Introduction	Probability	Elicitation	Conditions	Decisions	Preferences	Games
	000000000000000000000000000000000000000		0000000 000000 0000000	00000000 00000000 000000000	000000 0000000000	00000000 00000000 00000000

Maximin Strategies in Zero-Sum Games

Zero-Sum

Games

- ▶ If a player adopts a maximin strategy, he believes that the opponent will always correctly predict their move.
- ▶ This means, the opponent will choose their best possible action based upon the player's act.
- ▶ In this case, player 1's expected payoff is:

$$R_{\text{maximin}}(d_i) = \min_j R(d_i, \delta_j)$$

▶ If this is the case, then player 2's payoff is:

$$-R_{\text{maximin}}(d_i) = \max_j -R(d_i, \delta_j)$$

Hence P1 should play d^{*}_{maximin} = arg max_{d_i} min_j R(d_i, δ_j).
One could swap the two players to obtain a maximin strategy for player 2.

Introduction 00000000000	Probability 000000000000000000000000000000000000		Conditions 0000000 000000 0000000	Decisions 00000000 00000000 0000000000	Preferences 000000 0000000000	Games 00000000 00000000 000000000000000000
Zero-Sum Games						

Example (RPS and Maximin)

- Let $M = (m_{ij})$ denote the payoff matrix for the RPS game.
- Then, $\min_j R(d_i, \delta_j) = \min_j m_{ij} = -1$ for all *i*.
- Thus any move is maximin for player 1.
- ► Player 1 expects to receive a payout of -1 whatever he does.
- ▶ If both players adopt a maximin view, then player 2 has the same expectation (by symmetry).
- ▶ How can we resolve this paradox?

Introduction 00000000000	Probability 000000000000000000000000000000000000		Conditions 0000000 000000 0000000	Decisions 00000000 00000000 000000000000000000	Preferences 000000 0000000000	Games	
Zero-Sum Gam	Zero-Sum Games						
What's C	Gone Wro	ng?					

- ▶ The players aren't using all of the information available.
- ▶ They haven't used the fact that it is a zero sum game.
- ▶ They don't have compatible beliefs:
 - If P1 believes P2 can predict their move and P2 believes that P1 can predict their move then things inevitably go wrong.
 - It cannot be common knowledge that *both* players will adopt a maximin strategy!
- ▶ If a player really believes their opponent can predict their move then they can use randomization to make their action less predictable...

Introduction	Probability 000000000000000000000000000000000000	Conditions 0000000 000000 0000000	Decisions 00000000 00000000 000000000000000000	Preferences 000000 0000000000	Games
Zero-Sum Gam	ies				
Mixed St	rategies				

- ▶ A *mixed strategy* for player 1 is a probability distribution over *D*.
- ▶ If a player has mixed strategy $\mathbf{x} = (x_1, \ldots, x_n)$ then they will play move d_i with probability x_i .
- This can be achieved using a randomization device such as a spinner to select a move.
- A *pure* strategy is a mixed strategy in which exactly one of the x_i is non-zero (and is therefore equal to 1).
- ► A similar definition applies when considering player 2.

Introduction	Probability	Elicitation	Conditions	Decisions	Preferences	Games
	0000000000000 00000000 000000000000000		0000000 000000 0000000	00000000 00000000 000000000	000000 0000000000	0000000 0000000 0000000 0000000
Zero-Sum Gan	nes					

Expected Rewards and Mixed Strategies

What is player 1's expected reward if...

- ► Player 1 has mixed strategy \underline{x} and player 2 plays pure strategy δ_j ?
- ▶ Player 1 has pure strategy d_i and player 2 plays mixed strategy y?
- ▶ Player 1 has mixed strategy \underline{x} and player 2 has mixed strategy \underline{y} ?

Introduction	Probability	Elicitation	Conditions	Decisions	Preferences	Games
	00000000000000 00000000 00000000000000		0000000 000000 0000000	00000000 00000000 000000000	000000 0000000000	00000000 00000000 00000000

In the first case, the uncertainty is player 1's own move, and his expectation is:

$$\sum_{i=1}^{n} x_i R(d_i, \delta_j)$$

In the second case, the uncertainty comes from player 2:

$$\sum_{j=1}^{m} y_j R(d_i, \delta_j)$$

Whilst both provide (independent) uncertainty in the third case:

$$\sum_{i=1}^{n} \sum_{j=1}^{m} x_i R(d_i, \delta_j) y_j = \underline{x}^{\mathsf{T}} M \underline{y}$$

Introduction	Probability	Elicitation	Conditions	Decisions	Preferences	Games
	000000000000000000000000000000000000000		0000000 000000 0000000	00000000 00000000 000000000	000000 0000000000	00000000 00000000 00000000 00000000
Zero-Sum Gam	ies					

Maximin Revisited

Player 1's maximin *mixed* strategy is the <u>x</u> which maximises:

$$V_1 = \max_{\underline{x}} \min_{\underline{y}} \sum_{i} \sum_{j} x_i R(d_i, \delta_j) y_j$$

Player 2's maximin *mixed* strategy is the <u>y</u> which minimises:

$$\max_{\underline{y}} \min_{\underline{x}} - \sum_{i} \sum_{j} x_{i} R(d_{i}, \delta_{j}) y_{j}$$
$$= \min_{\underline{y}} \max_{\underline{x}} \sum_{i} \sum_{j} x_{i} R(d_{i}, \delta_{j}) y_{j} = V_{2}$$

What is the relationship between these two values?

Introduction	Probability	Elicitation	Conditions	Decisions	Preferences	Games
	0000000000000 00000000 000000000000000		0000000 000000 0000000	00000000 00000000 000000000	000000 0000000000	00000000 00000000 00000000
Zero-Sum Games						

Theorem (Fundamental Theorem of Zero Sum Two Player Games)

 V_1 and V_2 as defined before satisfy:

 $V_1 = V_2$

The unique value, $V = V_1 = V_2$ is known as the value of the game.

- ▶ The strategies \underline{x} and \underline{y} which achieve this value may not be unique.
- ▶ How can we find suitable strategies in general?

(Sketch of proof of theorem see later.)

Introduction 00000000000	Probability 000000000000000000000000000000000000	$\begin{array}{c} \textbf{Conditions} \\ \texttt{0000000} \\ \texttt{000000} \\ \texttt{0000000} \end{array}$	Decisions 00000000 00000000 000000000000000000	Preferences 000000 0000000000	Games 000000000 000000000 000000000
Zero-Sum Gan	nes				

Example (Maximin in a Simple Game)

 Consider a zero sum two player game with the following payoff matrix:

	δ_1	δ_2
d_1	1	3
d_2	4	2

- ▶ With a pure strategy maximin approach:
 - P1 plays d_2 expecting P2 to play δ_2 .
 - P2 plays δ_2 expecting P1 to play d_1 .
 - ▶ P1 expects to gain 2; P2 expects to lose 3.
 - ▶ This is not consistent.

Introduction	Probability	Elicitation	Conditions	Decisions	Preferences	Games
	00000000000000 00000000 00000000000000		0000000 000000 0000000	00000000 00000000 000000000	000000 0000000000	00000000 00000000 00000000
Zero-Sum Gan	nes					

▶ Consider, instead, a mixed strategy maximin approach:

- ▶ P1 plays a strategy (x, 1 x) and player 2 plays (y, 1 y).
- Player 1's expected payoff is:

$$\begin{bmatrix} x & 1-x \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 4 & 2 \end{bmatrix} \begin{bmatrix} y \\ 1-y \end{bmatrix} = -4(x-\frac{1}{2})(y-\frac{1}{4}) + \frac{5}{2}$$

. . . .

- Player 1 seeks to maximise this for the worst possible y.
- ► As the 2nd player can control the sign of the first term, his optimal strategy is to make it vanish by choosing $x = \frac{1}{2}$.
- ► Similarly, the 2nd player wants to prevent the first player from exploiting the first term and chooses $y = \frac{1}{4}$.
- ▶ Now, the expected reward for the first player is, consistently, 2.5 as both expect the same maximin strategies to be played.
- ► *Both* players have a higher expected return than they would playing pure strategies.

Introduction	Probability	Elicitation	Conditions	Decisions	Preferences	Games
	0000000000000 00000000 000000000000000		0000000 000000 0000000	00000000 00000000 000000000	000000 0000000000	000000 000000 000000

How do we determine maximin mixed strategies?

Zero-Sum Games

- ▶ We need a general strategy for determining strategies \underline{x}^* and \underline{y}^* which achieve the common maximin return for player 1.
- ▶ It's straightforward (if possibly tedious) to calculate, for payoff matrix *M* the expected return for player 1 as a function of the strategies:

$$V(\underline{x},\underline{y}) = \underline{x}^{\mathsf{T}} M \underline{y}$$

▶ We then seek to obtain $\underline{x}^{\star}, y^{\star}$ such that:

$$V(\underline{x}^{\star}, \underline{y}^{\star}) = \max_{\underline{x}} \min_{\underline{y}} V(\underline{x}, \underline{y})$$

- ▶ In general, this is a problem which can be efficiently addressed by linear programming.
- If one player has only two possible decisions, however, a simple graphical method can be employed. (Only 1 parameter!)

Introduction	Probability	Elicitation	Conditions	Decisions	Preferences	Games
	0000000000000 00000000 000000000000000		0000000 000000 0000000	00000000 00000000 000000000	000000 0000000000	00000000 00000000 00000000

Graphical Solution, Part 1: Player 1's approach

▶ Consider a two player zero sum game with payoff matrix:

$$M = \left[\begin{array}{rrr} 2 & 3 & 11 \\ 7 & 5 & 2 \end{array} \right]$$

- Consider a mixed strategy (x, 1 x) for player 1.
- ▶ For the three pure strategies available to player 2, player 1 has expected reward:

•
$$\delta_1: 2x + 7(1-x) = 7 - 5x$$

•
$$\delta_2: 3x + 5(1-x) = 5 - 2x$$

- $\delta_3: 11x + 2(1-x) = 2 + 9x$
- ▶ For each value of x, the worst case response of player 2 is the one for which the expected reward of player 1 is minimised.
- Plotting the three lines as a function of x...

Introduction	Probability	Elicitation	Conditions	Decisions	Preferences	Games
	00000000000000 00000000 00000000000000		0000000 000000 0000000	00000000 00000000 000000000	000000 0000000000	00000000 00000000 00000000

Introduction	Probability	Elicitation	Conditions	Decisions	Preferences	Games
	000000000000000000000000000000000000000		0000000 000000 0000000	00000000 00000000 000000000	000000 0000000000	00000000 00000000 000000000 00000000

- ▶ The maximin response maximises the return in the worst case.
- ▶ In terms of our graph, this means we choose *x* to maximise the distance between the lowest of the lines and the ordinate axis.
- ► This is at the point where the lines associated with δ_2 and δ_3 intersect, at x^* which solves:

$$5 - 2x = 2 + 9x$$
$$11x = 3 \Rightarrow x^* = 3/12$$

- Hence player 1's maximin mixed strategy is (3/11, 8/11).
- ▶ Playing this, his expected return is:

$$V_1 = 2 + 9 \times 3/11 = 49/11 = 5 - 2 \times 3/11 = 49/11$$

Introduction	Probability	Elicitation	Conditions	Decisions	Preferences	Games
	00000000000000 00000000 00000000000000		0000000 000000 0000000	00000000 00000000 000000000	000000 0000000000	00000000 00000000 00000000
Zero-Sum Gan	nes					

Graphical Solution, Part 2: Player 2's approach

- Player 2 only needs to consider the moves which optimally oppose player 1's maximin strategy (δ₂ and δ₃).
- They may consider a mixed strategy (0, y, 1 y).
- ▶ By the fundamental theorem, player 2's maximn strategy leads to the same expected payoff for player 1 as his own maximin strategy:

$$V_2 = V_1 = 49/11.$$
 2 3 11
7 5 2

• They should play y^* to solve:

$$V_2 = 3y + 11(1 - y) = 49/11$$

8y = (121 - 49)/11 = 72/11 $\Rightarrow y^* = 9/11$

• Leading to a mixed strategy (0, 9/11, 2/11).

Introduction 00000000000	Probability 000000000000000000000000000000000000	$\begin{array}{c} \textbf{Conditions} \\ \texttt{0000000} \\ \texttt{000000} \\ \texttt{0000000} \\ \texttt{0000000} \end{array}$	Decisions 00000000 00000000 000000000000000000	Preferences 000000 00000000000	Games 00000000 00000000 00000000
Zero-Sum Gam	nes				00000000

Example (Spy Game)

- ▶ A spy has escaped and must choose to flee down a *river* or through a *forest*. Their guard must choose to chasse them using a *helicopter*, a pack of *dogs* or a *jeep*.
- ▶ They agree that the probabilties of escape are as given in this payoff matrix:

	Η	D	J
R	0.1	0.8	0.4
F	0.9	0.1	0.6

▶ Both players wish to adopt maximin strategies.

Introduction	Probability	Elicitation	Conditions	Decisions	Preferences	Games
	00000000000000 00000000 00000000000000		0000000 000000 0000000	00000000 00000000 000000000	000000 0000000000	00000000 00000000 00000000
Zero-Sum Gam	ies					

- ▶ The spy plays strategy (x, 1 x): with probability x they escape via the river; with probability 1 x they run through the forest.
- ▶ For given *x*, their probabilities of escaping for each of the guard's possible actions are:

$$p_{H} = 0.1x + 0.9(1 - x) \qquad p_{D} = 0.8x + 0.1(1 - x)$$
$$= \frac{9 - 8x}{10} \qquad = \frac{1 + 7x}{10}$$
$$p_{J} = 0.4x + 0.6(1 - x)$$
$$= \frac{6 - 2x}{10}$$

• Plotting these three lines as a function of x we obtain the following figure:

Introduction	Probability	Elicitation	Conditions	Decisions	Preferences	Games
	0000000000000 00000000 000000000000000		0000000 000000 0000000	00000000 00000000 000000000	000000 0000000000	00000000 00000000 00000000 00000000

Introduction	Probability	Elicitation	Conditions	Decisions	Preferences	Games
	0000000000000 00000000 000000000000000		0000000 000000 0000000	00000000 00000000 000000000	000000 0000000000	00000000 00000000 000000000
Zero-Sum Gan	nes					

- The maximin solution is the interesection of the lines for strategies D and H.
- This occurs at the solution, x^* of:

$$p_H = p_D \Rightarrow 9 - 8x = 1 + 7x$$
$$8 = 15x \qquad \Rightarrow x^* = 8/15$$

• The value of the game is: $V = V_1 = \frac{9-8x^*}{10} = 71/150$

Introduction	Probability	Elicitation	Conditions	Decisions	Preferences	Games
	0000000000000 00000000 000000000000000		0000000 000000 0000000	00000000 00000000 000000000	000000 0000000000	00000000 00000000 000000000 00000000
Zero-Sum Gan	nes					

- ▶ By the fundamental theorem of zero sum two player games, the guard needs to consider only H and D.
- Otherwise the spy's chance of escape will be better than V_1 if he plays his own maximin strategy.
- Consider a strategy (y, 1 y, 0).
- By the same theorem, $V_2 = V = V_1$, so:

$$V_2 = 0.1y^* + 0.8(1 - y^*) = 71/150$$
$$8 - 7y^* = 71/15$$
$$y^* = 7/15$$

Introduction 00000000000	Probability 00000000000000 000000000000000000000	$\begin{array}{c} \mathbf{Conditions} \\ \texttt{0000000} \\ \texttt{0000000} \\ \texttt{00000000} \end{array}$	Decisions 00000000 00000000 000000000	Preferences 000000 0000000000	Games
Zero-Sum Gan	nes				0000000

On Zero Sum Two Player Games

- ▶ The "fundamental theorem" does not generalise to games of more than two players.
- ▶ The "fundamental theorem" does not generalise to non-zero-sum games.
- Games with an element of co-operation are much more interesting.