Experiment: Creating random sequences

.... sequence of 400 tosses of a fair coin. Use H for heads and T for tails.

Methodology: Sequence of coin tosses

> Sequence \#1

T HHHHT T T T HHHHT HHHHHHHHT T THHT T HHHHHT T T T T T HHT HHT HHHT T T HT T HHHHT HT T T HT T T HHT T T T HHHHHHT T T HHT T HHHT HHHHHT T T T T HT T T HHT T HT T HHT T T HHT T T HH THHT HHT T T T T HHT HHHHHHT HT HT T HT HT T HHHT T HHT HT HHHHHHHHT THT T HHHT HHT T HT T T T T T HHHT HHH

Sequence \#2
T HT HT T T HT T T T T HT HT T T HT T HHHT HHT HT HT HT T T T HHT T HHT T HHHT HHHT T HHHT T T HHHT HHHHT T T HT HT HHHHT HT T T HHHT HHT HT T T HHT H HHT HHHHT T HT HHT HHHT T T HT HHHT HHT T T HHHT T T T HHHT HT HHHHT H T.T HHT T T T HT HT HT T HT HHT T HT T THT T T T HHHHT HT HHHT T HHHHHT HH

One of these sequences was generated by a sequence of coin tosses, the other one was generated by students being told to write down a sequence generated by coin tosses.
Which one is the sequence generated by coin tosses?

Methodology: Sequence of coin tosses

$$
\text { Sequence \# } 1
$$

T HHHHT T T T HHHHT HHHHHHHHT T THHT T HHHHHT T T T T T HHT HHT HHHT T T HT T HHHHT HT T T HT T T HHT T T T HHHHHHT T T HHT T HHHT HHHHHT T T T T HT T T HHT T HT T HHT T T HHT T T HH THHT HHT T T T T HHT HHHHHHT HT HT T HT HT T HHHT T HHT HT HHHHHHHHT THT T HHHT HHT T HT T T T T T HHHT HHH

Sequence \#2
T HT HT T T HT T T T T HT HT T T HT T HHHT HHT HT HT HT T T T HHT T HHT T HHHT HHHT T HHHT T T HHHT HHHHT T T HT HT HHHHT HT T T HHHT HHT HT T T HHT H HHT HHHHT T HT HHT HHHT T T HT HHHT HHT T T HHHT T T T HHHT HT HHHHT H T.T HHT T T T HT HT HT T HT HHT T HT T THT T T T HHHHT HT HHHT T HHHHHT HH

How can you tell? Which features can you look at?

- number of heads, number of tails
- number of alternations
- numbers and lengths of runs

Methodology: Sequence of coin tosses

> Sequence \#1

T HHHHT T T T HHH T T HT T HHHHT HT T T HT T T HHT T T T HH H H H T HT T T HHT T HT T HHT T T HHT T T HH THHT HHT T T T T HHT HHHHHHT HT HT T HT HT T HHHT T HHT HT HHHHHHHHT THT T HHHT HHT T HT T T T T T HHHT HHH

Sequence \#2
T HT HT T T HT T T T T HT HT TT HT T HHHT HHT HT HT HT T T T HHT T HHT T HHH T HHHT T HHHT T T HHHT HHHHT T T HT HT HHHHT HT T T HHHT HHT HT T T HHT H HHT HHHHT T HT HHT HHHT T T HT HHHT HHT T T HHHT T T T HHHT HT HHHHT H T.T HHT T T T HT HT HT T HT HHT T HT T THT T T T HHHHT HT HHHT T HHHHHT HH

Runs of H of lengths r

H	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$
$\# 1$	6	3	2	2	0	2
$\# 2$	11	5	1	0	0	0

Runs of T of lengths r

\mathbf{T}	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$
$\# \#$	6	1	2	2	0	0
$\# 2$	9	4	2	0	0	0

Methodology:

Expected number of runs in a sequence of coin tosses
$X_{i} \in\{0,1\}(i=1,2, \ldots, N)$
independent identically distributed
$P\left(X_{i}=0\right)=P\left(X_{i}=1\right)=\frac{1}{2}$
$Z_{r}=$ number of run of length r

Calculation (see blackboard) shows:

$$
E\left[Z_{r}\right]=\left(\frac{1}{2}\right)^{r-1}+(N-r-1)\left(\frac{1}{2}\right)^{r+1}
$$

Explicit calculation for $\mathbf{N}=\mathbf{2 0 0}$:

```
R <- vector(length=10)
N=200
```

for (r in 1:10) \{
$R[r]=(N-r-1) * 2^{\wedge}\{-r-1\}+2^{\wedge}\{-r-1\}$
\}
round (R)
> round (R)
[1] $50 \begin{array}{llllllllll} & 25 & 12 & 6 & 3 & 2 & 1 & 0 & 0 & 0\end{array}$

Comparison

Theoretical formula for runs of length $3,4, \ldots, 8$ in a sequence of $\mathbf{2 0 0}$
> round(R)[3:8]
$\begin{array}{llllllll}{[1]} & 12 & 6 & 3 & 2 & 1 & 0 & N=200\end{array}$
Earlier observations (add up H and T runs tables):

H or T	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$
\#1	12	4	4	4	0	2
\#2	20	9	3	0	0	0

Increase N to 400 and compare

Theoretical formula for runs of length $3,4, \ldots 8$ in a sequence of 400
> round(R)[3:8]
[1] $25 \begin{array}{llllll}12 & 6 & 3 & 2 & 1\end{array}$
$N=400$

Your sequence:
.... sequence of 400 tosses of a fair coin. Use H for heads and T for tails.

In your sequence: How many runs of $r=5,6,7,8$?

