Zero sam $R, S=-R$

(2)

$$
\delta_{1} \leqslant \delta_{4}, S=-R \text {, so } \delta_{1} \text { bette }
$$

(3) $\delta_{2} \leq \delta_{3}, S=-R$, so $\delta_{2}$ better
(4) $d_{1}>d_{3}$
(5) $d_{1} \geq d_{2}$

Remaining: $\quad d_{1} \begin{array}{lll}\delta_{1} & \delta_{2} \\ 4\end{array}$
Teeger I has nochorice
Pleyer II plays $\delta_{1}$
stategry $\left(d_{1}, \delta_{1}\right)$ renods: $(4,-4)$

Pi ola-
Player II's moves:
Ex trend games 1 coin in his left hand ( $L$ )
Player II Rides coirs)
Prayer I chaoses

- no dom neut moves
- not separable (s ebelow)

Reward (pas I)
FRI: $-A$

- Plouge II coned mim loss by putting 11 coin

Reasonable, but playful could guess, so lncetre to plea g R?
Ale depends on information available
Apriori, can only guarantee max loss of 1
- Payer I may want to max gain by using R., but if Player II guesses that wall get $0 \ldots$ Apriori, can only guarantee won't loseangthing.
Wont strategies that do not depend on available information!
Key idea: introduce probability distribution for moves "mix strategy
Player I $P(L)=1-p, \quad P(R)=p$

Expected rewords? Player II pare strategies
Player II plays R (pure)

$$
\Rightarrow \underset{\substack{\text { Expected gain } \\ \text { for Player I }}}{ }=(1-p) \cdot 0+p \cdot z=2 p
$$

Player II plays $L$ (pure)

$$
\Rightarrow \quad \begin{gathered}
\text { Expected gain } \\
\text { for Player II }
\end{gathered}=(1-p) \cdot 1+p \cdot 0=1-p
$$

bey If II kneso $p$, he wald play min (2p,1-p).
idem I knows this and therefree chooses $p$ that maximises $\min \left(z_{p}, 1-p\right)$


$$
\begin{aligned}
& \quad 2 p=1-p \\
& \Leftrightarrow \quad p=1 / 3 \\
& \text { expected loss for II } \\
& =\min \left(2 \cdot \frac{1}{3}, 1-\frac{1}{3}\right) \\
& =\frac{2}{3}
\end{aligned}
$$

Hence, I using mixed strategy with $p=\frac{1}{3}$ ensures expected payoff $2 / 3$ (compare to 0)

Same argument for II playing unix with $P(L)=1-9, P(R)=q$

Player I pure $R$ :
$\Rightarrow$ expected gain $=(1-q) \cdot 0+q \cdot 2=2 q$
Player I pure L:
$\Rightarrow$ expected gain $=(1-q) \cdot 1+9.0=1-q$
$\begin{aligned} & \max _{q} \min (2 q, 1-q) \\ \Rightarrow q & =\frac{1}{3}, \text { expected gain for } I=\frac{2}{3}\end{aligned}$
Value of the game is $2 / 3$.
(Also fair price to play is 2/3)

