What is a Game

A game in mathematics is, roughly speaking, a problem in which:

- Several agents or players make 1 or more decisions.
- Each player has an objective / set of preferences.
- The outcome is influenced by the set of decisions.
- There may be additional non-deterministic uncertainty.
- The players may be in competition or they may be cooperating.
- Examples include: chess, poker, bridge, rock-paper-scissors and many others.

However, we will stick to simple two player games with each player simultaneously making a single decision.

Simple Two Player Games

- Player 1 chooses a move for a set $D=\left\{d_{1}, \ldots, d_{n}\right\}$.
- Plater 2 chooses a move from a set $\Delta=\left\{\delta_{1}, \ldots, \delta_{m}\right\}$.
- Each player has a payoff function.
- If the players choose moves d_{i} and δ_{j}, then:
- Player 1 receives reward $R\left(d_{i}, \delta_{j}\right)$.
- Player 2 receives reward $S\left(d_{i}, \delta_{j}\right)$.
- The relationship between decisions and rewards is often shown in a payoff matrix:

	δ_{1}	\ldots	δ_{m}
d_{1}	$\left(R\left(d_{1}, \delta_{1}\right), S\left(d_{1}, \delta_{1}\right)\right)$	\ldots	$\left(R\left(d_{1}, \delta_{m}\right), S\left(d_{1}, \delta_{m}\right)\right)$
\vdots			\vdots
d_{n}	$\left(R\left(d_{n}, \delta_{1}\right), S\left(d_{n}, \delta_{1}\right)\right)$	\ldots	$\left(R\left(d_{n}, \delta_{m}\right), S\left(d_{n}, \delta_{m}\right)\right)$

Payoff Matrices Again

It's sometimes useful to consider a single player's payoff as a function of the possible decisions.
Player 1 and player 2 have these payoff matrices:

	δ_{1}	\ldots	δ_{m}
d_{1}	$R\left(d_{1}, \delta_{1}\right)$	\ldots	$R\left(d_{1}, \delta_{m}\right)$
\vdots			\vdots
d_{n}	$R\left(d_{n}, \delta_{1}\right)$	\ldots	$R\left(d_{n}, \delta_{m}\right)$
	δ_{1}	\ldots	δ_{m}
d_{1}	$S\left(d_{1}, \delta_{1}\right)$	\ldots	$S\left(d_{1}, \delta_{m}\right)$
\vdots			\vdots
d_{n}	$S\left(d_{n}, \delta_{1}\right)$	\ldots	$S\left(d_{n}, \delta_{m}\right)$

Example (Rock-Paper-Scissors)

- Each player picks from the same set of decisions:

$$
D=\Delta=\{R, P, S\}
$$

- R beats S ; S beats P and P beats R
- One possible payoff matrix is:

	R	P	S
R	$(0,0)$	$(-1,1)$	$(1,-1)$
P	$(1,-1)$	$(0,0)$	$(-1,1)$
S	$(-1,1)$	$(1,-1)$	$(0,0)$

Example (The Prisoner's Dilemma)

- Again, each player picks from the same set of decisions:

$$
D=\Delta=\{\text { Stay Silent, Betray Partner }\}
$$

- If they both stay silent they will receive a short sentence; if they both betray one another they will get a long sentence; if only one betrays the other the traitor will be released and the other will get a long sentence.
- One possible payoff matrix is:

	S	B
S	$(1,1)$	$(5,0)$
B	$(0,5)$	$(4,4)$

- Notice that each player wishes to minimise this payoff!

Example (Love Story)

- A boy and a girl must go to either of:

$$
D=\Delta=\{\text { Football, Opera }\}
$$

- They both wish to meet one another most of all.
- If they don't meet, the boy would rather see the football; the girl, the opera.
- A possible payoff matrix might be:

	F	O
F	$(100,100)$	$(50,50)$
O	$(0,0)$	$(100,100)$

Some Features of these Examples

- The rock-paper-scissors game is purely competitive: any gain by one player is matched by a loss by the other player.
- The RPS and PD problems are symmetric:

$$
R(d, \delta)=S(\delta, d)
$$

[Note that this makes sense as $D=\Delta$]

- $D=\Delta$ in all three of these examples, but it isn't always the case.

Uncertainty in Games

As the players don't know what action the other will take, there is uncertainty.

- Thankfully, the Bayesian interpretation of probability allows them to encode their uncertainty in a probability distribution.
- Player 1 has a probability mass function p over the actions that player 2 can take, Δ.
- Player 2 has a probability mass function q over the actions that player 1 can take, denoted D.

Expected Rewards

Just as in a decision problem, we can think about expected rewards:

- For player 1, the expected reward of move d_{i} is:

$$
\begin{aligned}
\bar{R}\left(d_{i}\right) & =\mathbb{E}\left[R\left(d_{i}, \delta_{j}\right)\right] \\
& =\sum_{j=1}^{m} q\left(\delta_{j}\right) R\left(d_{i}, \delta_{j}\right)
\end{aligned}
$$

- Whilst, for player 2, we have

$$
\begin{aligned}
\bar{S}\left(\delta_{j}\right) & =\mathbb{E}\left[S\left(d_{i}, \delta_{j}\right)\right] \\
& =\sum_{i=1}^{n} p\left(d_{i}\right) S\left(d_{i}, \delta_{j}\right)
\end{aligned}
$$

Some Interesting Questions

- When can a player act without considering what the opponent will do? i.e. When is player 1's strategy independent of p or player 2 's of q ?
- When p or q is important, how can rationality of the opponent help us to elicit them?
- What are the implications of this?

Separable Games

If we can decompose the rewards appropriately, then there is no interaction between the players' decisions:

- A game is separable if:

$$
\begin{aligned}
R(d, \delta) & =r_{1}(d)+r_{2}(\delta) \\
S(d, \delta) & =s_{1}(d)+s_{2}(\delta)
\end{aligned}
$$

- Here, the effect of the other player's act on a player's reward doesn't depend on their own decision:

$$
\begin{aligned}
& \bar{R}\left(d_{i}\right)=r_{1}\left(d_{i}\right)+\sum_{j=1}^{m} q\left(\delta_{j}\right) r_{2}\left(\delta_{j}\right) \\
& \bar{S}\left(\delta_{j}\right)=\sum_{i=1}^{n} p\left(d_{i}\right) r_{1}\left(d_{i}\right)+r_{2}\left(\delta_{j}\right)
\end{aligned}
$$

Strategy in Separable Games

- Player 1's strategy should depend only upon r_{1} as the decision they make doesn't alter the reward from r_{2}.
- Player 2's strategy should depend only upon s_{2} as the decision they make doesn't alter the reward from s_{1}.
- So, player 1 should choose a strategy from the set:

$$
D^{\star}=\left\{d^{\star}: r_{1}\left(d^{\star}\right) \geq r_{1}\left(d_{i}\right) \quad i=1, \ldots, n\right\}
$$

- And player 2 from:

$$
\Delta^{\star}=\left\{\delta^{\star}: s_{2}\left(\delta^{\star}\right) \geq s_{2}\left(\delta_{j}\right) \quad j=1, \ldots, m\right\}
$$

The Prisoner's Dilemma is a Separable Game

- Let $r_{1}(S)=0$ and $r_{1}(B)=1$.
- Let $r_{2}(S)=-1$ and $r_{2}(B)=-5$.
- Now, $R(d, \delta)=r_{1}(d)+r_{2}(\delta)$.
- And $D^{\star}=\{B\}$.
- Similarly for the second player, $\Delta^{\star}=\{B\}$.
- This is the so-called paradox of the prisoner's dilemma: both players acting rationally and independently leads to the worst possible solution!

Rationality and Games

As in decision theory, a rational player should maximise their expected utility. We will generally assume that utility is equal to payoff; no greater complications arise if this is not the case.

- For a given pmf q, player 1 has:

$$
\bar{R}\left(d_{i}\right)=\sum_{j=1}^{m} R\left(d_{i}, \delta_{j}\right) q\left(\delta_{j}\right)
$$

- Whilst for given p, player 2 has:

$$
\bar{S}\left(\delta_{j}\right)=\sum_{i=1}^{n} S\left(d_{i}, \delta_{j}\right) p\left(d_{i}\right)
$$

- We want p and q to be consistent with the assumption that the opponent is rational.
- We assume, that rationality of all players is common knowledge.

Common Knowledge: A Psychological Infinite Regress

In the theory of games the phrase common knowledge has a very specific meaning.

- Common knowledge is known by all players.
- That common knowledge is known by all players is known by all players.
- That common knowledge is common to all players is known by all players
- More compactly: common knowledge is something that is known by all players and the fact that this thing is known by all players is itself common knowledge.
- This is an example of an infinite regress.

Domination

- A move d^{\star} is said to dominate all other strategies if:

$$
\forall d_{i} \neq d^{\star}, j: \quad R\left(d^{\star}, \delta^{j}\right) \geq R\left(d_{i}, \delta_{j}\right)
$$

- It is said to strictly dominate those strategies if:

$$
\forall d_{i} \neq d^{\star}, j: \quad R\left(d^{\star}, \delta^{j}\right)>R\left(d_{i}, \delta_{j}\right)
$$

- A move d^{\prime} is said to be dominated if:
$\exists i$ such that $d_{i} \neq d^{\prime}$ and $\forall j: R\left(d^{\prime}, \delta_{j}\right) \leq R\left(d_{i}, \delta_{j}\right)$
- It is said to be strictly dominated if:
$\exists i$ such that $d_{i} \neq d^{\prime}$ and $\forall j: R\left(d^{\prime}, \delta_{j}\right)<R\left(d_{i}, \delta_{j}\right)$

Theorem (Dominant Moves Should be Played)

If a game has a payoff matrix such that player 1 has a dominant strategy, d^{\star} then the optimal move for player 1 is d^{\star} irrespective of q.
Proof:

- Player 1 is rational and hence seeks the d_{i} which maximises

$$
\sum_{j} R\left(d_{i}, \delta_{j}\right) q\left(d_{j}\right)
$$

- Domination tells us that $\forall i, j: \quad R\left(d^{\star}, \delta_{j}\right) \geq R\left(d_{i}, \delta_{j}\right)$
- And hence, that:

$$
\sum_{j} R\left(d^{\star}, \delta_{j}\right) q\left(d_{j}\right) \geq \sum_{j} R\left(d_{i}, \delta_{j}\right) q\left(d_{j}\right)
$$

Rationality and Domination

If rationality is common knowledge and d^{\star} is a strictly dominant strategy for player 1 then:

- Player 1, being rational, plays move d^{\star}.
- Player 2, knows that player 1 is rational, and hence knows that he will play move d^{\star}.
- Player 2 can exploit this knowledge to play the optimal move given that player 1 will play d^{\star}.
- Player 2 plays moves δ^{\star} with δ^{\star} such that:

$$
\forall j: S\left(d^{\star}, \delta^{\star}\right) \geq S\left(d^{\star}, \delta_{j}\right)
$$

- If there are several possible δ^{\star} then one may be chosen arbitrarily.

Example (A game with a dominant strategy)
Consider the following payoff matrix:

	δ_{1}	δ_{2}	δ_{3}	δ_{4}
d_{1}	$(2,-2)$	$(1,-1)$	$(10,-10)$	$(11,-11)$
d_{2}	$(0,0)$	$(-1,1)$	$(1,-1)$	$(2,-2)$
d_{3}	$(-3,3)$	$(-5,5)$	$(-1,1)$	$(1,-1)$

- If rational, player 1 must choose d_{1}.
- Player 2 knows that player 1 will choose d_{1}.
- Consequently, player 2 will choose δ_{2}.
- $\left(d_{1}, \delta_{2}\right)$ is known as a discriminating solution.

Iterated Strict Domination

1. Let $D_{0}=D$ and $\Delta_{0}=0$. Let $\mathrm{t}=1$
2. Player 1 checks D_{t-1} to see if it contains one or more strictly dominated moves. Let D_{t}^{\prime} be the set of such moves.
3. Let $D_{t}=D_{t-1} \backslash D_{t}^{\prime}$.
4. Player 1 checks D_{t-1} to see if it contains one or more strictly dominated strategies given that player 2 must choose a move from Δ_{t-1}. Let D_{t}^{\prime} be the set of these strategies. Let $D_{t}=D_{t-1} \backslash D_{t}^{\prime}$.
5. Player 2 updates Δ_{t-1} in the same way noting that player 1 must choose a move from D_{t}.
6. If $\left|D_{t}\right|=\left|\Delta_{t}\right|=1$ then the game is solved.
7. If $\left|D_{t}\right|<\left|D_{t-1}\right|$ or $\left|\Delta_{t}\right|<\left|\Delta_{t-1}\right|$ let $t=t+1$ and goto 2 .
8. Otherwise, we have reduced the game to the simplest form we can by this method.

Example (Iterated Elimination of Dominated Strategies)
Consider a game with the following payoff matrix:

	L	C	R
T	$(4,3)$	$(5,1)$	$(6,2)$
M	$(2,1)$	$(8,4)$	$(3,6)$
B	$(3,0)$	$(9,6)$	$(2,8)$

Look first at player 2's strategies...

Example (Iterated Elimination of Dominated Strategies)
C is strictly dominated by R , leading to:

	L	R
T	$(4,3)$	$(6,2)$
M	$(2,1)$	$(3,6)$
B	$(3,0)$	$(2,8)$

Player 1 knows that player 2 won't play C. . .

Example (Iterated Elimination of Dominated Strategies)

Conditionally, both M and B are dominated by T :

	L	R
T	$(4,3)$	$(6,2)$

Player 2 knows that player 1 will play T and so, they play L. Again, we have a deterministic "solution".

Purely Competitive Games

- In a purely competitive game, one players reward is improved only at the cost of the other player.
- This means, that if $R\left(d^{\prime}, \delta\right)=R(d, \delta)+x$ then $S\left(d^{\prime}, \delta\right)=S(d, \delta)-x$.
- Hence $R\left(d^{\prime}, \delta\right)+S\left(d^{\prime}, \delta\right)=R(d, \delta)+S(d, \delta)$.
- The sum over all players' rewards is the same for all sets of moves.
- It doesn't change the domination structure or the ordering of expected rewards if we add a constant to all rewards.
- Hence, any purely competitive game is equivalent to a game in which:

$$
\forall \delta \in \Delta, d \in D: R(d, \delta)+S(d, \delta)=0
$$

a zero-sum game.

Payoff and Zero-Sum Games

- In a zero-sum game:

$$
S\left(d_{i}, \delta_{j}\right)=-R\left(d_{i}, \delta_{j}\right)
$$

- Hence, we need specify only one payoff.
- Payoff matrices may be simplified to specify only one reward ${ }^{6}$

Example (Rock-Paper-Scissors is a zero-sum game)

	R	P	S
R	0	-1	1
P	1	0	-1
S	-1	1	0

- It can be convenient to use standard matrix notation, with $M=\left(m_{i j}\right)$ and $R\left(d_{i}, \delta_{j}\right)=m_{i j}$.

What if no move is dominant?

- In the RPS game, like many others, no move is dominant (or dominated) for either player.
- If either player commits themself to playing a particular move, the other play can exploit that commitment (if they knew what it was, that is).
- We need a strategy for dealing with such games.
- Perhaps the maximin approach might be useful here...

Maximin Strategies in Zero-Sum Games

- If a player adopts a maximin strategy, he believes that the opponent will always correctly predict their move.
- This means, the opponent will choose their best possible action based upon the player's act.
- In this case, player 1's expected payoff is:

$$
R_{\operatorname{maximin}}\left(d_{i}\right)=\min _{j} R\left(d_{i}, \delta_{j}\right)
$$

- If this is the case, then player 2's payoff is:

$$
-R_{\operatorname{maximin}}\left(d_{i}\right)=\max _{j}-R\left(d_{i}, \delta_{j}\right)
$$

- Hence $P 1$ should play $d_{\text {maximin }}^{\star}=\arg \max _{d_{i}} \min _{j} R\left(d_{i}, \delta_{j}\right)$.
- One could swap the two players to obtain a maximin strategy for player 2.

Example (RPS and Maximin)

- Let $M=\left(m_{i j}\right)$ denote the payoff matrix for the RPS game.
- Then, $\min _{j} R\left(d_{i}, \delta_{j}\right)=\min _{j} m_{i j}=-1$ for all i.
- Thus any move is maximin for player 1.
- Player 1 expects to receive a payout of -1 whatever he does.
- If both players adopt a maximin view, then player 2 has the same expectation (by symmetry).
- How can we resolve this paradox?

What's Gone Wrong?

- The players aren't using all of the information available.
- They haven't used the fact that it is a zero sum game.
- They don't have compatible beliefs:
- If P1 believes P2 can predict their move and P2 believes that P1 can predict their move then things inevitably go wrong.
- It cannot be common knowledge that both players will adopt a maximin strategy!
- If a player really believes their opponent can predict their move then they can use randomization to make their action less predictable...

Mixed Strategies

- A mixed strategy for player 1 is a probability distribution over D.
- If a player has mixed strategy $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ then they will play move d_{i} with probability x_{i}.
- This can be achieved using a randomization device such as a spinner to select a move.
- A pure strategy is a mixed strategy in which exactly one of the x_{i} is non-zero (and is therefore equal to 1).
- A similar definition applies when considering player 2.

