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What is a Game?

What is a Game

A game in mathematics is, roughly speaking, a problem in
which:

I Several agents or players make 1 or more decisions.
I Each player has an objective / set of preferences.
I The outcome is influenced by the set of decisions.
I There may be additional non-deterministic uncertainty.
I The players may be in competition or they may be

cooperating.
I Examples include: chess, poker, bridge, rock-paper-scissors

and many others.
However, we will stick to simple two player games with each
player simultaneously making a single decision.
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What is a Game?

Simple Two Player Games

I Player 1 chooses a move for a set D = {d
1

, . . . , dn}.
I Plater 2 chooses a move from a set � = {�

1

, . . . , �m}.
I Each player has a payo↵ function.
I If the players choose moves di and �j , then:

I Player 1 receives reward R(di, �j).
I Player 2 receives reward S(di, �j).

I The relationship between decisions and rewards is often
shown in a payo↵ matrix:
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What is a Game?

Payo↵ Matrices Again

It’s sometimes useful to consider a single player’s payo↵ as a
function of the possible decisions.
Player 1 and player 2 have these payo↵ matrices:

�
1

. . . �m

d
1

R(d
1

, �
1

) . . . R(d
1

, �m)
...

...
dn R(dn, �

1

) . . . R(dn, �m)
�
1

. . . �m

d
1

S(d
1

, �
1

) . . . S(d
1

, �m)
...

...
dn S(dn, �

1

) . . . S(dn, �m)

139



Introduction Probability Elicitation Conditions Decisions Preferences Games

What is a Game?

Example (Rock-Paper-Scissors)

I Each player picks from the same set of decisions:

D = � = {R,P, S}

I R beats S; S beats P and P beats R
I One possible payo↵ matrix is:

R P S
R (0,0) (-1,1) (1,-1)
P (1,-1) (0,0) (-1,1)
S (-1,1) (1,-1) (0,0)
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What is a Game?

Example (The Prisoner’s Dilemma)

I Again, each player picks from the same set of decisions:

D = � = {Stay Silent,Betray Partner}

I If they both stay silent they will receive a short sentence; if
they both betray one another they will get a long sentence;
if only one betrays the other the traitor will be released
and the other will get a long sentence.

I One possible payo↵ matrix is:
S B

S (1,1) (5,0)
B (0,5) (4,4)

I Notice that each player wishes to minimise this payo↵!
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What is a Game?

Example (Love Story)

I A boy and a girl must go to either of:

D = � = {Football,Opera}

I They both wish to meet one another most of all.
I If they don’t meet, the boy would rather see the football;

the girl, the opera.
I A possible payo↵ matrix might be:

F O
F (100,100) (50,50)
O (0,0) (100,100)
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What is a Game?

Some Features of these Examples

I The rock-paper-scissors game is purely competitive: any
gain by one player is matched by a loss by the other player.

I The RPS and PD problems are symmetric:

R(d, �) = S(�, d)

[Note that this makes sense as D = �]
I D = � in all three of these examples, but it isn’t always

the case.
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What is a Game?

Uncertainty in Games

As the players don’t know what action the other will take, there
is uncertainty.

I Thankfully, the Bayesian interpretation of probability
allows them to encode their uncertainty in a probability
distribution.

I Player 1 has a probability mass function p over the actions
that player 2 can take, �.

I Player 2 has a probability mass function q over the actions
that player 1 can take, denoted D.
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What is a Game?

Expected Rewards
Just as in a decision problem, we can think about expected
rewards:

I For player 1, the expected reward of move di is:

R̄(di) =E [R(di, �j)]

=
mX

j=1

q(�j)R(di, �j)

I Whilst, for player 2, we have

S̄(�j) =E [S(di, �j)]

=
nX

i=1

p(di)S(di, �j)
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What is a Game?

Some Interesting Questions

I When can a player act without considering what the
opponent will do? i.e. When is player 1’s strategy
independent of p or player 2’s of q?

I When p or q is important, how can rationality of the
opponent help us to elicit them?

I What are the implications of this?
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Separability and Domination

Separable Games
If we can decompose the rewards appropriately, then there is no
interaction between the players’ decisions:

I A game is separable if:

R(d, �) =r
1

(d) + r
2

(�)
S(d, �) =s

1

(d) + s
2

(�)

I Here, the e↵ect of the other player’s act on a player’s
reward doesn’t depend on their own decision:
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1
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Separability and Domination

Strategy in Separable Games

I Player 1’s strategy should depend only upon r
1

as the
decision they make doesn’t alter the reward from r

2

.
I Player 2’s strategy should depend only upon s

2

as the
decision they make doesn’t alter the reward from s

1

.
I So, player 1 should choose a strategy from the set:

D? = {d? : r
1

(d?) � r
1

(di) i = 1, . . . , n}

I And player 2 from:

�? = {�? : s
2

(�?) � s
2

(�j) j = 1, . . . ,m}
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Separability and Domination

The Prisoner’s Dilemma is a Separable Game

I Let r
1

(S) = 0 and r
1

(B) = 1.
I Let r

2

(S) = �1 and r
2

(B) = �5.
I Now, R(d, �) = r

1

(d) + r
2

(�).
I And D? = {B}.
I Similarly for the second player, �? = {B}.
I This is the so-called paradox of the prisoner’s dilemma:

both players acting rationally and independently leads to
the worst possible solution!
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Separability and Domination

Rationality and Games
As in decision theory, a rational player should maximise their
expected utility. We will generally assume that utility is equal
to payo↵; no greater complications arise if this is not the case.

I For a given pmf q, player 1 has:

R̄(di) =
mX

j=1

R(di, �j)q(�j)

I Whilst for given p, player 2 has:

S̄(�j) =
nX

i=1

S(di, �j)p(di)

I We want p and q to be consistent with the assumption that
the opponent is rational.

I We assume, that rationality of all players is common

knowledge.
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Separability and Domination

Common Knowledge: A Psychological Infinite Regress
In the theory of games the phrase common knowledge has a
very specific meaning.

I Common knowledge is known by all players.
I That common knowledge is known by all players is known

by all players.
I That common knowledge is common to all players is known

by all players
...

I More compactly: common knowledge is something that is
known by all players and the fact that this thing is known
by all players is itself common knowledge.

I This is an example of an infinite regress.
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Separability and Domination

Domination

I A move d? is said to dominate all other strategies if:

8di 6= d?, j : R(d?, �j) � R(di, �j)

I It is said to strictly dominate those strategies if:

8di 6= d?, j : R(d?, �j) > R(di, �j)

I A move d0 is said to be dominated if:

9i such that di 6= d0 and 8j : R(d0, �j)  R(di, �j)

I It is said to be strictly dominated if:

9i such that di 6= d0 and 8j : R(d0, �j) < R(di, �j)
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Separability and Domination

Theorem (Dominant Moves Should be Played)

If a game has a payo↵ matrix such that player 1 has a

dominant strategy, d?
then the optimal move for player 1 is d?

irrespective of q.
Proof:

I
Player 1 is rational and hence seeks the di which maximises

X

j

R(di, �j)q(dj)

I
Domination tells us that 8i, j : R(d?, �j) � R(di, �j)

I
And hence, that:

X

j

R(d?, �j)q(dj) �
X

j

R(di, �j)q(dj)

A similar results holds for player 2. 153
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Separability and Domination

Rationality and Domination

If rationality is common knowledge and d? is a strictly
dominant strategy for player 1 then:

I Player 1, being rational, plays move d?.
I Player 2, knows that player 1 is rational, and hence knows

that he will play move d?.
I Player 2 can exploit this knowledge to play the optimal

move given that player 1 will play d?.
I Player 2 plays moves �? with �? such that:

8j : S(d?, �?) � S(d?, �j)

I If there are several possible �? then one may be chosen
arbitrarily.
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Separability and Domination

Example (A game with a dominant strategy)

Consider the following payo↵ matrix:
�
1

�
2

�
3

�
4

d
1

(2,-2) (1,-1) (10,-10) (11,-11)
d

2

(0,0) (-1,1) (1,-1) (2,-2)
d

3

(-3,3) (-5,5) (-1,1) (1,-1)
I If rational, player 1 must choose d

1

.
I Player 2 knows that player 1 will choose d

1

.
I Consequently, player 2 will choose �

2

.
I (d

1

, �
2

) is known as a discriminating solution.
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Separability and Domination

Iterated Strict Domination
1. Let D

0

= D and �
0

= 0. Let t = 1
2. Player 1 checks Dt�1

to see if it contains one or more
strictly dominated moves. Let D0

t be the set of such moves.
3. Let Dt = Dt�1

\ D0
t.

4. Player 1 checks Dt�1

to see if it contains one or more
strictly dominated strategies given that player 2 must
choose a move from �t�1

. Let D0
t be the set of these

strategies. Let Dt = Dt�1

\ D0
t.

5. Player 2 updates �t�1

in the same way noting that player
1 must choose a move from Dt.

6. If |Dt| = |�t| = 1 then the game is solved.
7. If |Dt| < |Dt�1

| or |�t| < |�t�1

| let t = t + 1 and goto 2.
8. Otherwise, we have reduced the game to the simplest form

we can by this method.
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Separability and Domination

Example (Iterated Elimination of Dominated Strategies)

Consider a game with the following payo↵ matrix:
L C R

T (4,3) (5,1) (6,2)
M (2,1) (8,4) (3,6)
B (3,0) (9,6) (2,8)

Look first at player 2’s strategies. . .
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Separability and Domination

Example (Iterated Elimination of Dominated Strategies)

C is strictly dominated by R, leading to:
L R

T (4,3) (6,2)
M (2,1) (3,6)
B (3,0) (2,8)

Player 1 knows that player 2 won’t play C. . .
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Separability and Domination

Example (Iterated Elimination of Dominated Strategies)

Conditionally, both M and B are dominated by T:
L R

T (4,3) (6,2)
Player 2 knows that player 1 will play T and so, they play L.
Again, we have a deterministic “solution”.
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Zero-Sum Games

Purely Competitive Games
I In a purely competitive game, one players reward is

improved only at the cost of the other player.
I This means, that if R(d0, �) = R(d, �) + x then

S(d0, �) = S(d, �)� x.
I Hence R(d0, �) + S(d0, �) = R(d, �) + S(d, �).
I The sum over all players’ rewards is the same for all sets of

moves.
I It doesn’t change the domination structure or the ordering

of expected rewards if we add a constant to all rewards.
I Hence, any purely competitive game is equivalent to a

game in which:

8� 2 �, d 2 D : R(d, �) + S(d, �) = 0

a zero-sum game.
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Zero-Sum Games

Payo↵ and Zero-Sum Games
I In a zero-sum game:

S(di, �j) = �R(di, �j)
I Hence, we need specify only one payo↵.
I Payo↵ matrices may be simplified to specify only one

reward6

Example (Rock-Paper-Scissors is a zero-sum game)

R P S
R 0 -1 1
P 1 0 -1
S -1 1 0

I It can be convenient to use standard matrix notation, with
M = (mij) and R(di, �j) = mij .

6In the two player case, at least. 161
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Zero-Sum Games

What if no move is dominant?

I In the RPS game, like many others, no move is dominant
(or dominated) for either player.

I If either player commits themself to playing a particular
move, the other play can exploit that commitment (if they
knew what it was, that is).

I We need a strategy for dealing with such games.
I Perhaps the maximin approach might be useful here. . .

162



Introduction Probability Elicitation Conditions Decisions Preferences Games

Zero-Sum Games

Maximin Strategies in Zero-Sum Games
I If a player adopts a maximin strategy, he believes that the

opponent will always correctly predict their move.
I This means, the opponent will choose their best possible

action based upon the player’s act.
I In this case, player 1’s expected payo↵ is:

R
maximin

(di) = min
j

R(di, �j)

I If this is the case, then player 2’s payo↵ is:

�R
maximin

(di) = max
j
�R(di, �j)

I Hence P1 should play d?
maximin

= arg maxdi
minj R(di, �j).

I One could swap the two players to obtain a maximin
strategy for player 2.
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Zero-Sum Games

Example (RPS and Maximin)

I Let M = (mij) denote the payo↵ matrix for the RPS game.
I Then, minj R(di, �j) = minj mij = �1 for all i.
I Thus any move is maximin for player 1.
I Player 1 expects to receive a payout of �1 whatever he

does.
I If both players adopt a maximin view, then player 2 has

the same expectation (by symmetry).
I How can we resolve this paradox?
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Zero-Sum Games

What’s Gone Wrong?

I The players aren’t using all of the information available.
I They haven’t used the fact that it is a zero sum game.
I They don’t have compatible beliefs:

I If P1 believes P2 can predict their move and P2 believes
that P1 can predict their move then things inevitably go
wrong.

I It cannot be common knowledge that both players will
adopt a maximin strategy!

I If a player really believes their opponent can predict their
move then they can use randomization to make their action
less predictable. . .
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Zero-Sum Games

Mixed Strategies

I A mixed strategy for player 1 is a probability distribution
over D.

I If a player has mixed strategy x = (x
1

, . . . , xn) then they
will play move di with probability xi.

I This can be achieved using a randomization device such as
a spinner to select a move.

I A pure strategy is a mixed strategy in which exactly one of
the xi is non-zero (and is therefore equal to 1).

I A similar definition applies when considering player 2.
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