Maximin Strategies in Zero-Sum Games

- If a player adopts a maximin strategy, he believes that the opponent will always correctly predict their move.
- This means, the opponent will choose their best possible action based upon the player's act.
- In this case, player 1's expected payoff is:

$$
R_{\operatorname{maximin}}\left(d_{i}\right)=\min _{j} R\left(d_{i}, \delta_{j}\right)
$$

- If this is the case, then player 2's payoff is:

$$
-R_{\operatorname{maximin}}\left(d_{i}\right)=\max _{j}-R\left(d_{i}, \delta_{j}\right)
$$

- Hence $P 1$ should play $d_{\text {maximin }}^{\star}=\arg \max _{d_{i}} \min _{j} R\left(d_{i}, \delta_{j}\right)$.
- One could swap the two players to obtain a maximin strategy for player 2.

Example (RPS and Maximin)

- Let $M=\left(m_{i j}\right)$ denote the payoff matrix for the RPS game.
- Then, $\min _{j} R\left(d_{i}, \delta_{j}\right)=\min _{j} m_{i j}=-1$ for all i.
- Thus any move is maximin for player 1.
- Player 1 expects to receive a payout of -1 whatever he does.
- If both players adopt a maximin view, then player 2 has the same expectation (by symmetry).
- How can we resolve this paradox?

What's Gone Wrong?

- The players aren't using all of the information available.
- They haven't used the fact that it is a zero sum game.
- They don't have compatible beliefs:
- If P1 believes P2 can predict their move and P2 believes that P1 can predict their move then things inevitably go wrong.
- It cannot be common knowledge that both players will adopt a maximin strategy!
- If a player really believes their opponent can predict their move then they can use randomization to make their action less predictable...

Mixed Strategies

- A mixed strategy for player 1 is a probability distribution over D.
- If a player has mixed strategy $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ then they will play move d_{i} with probability x_{i}.
- This can be achieved using a randomization device such as a spinner to select a move.
- A pure strategy is a mixed strategy in which exactly one of the x_{i} is non-zero (and is therefore equal to 1).
- A similar definition applies when considering player 2.

Expected Rewards and Mixed Strategies

What is player 1's expected reward if...

- Player 1 has mixed strategy \underline{x} and player 2 plays pure strategy δ_{j} ?
- Player 1 has pure strategy d_{i} and player 2 plays mixed strategy \underline{y} ?
- Player 1 has mixed strategy \underline{x} and player 2 has mixed strategy \underline{y} ?

In the first case, the uncertainty is player 1's own move, and his expectation is:

$$
\sum_{i=1}^{n} x_{i} R\left(d_{i}, \delta_{j}\right)
$$

In the second case, the uncertainty comes from player 2 :

$$
\sum_{j=1}^{m} y_{j} R\left(d_{i}, \delta_{j}\right)
$$

Whilst both provide (independent) uncertainty in the third case:

$$
\sum_{i=1}^{n} \sum_{j=1}^{m} x_{i} R\left(d_{i}, \delta_{j}\right) y_{j}=\underline{x}^{\top} M \underline{y}
$$

Maximin Revisited

- Player 1's maximin mixed strategy is the \underline{x} which maximises:

$$
V_{1}=\max _{\underline{x}} \min _{\underline{y}} \sum_{i} \sum_{j} x_{i} R\left(d_{i}, \delta_{j}\right) y_{j}
$$

- Player 2's maximin mixed strategy is the \underline{y} which minimises:

$$
\begin{aligned}
& \max _{\underline{y}} \min _{\underline{x}}-\sum_{i} \sum_{j} x_{i} R\left(d_{i}, \delta_{j}\right) y_{j} \\
= & \min _{\underline{y}} \max _{\underline{x}} \sum_{i} \sum_{j} x_{i} R\left(d_{i}, \delta_{j}\right) y_{j}=V_{2}
\end{aligned}
$$

What is the relationship between these two values?

Theorem (Fundamental Theorem of Zero Sum Two Player Games)

V_{1} and V_{2} as defined before satisfy:

$$
V_{1}=V_{2}
$$

The unique value, $V=V_{1}=V_{2}$ is known as the value of the game.

- The strategies \underline{x} and \underline{y} which achieve this value may not be unique.
- How can we find suitable strategies in general?
(Sketch of proof of theorem see later.)

Example (Maximin in a Simple Game)

- Consider a zero sum two player game with the following payoff matrix:

	δ_{1}	δ_{2}
d_{1}	1	3
d_{2}	4	2

- With a pure strategy maximin approach:
- P1 plays d_{2} expecting P2 to play δ_{2}.
- P2 plays δ_{2} expecting P1 to play d_{1}.
- P1 expects to gain 2; P2 expects to lose 3.
- This is not consistent.

Example

- Consider, instead, a mixed strategy maximin approach:
- P1 plays a strategy $(x, 1-x)$ and player 2 plays $(y, 1-y)$.
- Player 1's expected payoff is:

$$
(=-4 x y+x+2 y+2, \text { use algebra } \ldots)
$$

$$
\left[\begin{array}{ll}
x & 1-x
\end{array}\right]\left[\begin{array}{ll}
1 & 3 \\
4 & 2
\end{array}\right]\left[\begin{array}{c}
y \\
1-y
\end{array}\right]=-4\left(x-\frac{1}{2}\right)\left(y-\frac{1}{4}\right)+\frac{5}{2}
$$

- Player 1 seeks to maximise this for the worst possible y.
- As the 2nd player can control the sign of the first term, his optimal strategy is to make it vanish by choosing $x=\frac{1}{2}$.
- Similarly, the 2nd player wants to prevent the first player from exploiting the first term and chooses $y=\frac{1}{4}$.
- Now, the expected reward for the first player is, consistently, 2.5 as both expect the same maximin strategies to be played.
- Both players have a higher expected return than they would playing pure strategies.

How do we determine maximin mixed strategies?

- We need a general strategy for determining strategies \underline{x}^{\star} and \underline{y}^{\star} which achieve the common maximin return for player 1.
- It's straightforward (if possibly tedious) to calculate, for payoff matrix M the expected return for player 1 as a function of the strategies:

$$
V(\underline{x}, \underline{y})=\underline{x}^{\top} M \underline{y}
$$

- We then seek to obtain $\underline{x}^{\star}, \underline{y}^{\star}$ such that:

$$
V\left(\underline{x}^{\star}, \underline{y}^{\star}\right)=\max _{\underline{x}} \min _{\underline{y}} V(\underline{x}, \underline{y})
$$

- In general, this is a problem which can be efficiently addressed by linear programming.
- If one player has only two possible decisions, however, a simple graphical method can be employed. (Only 1 parameter!)

Graphical Solution, Part 1: Player 1's approach

- Consider a two player zero sum game with payoff matrix:

$$
M=\left[\begin{array}{ccc}
2 & 3 & 11 \\
7 & 5 & 2
\end{array}\right]
$$

- Consider a mixed strategy $(x, 1-x)$ for player 1.
- For the three pure strategies available to player 2, player 1 has expected reward:
- $\delta_{1}: 2 x+7(1-x)=7-5 x$
- $\delta_{2}: 3 x+5(1-x)=5-2 x$
- $\delta_{3}: 11 x+2(1-x)=2+9 x$
- For each value of x, the worst case response of player 2 is the one for which the expected reward of player 1 is minimised.
- Plotting the three lines as a function of $x \ldots$

Conditions

Preferences

Games

Zero-Sum Games

- The maximin response maximises the return in the worst case.
- In terms of our graph, this means we choose x to maximise the distance between the lowest of the lines and the ordinate axis.
- This is at the point where the lines associated with δ_{2} and δ_{3} intersect, at x^{\star} which solves:

$$
\begin{aligned}
5-2 x & =2+9 x \\
11 x & =3 \Rightarrow x^{\star}=3 / 11
\end{aligned}
$$

- Hence player 1's maximin mixed strategy is $(3 / 11,8 / 11)$.
- Playing this, his expected return is:

$$
V_{1}=2+9 \times 3 / 11=49 / 11=\quad 5-2 \times 3 / 11=49 / 11
$$

Graphical Solution, Part 2: Player 2's approach

- Player 2 only needs to consider the moves which optimally oppose player 1's maximin strategy (δ_{2} and δ_{3}).
- They may consider a mixed strategy $(0, y, 1-y)$.
- By the fundamental theorem, player 2's maximn strategy leads to the same expected payoff for player 1 as his own maximin strategy:

$$
V_{2}=V_{1}=49 / 11
$$

- They should play y^{\star} to solve:

$$
\begin{aligned}
V_{2}=3 y+11(1-y) & =49 / 11 \\
8 y & =(121-49) / 11=72 / 11 \Rightarrow y^{\star}=9 / 11
\end{aligned}
$$

- Leading to a mixed strategy $(0,9 / 11,2 / 11)$.

Example (Spy Game)

- A spy has escaped and must choose to flee down a river or through a forest. Their guard must choose to chasse them using a helicopter, a pack of dogs or a jeep.
- They agree that the probabilties of escape are as given in this payoff matrix:

	H	D	J
R	0.1	0.8	0.4
F	0.9	0.1	0.6

- Both players wish to adopt maximin strategies.

Example

- The spy plays strategy $(x, 1-x)$: with probability x they escape via the river; with probability $1-x$ they run through the forest.
- For given x, their probabilities of escaping for each of the guard's possible actions are:

$$
\begin{array}{rlrl}
p_{H} & =0.1 x+0.9(1-x) & p_{D} & =0.8 x+0.1(1-x) \\
& =\frac{9-8 x}{10} & =\frac{1+7 x}{10} \\
p_{J} & =0.4 x+0.6(1-x) & \\
& =\frac{6-2 x}{10} &
\end{array}
$$

- Plotting these three lines as a function of x we obtain the following figure:

Conditions

Preferences

Zero-Sum Games

Example

- The maximin solution is the interesection of the lines for strategies D and H.
- This occurs at the solution, x^{\star} of:

$$
\begin{aligned}
p_{H}=p_{D} \Rightarrow 9-8 x & =1+7 x \\
8 & =15 x \quad \Rightarrow x^{\star}=8 / 15
\end{aligned}
$$

- The value of the game is: $V=V_{1}=\frac{9-8 x^{\star}}{10}=71 / 150$

Example

- By the fundamental theorem of zero sum two player games, the guard needs to consider only H and D.
- Otherwise the spy's chance of escape will be better than V_{1} if he plays his own maximin strategy.
- Consider a strategy $(y, 1-y, 0)$.
- By the same theorem, $V_{2}=V=V_{1}$, so:

$$
\begin{aligned}
V_{2}=0.1 y^{\star}+0.8\left(1-y^{\star}\right) & =71 / 150 \\
8-7 y^{\star} & =71 / 15 \\
y^{\star} & =7 / 15
\end{aligned}
$$

On Zero Sum Two Player Games

- The "fundamental theorem" does not generalise to games of more than two players.
- The "fundamental theorem" does not generalise to non-zero-sum games.
- Games with an element of co-operation are much more interesting.

