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Abstract. The true intensities of reflections, i.e. diffracted rays, in X-
ray crystallography are known to be non-negative. However, the exper-
imental value of the intensity, being measured by a difference between
background and peak, can sometimes be negative for small reflections.
This is particularly true for large biological molecules where many in-
tensities may be small. Until the mid 1970s, non-Bayesian methods
effectively set negative measurements to zero, introducing a positive
bias into the resulting intensity distribution and perturbing the elec-
tron density maps and refined molecular models. In terms of an appli-
cation of Bayes Theorem the problem was simple: the use of a suitable
prior distribution would enforce non-negativity of the estimated inten-
sities. Computationally, the problem was not quite so trivial, but with
suitable approximation and tabulation Bayesian estimates were pro-
duced. It was instrumental in introducing Bayesian ideas into a ‘hard
physical’ science. For small molecules a theoretical justification of the
prior that we used had been known since 1949. However, we had to
conjecture that for large biological molecules such as proteins a similar
distribution form for the prior would be appropriate. Empirically our
results justified our conjecture. Moreover, subsequently it was shown
using central limit theorems for correlated variables that our conjecture
was justified. The method rapidly became widely used within crystallo-
graphic data analysis, the “truncation” algorithm being widely applied
in macromolecular crystallography packages over the last 25 years and
our original paper is still highly cited.

Key words and phrases: Bayesian methodology, crystallography, Wilson
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1. INTRODUCTION

This Bayesian application dates back to the late 1970s, but its longevity as a
standard method of crystallography shows its strength. Moreover, the application
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played a major role in the acceptance of Bayesian methodology within mainstream
crystallographic statistics within a decade of its publication.

X-ray crystallography is long established as the prime technique for determin-
ing a molecule’s 3D structure, nowadays recognized as an essential part of the
full understanding and description of molecules both large and small. Crystallog-
raphy has underpinned the structural chemistry of the last century and of large
biological molecular structures in the last 50 years. For a full introduction to
crystallography, see Rupp, B. (2009).

Briefly, crystals are composed of repeating units, called unit cells, each contain-
ing one or a small number of molecules and arranged in a lattice. When X-rays
are shone at a crystal, the lattice acts as a diffraction grating, scattering the beam
into rays, known as Bragg reflections, radiating out in a fixed pattern: see Fig. 1.
The intensities of these reflections are related to the moduli of the coefficients in
the three-dimensional Fourier expansion of the electron density of molecule, and
are thus the essential experimental data in the elucidation of 3D structures of
molecules. Within crystallography the Fourier coefficients are known as structure
factors.

Fig 1. A typical diffraction image from a protein. The image contains a regular array of Bragg
reflections superimposed on a background of varying intensity. The integrated intensity of each
peak represents the square of the amplitude of a Fourier component of the electron density in the
crystal.

Current systems for measuring X-ray intensities include imaging plates, charged
coupled devices and pixel detectors. All estimate the intensity essentially by mea-
suring the value in the reflection itself and then subtracting a background value
near to it, Figure 1(b). Thus:

(1) I = reflection strength− background
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However, some intensities are small relative to the background and for large
biological molecules the proportion of such reflections is often large, with the
intensity/standard deviation ratio often dropping to close to 1.0 at the edge of
the diffraction pattern. Thus it is inevitable that random errors lead to some
intensities being measured as negative, notwithstanding that theory says they
must be non-negative. At the time we developed our Bayesian approach in the
late 1970s, most software packages simply set negative measurements to zero or,
perhaps, some small positive number, giving rise to biased data sets. Instead
of recognising that negative measurements provided strong information that the
intensity was small, the issue was perceived as a ’problem’ that got in the way of
subsequent data analysis, in which the each intensity would need to be square-
rooted to give the corresponding Fourier coefficient’s modulus.

For a Bayesian, the ‘problem’ truly does not exist. That an intensity is non-
negative is clearly and unarguably prior knowledge. So one simply chooses a prior
which enforces non-negativity: i.e. one which is zero on the negative line.

2. THE BAYESIAN MODEL

A straightforward application of Bayes Theorem gives:

pJ(J |I) ∝J pI(I|J)× pJ(J)

where J = ‖F‖2 is the ‘true’ intensity, which is the square of Fourier coefficient
modulus; I is the measured intensity and the proportionality is as a function of
J . Then in later calculation of the three-dimensional structure we may use for
the intensity:

EJ(J |I) =

∫ ∞
0

JpJ(J |I)dJ

varJ(J |I) =

∫ ∞
0

[J − EJ(J |I)]2pJ(J |I)dJ

or for the modulus of the Fourier coefficient:

EJ(‖F‖|I) =

∫ ∞
0

√
JpJ(J |I)dJ

varJ(‖F‖|I) =

∫ ∞
0

[
√
J − EJ(‖F‖|I)]2pJ(J |I)dJ

The measured intensity I is formed as in (1), but with further operations
applied, including corrections for Lorentz, polarization, absorption, extinction
and radiation-damage effects. Moreover, the crystal symmetry may imply that
certain Fourier coefficients must have the same moduli, in which case the observed
intensity will have been averaged over these ‘equivalent reflections’. All corrections
and averaging are assumed to have been carried out on the raw observations, be
they positive or negative.

It is reasonable to assume that pI(I|J) is normal N(J, σ2), where σ2 is known.
The raw observations are formed from a difference of Poisson distributed inten-
sities, and the averaging and corrections drive the measured intensities towards
normality to a good approximation. With careful experimental practices, unbi-
asedness is a fair assumption and empirical estimates of σ2 are good.
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One obvious choice for the prior is

pJ(J) =

{
1 if J ≥ 0

0 if J < 0

However, there is more information available. Wilson (1949)1 showed that, in the
case of acentric crystal symmetry:

(2) pJ(J) =

{
Σ−1 exp(−J/Σ) if J ≥ 0

0 if J < 0

while in the case of centric crystal symmetry:

(3) pJ(J) =

{
(2πΣJ)−1 exp(−J/2Σ) if J ≥ 0

0 if J < 0

In each case, Σ is the mean intensity over an appropriate subset or shell of
reflections. In a strict sense, Σ is unknown, but the number of intensities in a
shell is typically large. So taking an empirical Bayesian approach, we simply
estimated it for each shell from the data.

Thus we have a Bayesian prescription for processing the data in a manner
which ensures non-negative posterior means for the intensity and Fourier coeffi-
cient moduli. Computationally, particularly in the 1970s, there was still the issue
of implementing the calculations, even though in many cases the posterior is
effectively just a truncated normal distribution. We tabulated the integrals for
−4σ < I < 3σ and then interpolated in this for particular observations. Outside
this range the posterior is effectively normal. The computations proved feasible
then and most certainly are today. Details are in French and Wilson (1978).

French (1975) in his doctoral research developed a more sophisticated Bayesian
analysis of the intensity profile at a reflection as a diffractometer stepped through
the peak but this required considerable tailoring to the specifics of the diffrac-
tometer used: see also French and Oatley (1982); Oatley and French (1982). The
simplicity of the approach in French and Wilson (1978) means that it can be
applied to intensity data, be they collected by counters, photographs or other
means. That, together with the quality of its results, has meant that it remains
in use across crystallography to the present day.

3. THE IMPACT OF OUR METHOD

Scientifically, the greatest impact of our work is clearly that it is used. As
we write this, the paper has over 600 citations and is still being cited. The vast
majority of citations are from structural studies which have used the method
in determining molecular structures. It is described in the International Tables
for Crystallography (IUCr, 2001b, Section 7.5.6, page 661). The algorithm is
implemented in several current crystallographic packages: e.g. truncate in ccp4
(http://www.ccp4.ac.uk/) and bayest in xtal (http://xtal.sourceforge.net/).

Not all citations are from structural studies, though. In terms of Bayesian
impact, it is pleasing to see that many relate to statistical methodology within

1A.J.C.Wilson and K.S. Wilson are not related
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crystallography and, tracking back to the earlier of such citations, that our pa-
per played a major role in acceptance of Bayesian methods. Remember that we
did this work and published it in the 1970s. The Bayesian approach was seldom
accepted then, and certainly not recognised in the physical sciences in which its
explicit subjectivity was an anathema to the majority of researchers. Our pa-
per was published in 1978. Ten years later, Schwarzenbach et al (1989) reported
to the International Union of Crystallography on statistical methodology and
Bayesian methods were presented alongside frequentist ones with equal status.
Our paper was cited along with a more theoretical paper by French (1978) on
the use of Bayesian hierarchical modelling as a framework for crystallographic
refinement and the work of French and Oatley on the Bayesian method of inten-
sity profile fitting (Oatley and French, 1982; French and Oatley, 1982). Within
10 years Bayesian methods were accepted, and it is clear that the simplicity
and practical results of French and Wilson (1978) were central in achieving this
acceptance. Other examples of the penetration of Bayesian thinking into crystal-
lographic statistics and the role of French and Wilson (1978) in this are provided
by Bricogne (1988) and Gilmore (1996). Moving up to date, (Rupp, B., 2009, Ch.
7) provides a modern introduction to crystallographic statistics in which not only
do Bayesian statistics feature, but our method is used as a worked example for
the student.

4. WILSON’S STATISTICS AND MACROMOLECULES

Equations (2) and (3) are known throughout crystallography as Wilson’s Statis-
tics. His original derivation was based on the assumptions that the atoms of a
molecule were randomly and independently distributed within the unit cell, with
respect to both (i) the distances between them and (ii) their relative orientation.
These assumptions allowed him to use the central limit theorem to derive the
probability distributions. For small molecules, the assumptions were reasonable;
but for large biological molecules such as proteins, in which the atoms tend to
be arranged in chains twisted into a ball or knot, they were very questionable.
However, a lot of experience within protein crystallography had shown that while
the behaviour of Σ over different shells of data was not as Wilson had originally
predicted, though within a shell of data, Wilson’s Statistics did apply. Our paper
summarised the empirical empirical evidence of this (French and Wilson, 1978).
We also postulated – and seem to have been the first to do so (IUCr, 2001a,
Section 2.1.4.5, page 195.) – that Wilson’s original 1949 analysis would gener-
alise if he drew upon central limit theorems which dealt with correlated variables
rather than the better known theorems for independent variables. Moreover, we
postulated that the forms of his distributions would be unchanged, save for dif-
ferent values for Σ. We corresponded with Arthur Wilson on this and in 1981 he
published a theoretical paper confirming our conjectures (Wilson, 1981).

Examining assumptions (i) and (ii) above more closely: (i) is clearly not valid as
inter-atomic distances are governed by the nature of chemical bonds which have
sets of preferred values. This departure from assumption is allowed by using em-
pirically determined values for Σ for each shell of data. For most structures (ii) is
a reasonable approximation to reality. Nevertheless in recent years it has become
evident that there are structures for which (ii) breaks down, for example in crys-
tals with systematic orientations of their contents through non-crystallographic
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symmetry. Extensions to our approach are being developed by others to allow for
such deviations, while following the basic assumptions of Bayesian statistics.

An area which remains to be addressed is the incorporation of Bayesian esti-
mates of experimental error into statistical methods of phase determination. The
phase information is lost during the recording of the structure factor amplitudes
the so-called phase problem at the core of crystallography. The assumptions of
positivity of the electron density and of atomicity impose restrictions on the
phases given the amplitudes, sufficient for them to be determined using a set of
statistical relations. However, the probabilities of these relations is dependent on
the values of the amplitudes involved, and present methods do not take account
of the experimental errors in these. A powerful extension of our Bayesian ap-
proach would combine the error estimates for the amplitudes into the statistical
phase relations to provide improved posterior distributions and more meaning-
ful indicators of when the phase problem is likely to be solvable given the data
quality.
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