Introduction 00000000000	Probability 000000000000000000000000000000000000		Conditions 0000000 000000 0000000	Decisions 00000000 00000000 000000000000000000	Preferences 000000 00000000000	Games •00000000 00000000 00000000
What is a Gan	ne?					
What is	a Game					
A gam	e in mathem	atics is ro	ughly spea	king a pr	oblem in	

A *game* in mathematics is, roughly speaking, a problem in which:

- ▶ Several *agents* or *players* make 1 or more decisions.
- ▶ Each player has an objective / set of preferences.
- ▶ The outcome is influenced by the set of decisions.
- ▶ There may be additional non-deterministic uncertainty.
- ▶ The players may be in competition or they may be cooperating.
- ▶ Examples include: chess, poker, bridge, rock-paper-scissors and many others.

However, we will stick to simple two player games with each player simultaneously making a single decision.

Introduction	Probability Elic	itation Condit	ions Decisions	Preferences	Games
		000000 0000000 000000 000000		000000 0000000000	00000000 00000000 00000000

Simple Two Player Games

is

- Player 1 chooses a move for a set $D = \{d_1, \ldots, d_n\}$.
- ▶ Plater 2 chooses a move from a set $\Delta = \{\delta_1, \ldots, \delta_m\}$.
- Each player has a *payoff function*.
- If the players choose moves d_i and δ_j , then:
 - Player 1 receives reward $R(d_i, \delta_j)$.
 - Player 2 receives reward $S(d_i, \delta_j)$.
- ▶ The relationship between decisions and rewards is often shown in a payoff matrix:

	δ_1	 δ_m
d_1	$(R(d_1,\delta_1),S(d_1,\delta_1))$	 $(R(d_1,\delta_m),S(d_1,\delta_m))$
:		:
d_n	$(R(d_n,\delta_1),S(d_n,\delta_1))$	 $(R(d_n, \delta_m), S(d_n, \delta_m))$

Introduction 00000000000	Probability 000000000000000000000000000000000000		Conditions 0000000 000000 0000000	Decisions 00000000 00000000 000000000000000000	Preferences 000000 00000000000	Games 00000000 00000000 00000000		
What is a Gan	ne?							
Payoff Matrices Again								
	netimes usef n of the pos		0	e player's j	payoff as a			

Player 1 and player 2 have these payoff matrices:

	δ_1		δ_m
d_1	$R(d_1,\delta_1)$	• • •	$R(d_1, \delta_m)$
:			:
d_n	$R(d_n, \delta_1)$		$R(d_n, \delta_m)$
	δ_1		δ_m
d_1	$S(d_1,\delta_1)$		$S(d_1, \delta_m)$
:			÷
d_n	$S(d_n, \delta_1)$		$S(d_n, \delta_m)$

Introduction 00000000000	Probability 000000000000000000000000000000000000	Conditions 0000000 000000 0000000	Decisions 00000000 00000000 000000000000000000	Preferences 000000 0000000000	Games 000000000 000000000 000000000
What is a Gam	ie?				

Example (Rock-Paper-Scissors)

• Each player picks from the same set of decisions:

$$D=\Delta=\{R,P,S\}$$

- \blacktriangleright R beats S; S beats P and P beats R
- ▶ One possible payoff matrix is:

	R	Р	S
R	(0,0)	(-1,1)	(1,-1)
Р	(1,-1)	$(0,\!0)$	(-1,1)
S	(-1,1)	(1,-1)	(0,0)

Introduction	Probability	Elicitation	Conditions	Decisions	Preferences	Games					
	00000000000000 00000000 00000000000000		0000000 000000 0000000	00000000 00000000 000000000	000000 0000000000	00000000 00000000 00000000 00000000					
What is a Gan	What is a Game?										

Example (The Prisoner's Dilemma)

▶ Again, each player picks from the same set of decisions:

 $D = \Delta = \{$ Stay Silent, Betray Partner $\}$

- ► If they both stay silent they will receive a short sentence; if they both betray one another they will get a long sentence; if only one betrays the other the traitor will be released and the other will get a long sentence.
- One possible payoff matrix is:

▶ Notice that each player wishes to minimise this payoff!

Introduction 00000000000	Probability 000000000000000000000000000000000000	Conditions 0000000 000000 0000000	Decisions 00000000 00000000 000000000000000000	Preferences 000000 0000000000	Games 000000000 00000000 00000000
What is a Gam	e?				

Example (Love Story)

• A boy and a girl must go to either of:

$$D = \Delta = \{$$
Football, Opera $\}$

- ▶ They both wish to meet one another most of all.
- ► If they don't meet, the boy would rather see the football; the girl, the opera.

► A possible payoff matrix might be:

	F	0
F	(100, 100)	(50, 50)
0	(0,0)	(100,100)

Introduction 00000000000	Probability 000000000000000000000000000000000000		Conditions 0000000 000000 0000000	Decisions 00000000 00000000 000000000	Preferences 000000 00000000000	Games 00000000 00000000 00000000			
What is a Game?									

Some Features of these Examples

- ▶ The rock-paper-scissors game is *purely competitive*: any gain by one player is matched by a loss by the other player.
- ▶ The RPS and PD problems are symmetric:

$$R(d,\delta) = S(\delta,d)$$

[Note that this makes sense as $D = \Delta$]

► $D = \Delta$ in all three of these examples, but it isn't always the case.

Introduction 00000000000	000000000000000000000000000000000000000		Conditions 0000000 000000 0000000	Decisions 00000000 00000000 000000000000000000	Preferences 000000 0000000000	Games 00000000 00000000 00000000
What is a Gan	ne?					
Uncertai	nty in Gan	nes				
	players don't rtainty.	know wh	at action tl	he other w	ill take, the	re
	1 C 11 41	р ·	• • • • •	• •	1 1 . 1.	

- ▶ Thankfully, the Bayesian interpretation of probability allows them to encode their uncertainty in a probability distribution.
- ▶ Player 1 has a probability mass function p over the actions that player 2 can take, Δ .
- Player 2 has a probability mass function q over the actions that player 1 can take, denoted D.

Introduction 00000000000	Probability 000000000000000000000000000000000000	$\begin{array}{c} \mathbf{Conditions} \\ \texttt{0000000} \\ \texttt{000000} \\ \texttt{0000000} \end{array}$	Decisions 00000000 00000000 000000000	Preferences 000000 0000000000	Games 00000000 00000000 000000000000000000
What is a Gan	ne?				

Expected Rewards

Just as in a decision problem, we can think about expected rewards:

For player 1, the expected reward of move d_i is:

1

k

$$\bar{R}(d_i) = \mathbb{E} \left[R(d_i, \delta_j) \right]$$
$$= \sum_{j=1}^m q(\delta_j) R(d_i, \delta_j)$$

▶ Whilst, for player 2, we have

$$\bar{S}(\delta_j) = \mathbb{E} \left[S(d_i, \delta_j) \right]$$
$$= \sum_{i=1}^n p(d_i) S(d_i, \delta_j)$$

Introduction 00000000000	Probability 000000000000000000000000000000000000	$\begin{array}{c} \mathbf{Conditions} \\ \texttt{0000000} \\ \texttt{000000} \\ \texttt{0000000} \end{array}$	Decisions 00000000 000000000 00000000000000000	Preferences 000000 0000000000	Games 00000000 0000000 00000000 00000000
What is a Gan	ıe?				

Some Interesting Questions

- ▶ When can a player act without considering what the opponent will do? i.e. When is player 1's strategy independent of *p* or player 2's of *q*?
- ▶ When *p* or *q* is important, how can rationality of the opponent help us to elicit them?
- ▶ What are the implications of this?

Introduction 00000000000	Probability 000000000000000000000000000000000000	Conditions 0000000 000000 0000000	Decisions 00000000 00000000 000000000000000000	Preferences 000000 0000000000	Games 00000000 00000000 00000000 00000000
Separability and	d Domination				

Separable Games

If we can decompose the rewards appropriately, then there is no interaction between the players' decisions:

► A game is *separable* if:

$$R(d,\delta) = r_1(d) + r_2(\delta)$$
$$S(d,\delta) = s_1(d) + s_2(\delta)$$

Here, the effect of the other player's act on a player's reward doesn't depend on their own decision:

$$\bar{R}(d_i) = r_1(d_i) + \sum_{j=1}^m q(\delta_j) r_2(\delta_j)$$
$$\bar{S}(\delta_j) = \sum_{i=1}^n p(d_i) r_1(d_i) + r_2(\delta_j)$$

Introduction 00000000000	Probability 000000000000000000000000000000000000	Conditions 0000000 000000 0000000	Decisions 00000000 00000000 000000000000000000	Preferences 000000 0000000000	Games 00000000 00000000 000000000000000000
Separability an	d Domination				

Strategy in Separable Games

- Player 1's strategy should depend only upon r₁ as the decision they make doesn't alter the reward from r₂.
- Player 2's strategy should depend only upon s₂ as the decision they make doesn't alter the reward from s₁.
- ▶ So, player 1 should choose a strategy from the set:

$$D^{\star} = \{ d^{\star} : r_1(d^{\star}) \ge r_1(d_i) \quad i = 1, \dots, n \}$$

▶ And player 2 from:

$$\Delta^{\star} = \{\delta^{\star} : s_2(\delta^{\star}) \ge s_2(\delta_j) \quad j = 1, \dots, m\}$$

Introduction	Probability	Elicitation	Conditions	Decisions	Preferences	Games
	0000000000000 00000000 000000000000000		0000000 000000 0000000	00000000 00000000 000000000	000000 0000000000	00000000 00000000 00000000 00000000

Separability and Domination

The Prisoner's Dilemma is a Separable Game

- Let $r_1(S) = 0$ and $r_1(B) = 1$.
- Let $r_2(S) = -1$ and $r_2(B) = -5$.
- Now, $R(d, \delta) = r_1(d) + r_2(\delta)$.
- And $D^* = \{B\}$.
- Similarly for the second player, $\Delta^* = \{B\}$.
- ▶ This is the so-called paradox of the prisoner's dilemma: both players acting rationally and independently leads to the worst possible solution!

Introduction 00000000000	Probability 000000000000000000000000000000000000	Conditions 0000000 000000 0000000	Decisions 00000000 00000000 000000000	Preferences 000000 0000000000	Games 00000000 00000000 000000000000000000
Separability ar	nd Domination				

Rationality and Games

As in decision theory, a rational player should maximise their expected utility. We will generally assume that utility is equal to payoff; no greater complications arise if this is not the case.

• For a given pmf q, player 1 has:

$$\bar{R}(d_i) = \sum_{j=1}^m R(d_i, \delta_j) q(\delta_j)$$

• Whilst for given p, player 2 has:

$$\bar{S}(\delta_j) = \sum_{i=1}^n S(d_i, \delta_j) p(d_i)$$

- We want p and q to be consistent with the assumption that the opponent is rational.
- ▶ We assume, that rationality of all players is common knowledge.

Introduction	Probability	Elicitation	$\mathbf{Conditions}$	Decisions	Preferences	Games
	00000000000000 00000000 00000000000000		0000000 000000 0000000	00000000 00000000 000000000	000000 0000000000	00000000 000000000 000000000 00000000

Separability and Domination

:

Common Knowledge: A Psychological Infinite Regress

In the theory of games the phrase *common knowledge* has a very specific meaning.

- ▶ Common knowledge is known by all players.
- ▶ That common knowledge is known by all players is known by all players.
- That common knowledge is common to all players is known by all players
- More compactly: common knowledge is something that is known by all players and the fact that this thing is known by all players is itself common knowledge.
- ▶ This is an example of an infinite regress.

Introduction 00000000000	$\begin{array}{c} \mathbf{Probability}\\ 000000000000000000000000000000000000$	$\begin{array}{c} \textbf{Conditions} \\ \texttt{0000000} \\ \texttt{000000} \\ \texttt{0000000} \end{array}$	Decisions 00000000 00000000 000000000	Preferences 000000 0000000000	Games 000000000 00000000000000000000000000
Separability ar	d Domination				

Domination

▶ A move d^* is said to dominate all other strategies if:

$$\forall d_i \neq d^*, j: \qquad R(d^*, \delta^j) \ge R(d_i, \delta_j)$$

▶ It is said to *strictly dominate* those strategies if:

$$\forall d_i \neq d^\star, j: \qquad R(d^\star, \delta^j) > R(d_i, \delta_j)$$

• A move d' is said to be *dominated* if:

 $\exists i \text{ such that } d_i \neq d' \text{ and } \forall j : R(d', \delta_j) \leq R(d_i, \delta_j)$

▶ It is said to be *strictly dominated* if:

 $\exists i \text{ such that } d_i \neq d' \text{ and } \forall j : R(d', \delta_j) < R(d_i, \delta_j)$

Introduction	Probability	Elicitation	Conditions	Decisions	Preferences	Games
						00000000
000000000000000000000000000000000000000	00	0000000	000000000		00000000	
						00000000

Separability and Domination

Theorem (Dominant Moves Should be Played)

If a game has a payoff matrix such that player 1 has a dominant strategy, d^* then the optimal move for player 1 is d^* irrespective of q. Proof:

▶ Player 1 is rational and hence seeks the d_i which maximises

$$\sum_{j} R(d_i, \delta_j) q(d_j)$$

► Domination tells us that $\forall i, j : R(d^*, \delta_j) \ge R(d_i, \delta_j)$

► And hence, that:

$$\sum_{j} R(d^{\star}, \delta_j) q(d_j) \ge \sum_{j} R(d_i, \delta_j) q(d_j)$$

A gipsilan negulta holda fan planen 9

Introduction 00000000000	Probability 0000000000000 0000000000000000000000	$\begin{array}{c} \mathbf{Conditions} \\ \texttt{0000000} \\ \texttt{000000} \\ \texttt{0000000} \\ \texttt{0000000} \end{array}$	$\begin{array}{c} \mathbf{Decisions}\\ \texttt{00000000}\\ \texttt{00000000}\\ \texttt{000000000}\\ \texttt{0000000000} \end{array}$	Preferences 000000 00000000000	Games 00000000 00000000 000000000
Separability an	d Domination				00000000

Rationality and Domination

If rationality is common knowledge and d^{\star} is a strictly dominant strategy for player 1 then:

- ▶ Player 1, being rational, plays move d^{\star} .
- ▶ Player 2, knows that player 1 is rational, and hence knows that he will play move *d**.
- Player 2 can exploit this knowledge to play the optimal move given that player 1 will play d*.
- ▶ Player 2 plays moves δ^* with δ^* such that:

$$\forall j: S(d^\star, \delta^\star) \ge S(d^\star, \delta_j)$$

► If there are several possible δ^* then one may be chosen arbitrarily.

Introduction	Probability	Elicitation	Conditions	Decisions	Preferences	Games
	000000000000000000000000000000000000000		0000000 000000 0000000	00000000 00000000 000000000	000000 0000000000	00000000 00000000 000000000 00000000
Soponability or	d Domination					

Example (A game with a dominant strategy)

Consider the following payoff matrix:

	δ_1	δ_2	δ_3	δ_4
d_1	(2,-2)	(1,-1)	(10, -10)	(11,-11)
d_2	(0,0)	(-1,1)	(1, -1)	(2,-2)
d_3	(-3,3)	(-5,5)	(-1,1)	(1,-1)

- If rational, player 1 must choose d_1 .
- Player 2 knows that player 1 will choose d_1 .
- Consequently, player 2 will choose δ_2 .
- (d_1, δ_2) is known as a discriminating solution.

Introduction 00000000000	Probability 000000000000000000000000000000000000	Conditions 0000000 000000 0000000	Decisions 00000000 00000000 000000000	Preferences 000000 0000000000	Games 000000000 00000000000000000000000000
Separability an	d Domination				

Iterated Strict Domination

- 1. Let $D_0 = D$ and $\Delta_0 = 0$. Let t = 1
- 2. Player 1 checks D_{t-1} to see if it contains one or more strictly dominated moves. Let D'_t be the set of such moves.

3. Let
$$D_t = D_{t-1} \setminus D'_t$$
.

- 4. Player 1 checks D_{t-1} to see if it contains one or more strictly dominated strategies given that player 2 must choose a move from Δ_{t-1} . Let D'_t be the set of these strategies. Let $D_t = D_{t-1} \setminus D'_t$.
- 5. Player 2 updates Δ_{t-1} in the same way noting that player 1 must choose a move from D_t .
- 6. If $|D_t| = |\Delta_t| = 1$ then the game is solved.
- 7. If $|D_t| < |D_{t-1}|$ or $|\Delta_t| < |\Delta_{t-1}|$ let t = t + 1 and goto 2.
- 8. Otherwise, we have reduced the game to the simplest form we can by this method.

Introduction 00000000000	Probability 000000000000000000000000000000000000	Conditions 0000000 000000 0000000	Decisions 00000000 00000000 000000000000000000	Preferences 000000 0000000000	Games 000000000 00000000000000000000000000
Separability a	nd Domination				

Example (Iterated Elimination of Dominated Strategies)

Consider a game with the following payoff matrix:

	L	\mathbf{C}	R
Т	(4,3)	(5,1)	(6,2)
Μ	(2,1)	(8,4)	$(3,\!6)$
В	(3,0)	$(9,\!6)$	(2,8)

Look first at player 2's strategies...

Introduction 00000000000	Probability 000000000000000000000000000000000000	$\begin{array}{c} \textbf{Conditions} \\ \texttt{0000000} \\ \texttt{000000} \\ \texttt{0000000} \end{array}$	Decisions 00000000 00000000 000000000	Preferences 000000 0000000000	Games 000000000 00000000000000000000000000
Separability a	nd Domination				

Example (Iterated Elimination of Dominated Strategies)

C is strictly dominated by R, leading to:

	L	R
Т	(4,3)	(6,2)
Μ	(2,1)	$(3,\!6)$
В	(3,0)	(2,8)

Player 1 knows that player 2 won't play C...

Introduction 00000000000	Probability 00000000000 000000000000000000000000	Conditions 0000000 000000 0000000	Decisions 00000000 00000000 000000000000000000	Preferences 000000 0000000000	Games 000000000 000000000 000000000
Separability an	d Domination				

Example (Iterated Elimination of Dominated Strategies) Conditionally, both M and B are dominated by T:

Player 2 knows that player 1 will play T and so, they play L. Again, we have a deterministic "solution".

Introduction	Probability	Elicitation	Conditions	Decisions	Preferences	Games
	000000000000000000000000000000000000000		0000000 000000 0000000	00000000 00000000 000000000	000000 0000000000	00000000 00000000 000000000 00000000
Zero-Sum Gam	ies					

Purely Competitive Games

- In a purely competitive game, one players reward is improved only at the cost of the other player.
- ► This means, that if $R(d', \delta) = R(d, \delta) + x$ then $S(d', \delta) = S(d, \delta) x$.
- Hence $R(d', \delta) + S(d', \delta) = R(d, \delta) + S(d, \delta)$.
- The sum over all players' rewards is the same for all sets of moves.
- ▶ It doesn't change the domination structure or the ordering of expected rewards if we add a constant to all rewards.
- Hence, any purely competitive game is equivalent to a game in which:

$$\forall \delta \in \Delta, d \in D: R(d, \delta) + S(d, \delta) = 0$$

a zero-sum game.

Introduction	Probability	Elicitation	Conditions	Decisions	Preferences	Games
	0000000000000 00000000 000000000000000		0000000 000000 0000000	00000000 00000000 000000000	000000 0000000000	00000000 00000000 000000000 00000000
Zero-Sum Gam	ies					

Payoff and Zero-Sum Games

▶ In a zero-sum game:

$$S(d_i, \delta_j) = -R(d_i, \delta_j)$$

- ▶ Hence, we need specify only one payoff.
- Payoff matrices may be simplified to specify only one reward⁶

Example (Rock-Paper-Scissors is a zero-sum game)

	R	Р	\mathbf{S}
R	0	-1	1
Р	1	0	-1
\mathbf{S}	-1	1	0

► It can be convenient to use standard matrix notation, with $M = (m_{ij})$ and $R(d_i, \delta_j) = m_{ij}$.

⁶In the two player case at least

Introduction 00000000000	Probability 000000000000000000000000000000000000		Conditions 0000000 000000 0000000	Decisions 00000000 00000000 000000000000000000	Preferences 000000 0000000000	Games
Zero-Sum Gam	ıes					
What if :	no move i	s domin	ant?			

- ► In the RPS game, like many others, no move is dominant (or dominated) for either player.
- ▶ If either player commits themself to playing a particular move, the other play can exploit that commitment (if they knew what it was, that is).
- ▶ We need a strategy for dealing with such games.
- ▶ Perhaps the maximin approach might be useful here...

Introduction	Probability	Elicitation	Conditions	Decisions	Preferences	Games
	000000000000000000000000000000000000000		0000000 000000 0000000	00000000 00000000 000000000	000000 0000000000	00000000 00000000 00000000

Maximin Strategies in Zero-Sum Games

Zero-Sum

Games

- ▶ If a player adopts a maximin strategy, he believes that the opponent will always correctly predict their move.
- ▶ This means, the opponent will choose their best possible action based upon the player's act.
- ▶ In this case, player 1's expected payoff is:

$$R_{\text{maximin}}(d_i) = \min_j R(d_i, \delta_j)$$

▶ If this is the case, then player 2's payoff is:

$$-R_{\text{maximin}}(d_i) = \max_j -R(d_i, \delta_j)$$

Hence P1 should play d^{*}_{maximin} = arg max_{d_i} min_j R(d_i, δ_j).
One could swap the two players to obtain a maximin strategy for player 2.

Introduction 00000000000	Probability 000000000000000000000000000000000000	Conditions 0000000 000000 0000000	Decisions 00000000 00000000 000000000000000000	Preferences 000000 0000000000	Games 00000000 00000000 000000000000000000
Zero-Sum Gam	es				

Example (RPS and Maximin)

- Let $M = (m_{ij})$ denote the payoff matrix for the RPS game.
- Then, $\min_j R(d_i, \delta_j) = \min_j m_{ij} = -1$ for all *i*.
- Thus any move is maximin for player 1.
- ► Player 1 expects to receive a payout of -1 whatever he does.
- ▶ If both players adopt a maximin view, then player 2 has the same expectation (by symmetry).
- ▶ How can we resolve this paradox?

Introduction 00000000000	Probability 000000000000000000000000000000000000		Conditions 0000000 000000 0000000	Decisions 00000000 00000000 000000000000000000	Preferences 000000 0000000000	Games				
Zero-Sum Games										
What's C	Gone Wro	ng?								

- ▶ The players aren't using all of the information available.
- ▶ They haven't used the fact that it is a zero sum game.
- ▶ They don't have compatible beliefs:
 - If P1 believes P2 can predict their move and P2 believes that P1 can predict their move then things inevitably go wrong.
 - It cannot be common knowledge that *both* players will adopt a maximin strategy!
- ▶ If a player really believes their opponent can predict their move then they can use randomization to make their action less predictable...

Introduction	Probability 000000000000000000000000000000000000		Conditions 0000000 000000 0000000	Decisions 00000000 00000000 000000000000000000	Preferences 000000 0000000000	Games					
Zero-Sum Games											
Mixed St	rategies										

- ▶ A *mixed strategy* for player 1 is a probability distribution over *D*.
- ▶ If a player has mixed strategy $\mathbf{x} = (x_1, \ldots, x_n)$ then they will play move d_i with probability x_i .
- This can be achieved using a randomization device such as a spinner to select a move.
- A *pure* strategy is a mixed strategy in which exactly one of the x_i is non-zero (and is therefore equal to 1).
- ► A similar definition applies when considering player 2.