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Decision Trees — Example

We begin by
constructing the tree
without probabilities.
Then work out what
each probability
should be numerically.
Then starting at the
RHS calculate
expectations and
make optimal
decisions to determine
the solution.

15.3

-0.2

Drill A

8
Drill B

9.5Look at A

15.3

Look at B

0

Do nothing

46

-31

164

-31

19

2

60.5

-6

19

Drill A

2
Drill B

-6Nothing

-25.9Drill A

2
Drill B

-6

Nothing

-6.2Drill A

60.5

Drill B

-6

Nothing

-6.2Drill A

-25.5

Drill B

-6

Nothing

40

-37

158

-37

40

-37

158

-37

40        

-37    

158        

-37

40

-37

158

-37

0.6

0.4

0.8

0.2

.56

0.44

0.68

0.32

0.727

0.273

0.2

0.8

0.143

0.857

0.2

0.8

0.4

0.6

0.5

0.5

0.4

0.6

0.059

0.941
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0.727*40+0.273*(-37)
=18.979

.2

Optimal decision (using EMV rule): “Look at B” (test drilling in B) with expected reward 15.3.
Optimal decision in reduced problem without allowing any test drilling: “Drill B” with expected reward 8.
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