What needs to be in a model for decisions under uncertainty?

- Options
- Outcomes and their values (£, time etc)
- Probabilities of the outcomes

Decision maker controls options, but not the outcomes

Decisions

Introduction 00000000000	Probability 000000000000000000000000000000000000		Conditions 0000000 000000 0000000	Decisions ●0000000 ○0000000 ○0000000	Preferences 000000 000000000000	Games 00000000 00000000 00000000	
Decision Prob	lems						
Decision Ingredients							
The basic components of a decision analysis are:							
• A space of possible decisions, D .							

• A set of possible outcomes, \mathcal{X} .

By choosing an element of D you exert some influence over which of the outcomes occurs.

Definition (Loss Function)

A loss function, $L: D \times \mathcal{X} \to \mathbb{R}$ relates decisions and outcomes. L(d, x) quantifies the amount of loss incurred if decision d is made and outcome x then occurs.

An algorithm for choosing d is a *decision rule*.

Introduction 00000000000	Probability 000000000000000000000000000000000000	$\begin{array}{c} \textbf{Conditions}\\ \circ\circ\circ\circ\circ\circ\circ\\\circ\circ\circ\circ\circ\circ\circ\\\circ\circ\circ\circ\circ\circ\circ\circ\end{array}$	Decisions ○●○○○○○○ ○○○○○○○○○	Preferences 000000 0000000000	Games 000000000 00000000 000000000
Decision Probl	lems				

Example (Insurance)

➤ You must decide whether to pay c to insure your possessions of value v against theft for the next year:

 $d = \{$ Buy Insurance, Don't Buy Insurance $\}$

▶ Three events are considered possible over that period:

 $x_1 = \{\text{No thefts.}\}$ $x_2 = \{\text{Small theft, loss } 0.1v\}$ $x_3 = \{\text{Serious burglary, loss } v\}$

• Our loss function may be tabulated:

L(d, x)	x_1	x_2	x_3
Buy	c	c	c
Don't Buy	0	0.1v	v

Introduction	Probability	Elicitation	Conditions	Decisions	Preferences	Games
	000000000000000000000000000000000000000		0000000 000000 0000000	0000000 00000000 000000000	000000 0000000000	00000000 00000000 00000000 00000000
Desision Brobb	0700					

Uncertainty in Simple Decision Problems

- As well as knowing how desirable action/outcome pairs are, we need to know how probable the various possible outcomes are.
- ▶ We will assume that the underlying system is independent of our decision.
- Work with a probability space $\Omega = \mathcal{X}$ and the algebra generated by the collection of single elements of \mathcal{X} .
- It suffices to specify a probability mass function for the elements of \mathcal{X} .

Introduction 00000000000	Probability 000000000000000000000000000000000000	Conditions 0000000 000000 0000000	Decisions 00000000 00000000 000000000	Preferences 000000 000000000000	Games 000000000 000000000 000000000
Decision Proble	ems				00000000

Example (Insurance Continued)

- ► There are 25 million occupied homes in the UK (2001 Census).
- ▶ Approximately 280,000 domestic burglaries are carried out each year (2007/08 Crime Report)
- ► Approximately 1.07 million acts of "theft from the house" were carried out.
- ▶ We might naïvely assess our pmf as:

"no theft"
$$p(x_1) = \frac{25 - 1.07 - 0.28}{25} = 0.946$$

"small theft" $p(x_2) = \frac{1.07}{25} = 0.043$
"serious burglary" $p(x_3) = \frac{0.28}{25} = 0.011$

Introduction 00000000000	Probability 000000000000000000000000000000000000		Conditions 0000000 000000 0000000	Decisions 00000000 000000000000000000000000000	Preferences 000000 0000000000	Games 000000000 000000000 000000000 00000000
Decision Probl	ems					
The EM	V Decisio	n Rule				

▶ If we calculate the expected loss for each decision, we obtain a function of our decision:

$$\bar{L}(d) = \mathbb{E}\left[L(d, X)\right] = \sum_{x \in \mathcal{X}} L(d, x) \times p(x)$$

▶ The *expected monetary value* strategy is to choose *d*^{*}, the decision which minimises this expected loss:

$$d^{\star} = \operatorname*{arg\,min}_{d \in D} \bar{L}(d)$$

- ▶ This is sometimes known as a *Bayesian decision*.
- ► A justification: If you make a lot of decisions in this way the you might expect an averaging effect...

Introduction 00000000000	Probability 000000000000000000000000000000000000	Conditions 000000 000000 0000000	Decisions 00000000 000000000000000000000000000	Preferences 000000 0000000000	Games 00000000 00000000 00000000
Decision Probl	ems				

Example (Still insurance)

▶ Here, we had a loss function:

L(d, x)	x_1	x_2	x_3
Buy	c	c	c
Don't Buy	0	0.1v	v

► And a pmf:

 $p(x_1) = 0.946$ $p(x_2) = 0.043$ $p(x_3) = 0.011$

▶ Which give us an expected loss of:

 \bar{L} (Buy) =0.946c + 0.043c + 0.011c = c \bar{L} (Don't Buy) =0.946 × 0 + 0.0043v + 0.011v = 0.0153v

Introduction 00000000000	Probability 000000000000000000000000000000000000	$\begin{array}{c} \textbf{Conditions} \\ \texttt{0000000} \\ \texttt{000000} \\ \texttt{0000000} \end{array}$	Decisions 00000000 000000000000000000000000000	Preferences 000000 0000000000	Games 000000000 00000000 00000000
Decision Probl	ems				

- \blacktriangleright Our decision should, of course, depend upon c and v.
- If c < 0.0153v then the EMV decision is to buy insurance:

Introduction 00000000000	Probability 000000000000000000000000000000000000		$\begin{array}{c} \mathbf{Conditions} \\ \texttt{0000000} \\ \texttt{000000} \\ \texttt{0000000} \end{array}$	Decisions 0000000 00000000 0000000000000000000	Preferences 000000 0000000000	Games 000000000 000000000 000000000
Decision Probl	lems					
Alterna	tive Form	ulation				

Rather than defining a loss function, we could work with a reward function:

$$R(d, x) = -L(d, x)$$

▶ Leading to an expected reward:

$$\bar{R}(d) = \mathbb{E}\left[R(d, \cdot)\right] = -\mathbb{E}\left[L(d, \cdot)\right] = -\bar{L}(d)$$

▶ And the EMV rule becomes choose

$$d^{\star} = \arg\max_{d \in D} \bar{R}(d)$$

Introduction	Probability	Elicitation	Conditions	Decisions	Preferences	Gar
	000000000000000000000000000000000000000		0000000 000000 0000000	0000000 00000000 000000000	000000 0000000000	000 000 000 000
Decision Trees						

Graphical Representation: Decision Trees

Drawing a decision tree:

- 1. Find a large piece of paper.
- 2. Starting at the left side of the page and working chronologically to the right...
 - 2.1 Indicate decisions with a $\Box.$
 - $2.2\,$ Draw forks from decision nodes labelled with the decisions.
 - 2.3 Indicate sets of random outcomes with a \bigcirc .
 - 2.4 Draw edges from random event *nodes* labelled with their (conditional) probabilities.
 - 2.5 Continue iteratively until all decisions and random variables are shown.
 - $2.6\;$ At the right hand end of each path indicate the loss/reward.

Introduction 00000000000	Probability 000000000000000000000000000000000000	Conditions 0000000 000000 0000000	Decisions ○○○○○○○○ ○○○○○○○○○○○○○○○○○○○○○○○○○○○	Preferences 000000 00000000000	Games 000000000 000000000 000000000
Decision Trees					

In the case of the insurance example, start with the first possible decision and we obtain:

Introduction 00000000000	Probability 00000000000000 000000000000000000000	Conditions 0000000 000000 0000000	Decisions 00000000 000000000000000000000000000	Preferences 000000 0000000000	Games 00000000 00000000 00000000 00000000
Decision Trees					

only one outcome if we buy insurance:

Introduction 00000000000	Probability 000000000000000000000000000000000000	$\begin{array}{c} \textbf{Conditions} \\ \texttt{0000000} \\ \texttt{000000} \\ \texttt{0000000} \end{array}$	Decisions 00000000 000000000000000000000000000	Preferences 000000 0000000000	Games 00000000 00000000 00000000 00000000
Decision Trees					

In more complex examples, we should label the random events (say N for no robbery, T for small theft and B for burglary...

Introduction 00000000000	Probability 000000000000000000000000000000000000	Conditions 0000000 000000 0000000	Decisions 00000000 00000000 000000000	Preferences 000000 0000000000	Games 00000000 00000000 00000000 00000000
Decision Trees					

Calculation and Decision Trees

First, we fill in the expected loss associated with decisions:

- ▶ starting at the RHS of the graph, trace paths back to nodes.
- ▶ Fill in the rightmost nodes with the (conditional⁴) expected losses (the probabilities and losses are indicated at the edges and ends of the edges).
- ▶ For each decision node which now has values at the end of each branch, find the branch with the largest value.
- ▶ Eliminate all of the others.
- ▶ This produces a reduced decision tree.
- ▶ Iterate.
- ▶ When left with one path, this is the EMV decision!

 4 On all earlier events – i.e. ones to the left

Introduction	Probability	Elicitation	Conditions	Decisions	Preferences	Games
	000000000000000000000000000000000000000		0000000 000000 0000000	0000000 0000000 00000000	000000 0000000000	000000000000000000000000000000000000000
Decision Trees						

Do Not Laugh at Notations⁵

- ► At this point you may be thinking that this is a silly picture and that you'd rather just calculate things.
- ▶ That's all very well...
- but it gets harder and harder as decisions become more complicated.
- ▶ This graphical representation provides an easy to implement recursive algorithm and a convenient representation.
- ▶ This lends itself to automatic implementation as well as manual calculation.

⁵Invent them, for they are powerful. *RP Feynman*.

Introduction	Probability 000000000000000000000000000000000000		Conditions 0000000 000000 0000000	Decisions ○○○○○○○ ●○○○○○○○	Preferences 000000 00000000000	Games 000000000 000000000 000000000
Decision Trees	— Example					
More Co	mplicated	l Cases				

Consider this case:

- ▶ You may drill (at a cost of £31M) in one of two sites: field A and field B.
 - If there is oil in site A it will be worth $\pounds77M$.
 - If there is oil in site B it will be worth £195M.
- ► Or you may conduct preliminary trials in either field at a cost of £6M.
- Or you can do nothing. This is free.

This gives a set of 5 decisions to make immediately. If you investigate site A or B you must then, further, decide whether to drill there, in the other site or not at all (we'll make things simpler by neglecting the possibility of investigating both).

Decision Trees — Example

Drilling: £31M Investigation: £6M Oil in A worth £77M Oil in B worth £195M

We begin by constructing the tree without probabilities.

Introduction	Probability Elicitation 00000000000 0000 00000000 000000000 00000000 000000000 000000000000000000000000000000000000	$\begin{array}{c} \textbf{Conditions} \\ \texttt{0000000} \\ \texttt{000000} \\ \texttt{0000000} \\ \texttt{0000000} \end{array}$	Decisions ○○○○○○○○ ○●○○○○○○○	Preferences 000000 0000000000	Games 000000000 000000000 000000000
Decision Trees	— Example				
Your Kn	owledge				

- The probability that there is oil in field A is 0.4.
- The probability that there is oil in field B is 0.2.
- ▶ If oil is present in a field, investigation will advise drilling with probability 0.8.
- ▶ If oil is not present, investigation will advise drilling with probability 0.2.
- ▶ The presence of oil and investigation results in one field provides no information about the other field.

Introduction 00000000000	000000000000000000000000000000000000000	tation Conditions 0000000 000000 0000000 000000 0000000 000000	Decisions ○○○○○○○○ ○○●○○○○○○	Preferences 000000 00000000000	Games 000000000 000000000 000000000
Decision Trees	— Example				
What do	you know –	formally?			

Let A be the event that there is oil in site A and let B be the event that there is oil in site B. Let a be the event that investigation suggests there is oil in site a and let b be the event that investigation suggests that there is oil in site b. The information on the previous page becomes:

$$\blacktriangleright \mathbb{P}(A) = 0.4$$

$$\blacktriangleright \mathbb{P}(B) = 0.2$$

$$\blacktriangleright \ \mathbb{P}(a|A) = \mathbb{P}(b|B) = 0.8$$

$$\blacktriangleright \ \mathbb{P}(a|A^c) = \mathbb{P}(b|B^c) = 0.2$$

Introduction	Probability	Elicitation	Conditions	Decisions	Preferences	Games
	00000000000000 00000000 00000000000000		0000000 000000 0000000	00000000 000000000 0000000000	000000 0000000000	000000000000000000000000000000000000000
Decision Trees	— Example					

Then work out what each probability should be.

Introduction 00000000000	Probability 000000000000000000000000000000000000	$\begin{array}{c} \textbf{Conditions} \\ \texttt{0000000} \\ \texttt{000000} \\ \texttt{0000000} \end{array}$	Decisions	Preferences 000000 0000000000	Games 000000000 000000000 0000000000000000
Decision Trees	— Example				00000000

Bayes Rule is Needed

We really need to know the probability that oil is present in a field given that investigation indicates that there is (we know the converse).

$$\mathbb{P}(A|a) = \frac{\mathbb{P}(a|A)\mathbb{P}(A)}{\mathbb{P}(a|A)\mathbb{P}(A) + \mathbb{P}(a|A^c)\mathbb{P}(A^c)}$$
$$= \frac{0.8 \times 0.4}{0.8 \times 0.4 + 0.2 \times 0.6} = 0.727$$

$$\mathbb{P}(B|b) = \frac{\mathbb{P}(b|B)\mathbb{P}(B)}{\mathbb{P}(b|B)\mathbb{P}(B) + \mathbb{P}(b|B^c)\mathbb{P}(B^c)}$$
$$= \frac{0.8 \times 0.2}{0.8 \times 0.2 + 0.2 \times 0.8} = 0.500$$

-6

-37

Then work out what each probability should be numerically.

Optimal decision (using EMV rule): "Look at B" (test drilling in B) with expected reward 15.3. Optimal decision in reduced problem without allowing any test drilling: "Drill B" with expected reward 8.