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Zero-Sum Games

Maximin Strategies in Zero-Sum Games
I If a player adopts a maximin strategy, he believes that the

opponent will always correctly predict their move.
I This means, the opponent will choose their best possible

action based upon the player’s act.
I In this case, player 1’s expected payo↵ is:

R
maximin

(di) = min
j

R(di, �j)

I If this is the case, then player 2’s payo↵ is:

�R
maximin

(di) = max
j
�R(di, �j)

I Hence P1 should play d?
maximin

= arg maxdi
minj R(di, �j).

I One could swap the two players to obtain a maximin
strategy for player 2.
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Example (RPS and Maximin)

I Let M = (mij) denote the payo↵ matrix for the RPS game.
I Then, minj R(di, �j) = minj mij = �1 for all i.
I Thus any move is maximin for player 1.
I Player 1 expects to receive a payout of �1 whatever he

does.
I If both players adopt a maximin view, then player 2 has

the same expectation (by symmetry).
I How can we resolve this paradox?
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What’s Gone Wrong?

I The players aren’t using all of the information available.
I They haven’t used the fact that it is a zero sum game.
I They don’t have compatible beliefs:

I If P1 believes P2 can predict their move and P2 believes
that P1 can predict their move then things inevitably go
wrong.

I It cannot be common knowledge that both players will
adopt a maximin strategy!

I If a player really believes their opponent can predict their
move then they can use randomization to make their action
less predictable. . .
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Mixed Strategies

I A mixed strategy for player 1 is a probability distribution
over D.

I If a player has mixed strategy x = (x
1

, . . . , xn) then they
will play move di with probability xi.

I This can be achieved using a randomization device such as
a spinner to select a move.

I A pure strategy is a mixed strategy in which exactly one of
the xi is non-zero (and is therefore equal to 1).

I A similar definition applies when considering player 2.
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Expected Rewards and Mixed Strategies

What is player 1’s expected reward if. . .
I Player 1 has mixed strategy x and player 2 plays pure

strategy �j?
I Player 1 has pure strategy di and player 2 plays mixed

strategy y?
I Player 1 has mixed strategy x and player 2 has mixed

strategy y?
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In the first case, the uncertainty is player 1’s own move, and his
expectation is:

nX

i=1

xiR(di, �j)

In the second case, the uncertainty comes from player 2:

mX

j=1

yjR(di, �j)

Whilst both provide (independent) uncertainty in the third
case:

nX

i=1

mX

j=1

xiR(di, �j)yj = xTMy
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Maximin Revisited
I Player 1’s maximin mixed strategy is the x which

minimises:

V
1

= max
x

min
y

X

i

X

j

xiR(di, �j)yj

I Player 2’s maximin mixed strategy is the y which
minimises:

max
y

min
x
�

X

i

X

j

xiR(di, �j)yj

= min
y

max
x

X

i

X

j

xiR(di, �j)yj

I Which leads to a payo↵ for player 1 of:

V
2

= min
y

max
x

X

i

X

j

xiR(di, �j)yj
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What is the relationship between these two values?
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Theorem (Fundamental Theorem of Zero Sum Two Player
Games)

V
1

and V
2

as defined before satisfy:

V
1

= V
2

The unique value, V = V
1

= V
2

is known as the value of the

game.

I The strategies x and y which achieve this value may not be
unique.

I How can we find suitable strategies in general?

170

(Sketch of proof of theorem see later.)



Introduction Probability Elicitation Conditions Decisions Preferences Games

Zero-Sum Games

Example (Maximin in a Simple Game)

I Consider a zero sum two player game with the following
payo↵ matrix:

�
1

�
2

d
1

1 3
d

2

4 2
I With a pure strategy maximin approach:

I P1 plays d2 expecting P2 to play �2.
I P2 plays �2 expecting P1 to play d1.
I P1 expects to gain 2; P2 expects to lose 3.
I This is not consistent.

171



Introduction Probability Elicitation Conditions Decisions Preferences Games

Zero-Sum Games

Example

I Consider, instead, a mixed strategy maximin approach:
I P1 plays a strategy (x, 1� x) and player 2 plays (y, 1� y).
I Player 1’s expected payo↵ is:

[x 1� x]


1 3
4 2

� 
y

1� y

�
= �4(x� 1

2
)(y � 1

4
) +

5
2

I Player 1 seeks to maximise this for the worst possible y.
I As the 2nd player can control the sign of the first term, his

optimal strategy is to make it vanish by choosing x = 1
2 .

I Similarly, the 2nd player wants to prevent the first player
from exploiting the first term and chooses y = 1

4 .
I Now, the expected reward for the first player is,

consistently, 2.5 as both expect the same maximin
strategies to be played.

I
Both players have a higher expected return than they would
playing pure strategies.
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How do we determine maximin mixed strategies?
I We need a general strategy for determining strategies x?

and y? which achieve the common maximin return for
player 1.

I It’s straightforward (if possibly tedious) to calculate, for
payo↵ matrix M the expected return for player 1 as a
function of the strategies:

V (x, y) = xTMy

I We then seek to obtain x?, y? such that:

V (x?, y?) = max
x

min
y

V (x, y)

I In general, this is a problem which can be e�ciently
addressed by linear programming.

I If one player has only two possible decisions, however, a
simple graphical method can be employed.
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Graphical Solution, Part 1: Player 1’s approach
I Consider a two player zero sum game with payo↵ matrix:

M =


2 3 11
7 5 2

�

I Consider a mixed strategy (x, 1� x) for player 1.
I For the three pure strategies available to player 2, player 1

has expected reward:
I �1 : 2x + 7(1� x) = 7� 5x
I �2 : 3x + 5(1� x) = 5� 2x
I �3 : 11x + 2(1� x) = 2 + 9x

I For each value of x, the worst case response of player 2 is
the one for which the expected reward of player 1 is
minimised.

I Plotting the three lines as a function of x. . .
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I The maximin response maximises the return in the worst
case.

I In terms of our graph, this means we choose x to maximise
the distance between the lowest of the lines and the
ordinate axis.

I This is at the point where the lines associated with �
2

and
�
3

intersect, at x? which solves:

5� 2x =2 + 9x

11x =3) x? = 3/11

I Hence player 1’s maximin mixed strategy is (3/11, 8/11).
I Playing this, his expected return is:

V
1

=2 + 9⇥ 3/11 = 49/11 = 5� 2⇥ 3/11 = 49/11
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Graphical Solution, Part 2: Player 2’s approach
I Player 2 only needs to consider the moves which optimally

oppose player 1’s maximin strategy (�
2

and �
3

).
I They may consider a mixed strategy (0, y, 1� y).
I By the fundamental theorem, player 2’s maximn strategy

leads to the same expected payo↵ for player 1 as his own
maximin strategy:

V
2

= V
1

= 49/11.

I They should play y? to solve:

V
2

= 3y + 11(1� y) =49/11
8y =(121� 49)/11 = 72/11) y? = 9/11

I Leading to a mixed strategy (0, 9/11, 2/11).
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Example (Spy Game)

I A spy has escaped and must choose to flee down a river or
through a forest. Their guard must choose to chasse them
using a helicopter, a pack of dogs or a jeep.

I They agree that the probabilties of escape are as given in
this payo↵ matrix:

H D J
R 0.1 0.8 0.4
F 0.9 0.1 0.6

I Both players wish to adopt maximin strategies.

178



Introduction Probability Elicitation Conditions Decisions Preferences Games

Zero-Sum Games

Example

I The spy plays strategy (x, 1� x): with probability x they
escape via the river; with probability 1� x they run
through the forest.

I For given x, their probabilities of escaping for each of the
guard’s possible actions are:

pH =0.1x + 0.9(1� x) pD =0.8x + 0.1(1� x)

=
9� 8x

10
=

1 + 7x

10
pJ =0.4x + 0.6(1� x)

=
6� 2x

10

I Plotting these three lines as a function of x we obtain the
following figure:
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Example

I The maximin solution is the interesection of the lines for
strategies D and H.

I This occurs at the solution, x? of:

pH = pD ) 9� 8x =1 + 7x

8 =15x ) x? =8/15

I The value of the game is: V = V
1

= 9�8x?

10

= 71/150
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Example

I By the fundamental theorem of zero sum two player games,
the guard needs to consider only H and D.

I Otherwise the spy’s chance of escape will be better than V
1

if he plays his own maximin strategy.
I Consider a strategy (y, 1� y, 0).
I By the same theorem, V

2

= V = V
1

, so:

V
2

= 0.1y? + 0.8(1� y?) =71/150
8� 7y? =71/15

y? =7/15
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On Zero Sum Two Player Games

I The “fundamental theorem” does not generalise to games
of more than two players.

I The “fundamental theorem” does not generalise to
non-zero-sum games.

I Games with an element of co-operation are much more
interesting.
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