What needs to be in a model for decisions under uncertainty?

- Options
- Outcomes and their values ($£$, time etc)

Decisions

- Probabilities of the outcomes

Decision maker controls options, but not the outcomes

Decision Ingredients

The basic components of a decision analysis are:

- A space of possible decisions, D.
- A set of possible outcomes, \mathcal{X}.

By choosing an element of D you exert some influence over which of the outcomes occurs.

Definition (Loss Function)
A loss function, $L: D \times \mathcal{X} \rightarrow \mathbb{R}$ relates decisions and outcomes. $L(d, x)$ quantifies the amount of loss incurred if decision d is made and outcome x then occurs.

An algorithm for choosing d is a decision rule.

Example (Insurance)

- You must decide whether to pay c to insure your possessions of value v against theft for the next year:

$$
d=\{\text { Buy Insurance, Don't Buy Insurance }\}
$$

- Three events are considered possible over that period:

$$
\begin{aligned}
& x_{1}=\{\text { No thefts. }\} \\
& x_{3}=\{\text { Serious burglary, loss } v\}
\end{aligned}
$$

- Our loss function may be tabulated:

$L(d, x)$	x_{1}	x_{2}	x_{3}
Buy	c	c	c
Don't Buy	0	$0.1 v$	v

Uncertainty in Simple Decision Problems

- As well as knowing how desirable action/outcome pairs are, we need to know how probable the various possible outcomes are.
- We will assume that the underlying system is independent of our decision.
- Work with a probability space $\Omega=\mathcal{X}$ and the algebra generated by the collection of single elements of \mathcal{X}.
- It suffices to specify a probability mass function for the elements of \mathcal{X}.

Example (Insurance Continued)

- There are 25 million occupied homes in the UK (2001 Census).
- Approximately 280,000 domestic burglaries are carried out each year (2007/08 Crime Report)
- Approximately 1.07 million acts of "theft from the house" were carried out.
- We might naïvely assess our pmf as:
"no theft"

$$
p\left(x_{1}\right)=\frac{25-1.07-0.28}{25}
$$

$$
=0.946
$$

"small theft"

$$
p\left(x_{2}\right)=\frac{1.07}{25}
$$

$$
=0.043
$$

"serious burglary" $p\left(x_{3}\right)=\frac{0.28}{25}$

The EMV Decision Rule

- If we calculate the expected loss for each decision, we obtain a function of our decision:

$$
\bar{L}(d)=\mathbb{E}[L(d, X)]=\sum_{x \in \mathcal{X}} L(d, x) \times p(x)
$$

- The expected monetary value strategy is to choose d^{\star}, the decision which minimises this expected loss:

$$
d^{\star}=\underset{d \in D}{\arg \min } \bar{L}(d)
$$

- This is sometimes known as a Bayesian decision.
- A justification: If you make a lot of decisions in this way the you might expect an averaging effect...

Example (Still insurance)

- Here, we had a loss function:

$L(d, x)$	x_{1}	x_{2}	x_{3}
Buy	c	c	c
Don't Buy	0	$0.1 v$	v

- And a pmf:

$$
p\left(x_{1}\right)=0.946 \quad p\left(x_{2}\right)=0.043 \quad p\left(x_{3}\right)=0.011
$$

- Which give us an expected loss of:

$$
\begin{aligned}
\bar{L}(\text { Buy }) & =0.946 c+0.043 c+0.011 c & & =c \\
\bar{L}(\text { Don't Buy }) & =0.946 \times 0+0.0043 v+0.011 v & & =0.0153 v
\end{aligned}
$$

- Our decision should, of course, depend upon c and v.
- If $c<0.0153 v$ then the EMV decision is to buy insurance:

Alternative Formulation

- Rather than defining a loss function, we could work with a reward function:

$$
R(d, x)=-L(d, x)
$$

- Leading to an expected reward:

$$
\bar{R}(d)=\mathbb{E}[R(d, \cdot)]=-\mathbb{E}[L(d, \cdot)]=-\bar{L}(d)
$$

- And the EMV rule becomes choose

$$
d^{\star}=\underset{d \in D}{\arg \max } \bar{R}(d)
$$

Graphical Representation: Decision Trees

Drawing a decision tree:

1. Find a large piece of paper.
2. Starting at the left side of the page and working chronologically to the right...
2.1 Indicate decisions with a \square.
2.2 Draw forks from decision nodes labelled with the decisions.
2.3 Indicate sets of random outcomes with a \bigcirc.
2.4 Draw edges from random event nodes labelled with their (conditional) probabilities.
2.5 Continue iteratively until all decisions and random variables are shown.
2.6 At the right hand end of each path indicate the loss/reward.

In the case of the insurance example, start with the first possible decision and we obtain:

0

V
only one outcome if we buy insurance:

In more complex examples, we should label the random events (say N for no robbery, T for small theft and B for burglary...

B: v

Calculation and Decision Trees

First, we fill in the expected loss associated with decisions:

- starting at the RHS of the graph, trace paths back to \bigcirc nodes.
- Fill in the rightmost \bigcirc nodes with the (conditional ${ }^{4}$) expected losses (the probabilities and losses are indicated at the edges and ends of the edges).
- For each decision node which now has values at the end of each branch, find the branch with the largest value.
- Eliminate all of the others.
- This produces a reduced decision tree.
- Iterate.
- When left with one path, this is the EMV decision!

[^0]
Do Not Laugh at Notations ${ }^{5}$

- At this point you may be thinking that this is a silly picture and that you'd rather just calculate things.
- That's all very well...
- but it gets harder and harder as decisions become more complicated.
- This graphical representation provides an easy to implement recursive algorithm and a convenient representation.
- This lends itself to automatic implementation as well as manual calculation.

[^1]
More Complicated Cases

Consider this case:

- You may drill (at a cost of $£ 31 \mathrm{M}$) in one of two sites: field A and field B.
- If there is oil in site A it will be worth $£ 77 \mathrm{M}$.
- If there is oil in site B it will be worth $£ 195 \mathrm{M}$.
- Or you may conduct preliminary trials in either field at a cost of $£ 6 \mathrm{M}$.
- Or you can do nothing. This is free.

This gives a set of 5 decisions to make immediately. If you investigate site A or B you must then, further, decide whether to drill there, in the other site or not at all (we'll make things simpler by neglecting the possibility of investigating both).

Decision Trees - Example

Drilling: £31M Investigation: £6M Oil in A worth $£ 77 \mathrm{M}$ Oil in B worth $£ 195 \mathrm{M}$

We begin by
constructing the tree without probabilities.

Decision Trees - Example

Your Knowledge

- The probability that there is oil in field A is 0.4 .
- The probability that there is oil in field B is 0.2 .
- If oil is present in a field, investigation will advise drilling with probability 0.8 .
- If oil is not present, investigation will advise drilling with probability 0.2 .
- The presence of oil and investigation results in one field provides no information about the other field.

What do you know - formally?

Let A be the event that there is oil in site A and let B be the event that there is oil in site B. Let a be the event that investigation suggests there is oil in site a and let b be the event that investigation suggests that there is oil in site b. The information on the previous page becomes:

- $\mathbb{P}(A)=0.4$
- $\mathbb{P}(B)=0.2$
- $\mathbb{P}(a \mid A)=\mathbb{P}(b \mid B)=0.8$
- $\mathbb{P}\left(a \mid A^{c}\right)=\mathbb{P}\left(b \mid B^{c}\right)=0.2$

Decision Trees - Example

Then work out what each probability should be.

Bayes Rule is Needed

We really need to know the probability that oil is present in a field given that investigation indicates that there is (we know the converse).

$$
\begin{aligned}
\mathbb{P}(A \mid a) & =\frac{\mathbb{P}(a \mid A) \mathbb{P}(A)}{\mathbb{P}(a \mid A) \mathbb{P}(A)+\mathbb{P}\left(a \mid A^{c}\right) \mathbb{P}\left(A^{c}\right)} \\
& =\frac{0.8 \times 0.4}{0.8 \times 0.4+0.2 \times 0.6}=0.727 \\
\mathbb{P}(B \mid b) & =\frac{\mathbb{P}(b \mid B) \mathbb{P}(B)}{\mathbb{P}(b \mid B) \mathbb{P}(B)+\mathbb{P}\left(b \mid B^{c}\right) \mathbb{P}\left(B^{c}\right)} \\
& =\frac{0.8 \times 0.2}{0.8 \times 0.2+0.2 \times 0.8}=0.500
\end{aligned}
$$

Decision Trees - Example

Then work out what each probability should be numerically.

Decision Trees - Example

Then starting at the
RHS calculate
expectations and
make optimal
decisions to determine the solution.

Optimal decision (using EMV rule): "Look at B" (test drilling in B) with expected reward 15.3. Optimal decision in reduced problem without allowing any test drilling: "Drill B" with expected reward 8.

[^0]: ${ }^{4}$ On all earlier events - i.e. ones to the left

[^1]: ${ }^{5}$ Invent them, for they are powerful. RP Feynman.

