
Mortality estimation and prediction:
Models, Methods and Issues

Jon Forster
Mathematical Sciences & ESRC Centre for Population Change
University of Southampton, UK

How should pension liabilities be valued? Risk aversion and demographic uncertainty
25–26 March 2016, Royal Society, London

Joint work with Jakub Bijak, Erengul Dodd, Jason Hilton and Peter Smith



Why mortality matters

Consider an annuity paying £A now and annually to death, for an
individual current age x .

The expected present value of this annuity is

E = A
∞∑
k=0

vk kpx

where vk is the expected present value of k years hence £1 , and

kpx = P(T > x + k |T > x) =
P(T > x + k)

P(T > x)
=
`x+k

`x

where T is the random variable denoting age at death.

Knowledge of survivorship probabilities is essential.
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The life table

A static summary of the distribution of age at death for a population:

English(Life(Tables(No(17(

Period expectation of life
Based on data for England and Wales for the years 2010-2012

Age Age
x mx qx lx dx Lx Tx µx ex x mx qx lx dx Lx Tx µx ex

0 0.004757 0.004746 100000 475 99576.3 7896837 78.97 0 0.003818 0.003811 100000 381 99660.7 8279504 82.80
1 0.000306 0.000306 99525 30 99510.2 7797072 0.000369 78.34 1 0.000238 0.000238 99619 24 99607.0 8179692 0.000276 82.11
2 0.000207 0.000207 99495 21 99484.6 7697562 0.000246 77.37 2 0.000176 0.000176 99595 17 99586.4 8080086 0.000202 81.13
3 0.000147 0.000147 99474 14 99467.0 7598078 0.000172 76.38 3 0.000133 0.000133 99578 14 99571.0 7980500 0.000152 80.14
4 0.000115 0.000115 99460 12 99453.9 7498612 0.000128 75.39 4 0.000107 0.000107 99564 10 99559.1 7880929 0.000118 79.15

109 0.676172 0.491440 8 4 5.5 11 0.661588 1.43 109 0.668760 0.487656 27 13 20.0 39 0.652973 1.44
110 0.701065 0.503943 4 2 2.8 5 0.685990 1.39 110 0.697334 0.502089 14 7 10.1 19 0.681051 1.39
111 0.725677 0.516003 2 1 1.4 3 0.709972 1.34 111 0.724789 0.515573 7 4 5.0 9 0.708358 1.34
112 0.750015 0.528125 1 1 0.7 1 0.733841 1.30 112 0.751040 0.528125 3 1 2.4 4 0.734218 1.30
113 113 0.776042 0.539776 2 1 1.1 2 0.758668 1.26
114 114 0.799785 0.550574 1 1 0.5 1 0.781684 1.23

Males Females

...
...

...
...

...
...

...
...

...
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John Graunt and the first life table

John Graunt
(1620-1674)

“From whence it follows, that of the said
100 conceived there remains alive at six years
end 64

At Sixteen years end 40 At Fifty six 6
At Twenty six 25 At Sixty six 3
At Thirty six 16 At Seventy six 1
At Fourty six 10 At Eighty 0”
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Static models and graduation

{yx} – number of male (female) deaths in England and Wales observed
aged x at last birthday, in a given time period.

{EC
x } – corresponding central exposed to risk for age x at last birthday

The observed (or crude) central mortality rate is

m̃x =
yx
EC
x

.

This is an estimator of the underlying central mortality rate

mx =
E [Yx ]

EC
x

under any model for {Yx}.
Other quantities, survival probabilities kpx , death probabilities

kqx ≡ 1− kpx etc can be derived from mx (by
approximation/assumption).
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Crude mortality rates 2010-2012
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A basic smoothing model

As this is a large inhomogenous population, we propose a negative
binomial model

Yx ∼ NB
(
EC
x mx , α

)
where E [Yx ] = EC

x mx and Var [Yx ] = EC
x mx + (EC

x mx)2/α.

Then, in a generalised additive (smooth) model

logmx = s(x ;β)

where s(x ;β) is a linear (in β) function representing regression on a spline
basis.

The graduated estimates m̂x are obtained as

m̂x = exp s(x ; β̂)
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Smooth mortality rates 2010-2012
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Models for older ages and extrapolation (1)

To obtain a more robust fit at older ages, and to extrapolate the mortality
function mx beyond the range of the observed data, one might use a
parametric model.

Only parsimonious models considered, as data are sparse.

The simplest obvious choice is the log-linear Gompertz model

logmx = β0 + β1x , x ≥ x0

where x0 is a suitable threshold
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Models for older ages and extrapolation (2)

A competing extrapolation model is a logistic model (Beard, 1963)

mx =
β2 exp (β0 + β1x)

1 + exp (β0 + β1x)
, x ≥ x0

where mortality rates flatten off, converging to the limit β2 as x →∞.
Arises naturally as Gompertz with frailty.

A special case of this model, with β2 = 1, (Thatcher et al, 1998) is used
in graduating the human mortality data base (Wilmoth et al 2007).

A possible model across the entire range of x is

mx =


exp s(x ;β) x < x0

exp (β0 + β1x)

1 + exp (β0 + β1x)
x ≥ x0
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Model uncertainty

Hence, we have two possible models, log-linear and logistic both of which
require the choice of a threshold age x0 to determine the age range over
which the parametric component will be fitted, and applied.

• No fundamental reason to prefer one model over the other, or to
apply a particular value of x0.

• Rather, we should base our decision on the observed data.

• Given the sparsity of the data at the highest ages, there is
considerable uncertainty about this choice. Graduation should
acknowledge this uncertainty.

A natural approach for incorporation of model uncertainty into estimates
is a Bayesian approach.
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ELT17 model-averaged graduation
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Mortality improvement
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Mortality rates are not static
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Dynamic models and projection

{yxt} – number of observed deaths aged x at last birthday, in year t, in
population of interest, for t = 1, . . . ,T .

{EC
xt} – corresponding central exposed to risk

Mortality models provide a framwork for estimating the central mortality
rates

mxt =
E [Yxt ]

EC
xt

.

based on the data array {yxt} and computing relevant estimates for kpx ,

kqx etc and . . .

. . . projecting mxt etc for t = T + 1,T + 2, . . .
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UK mortality rates (males, 1961-2017)
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UK mortality improvements
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Mortality projection models

Models for central mortality rates mxt over age x and time t generally
have the form:

g(mxt) = f1(x) + f2(t) + f3(x , t)

age baseline common period effect age-period interaction

where typically g(mxt) = logmxt or g(mxt) = log(emxt − 1)

For projection, f2(t) + f3(x , t) need to be able to be extrapolated for
t = T + 1,T + 2, . . . (structure is required)

The most venerable model is the Lee-Carter (1992; generalised bilnear)
model

logmxt = αx + βxκt

[multiplicative age-period interaction, κt structured as
κt = µt + RW (0, σ2)]
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Cohorts
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A cohort is a subpopulation sharing a common birth-year. (1930 birth
cohort identified above)

A cohort effect is a structured age-period interaction.
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Selected mortality models

Models for central mortality rates mxt over age x and time t include:

• Lee Carter with cohort (Renshaw and Haberman, 2006)

logmxt = αx + βxκt + γt−x

• CBD generalised linear (Cairns et al, various)

log(emxt − 1) = κ
(1)
t + xκ

(2)
t + x2κ

(3)
t + γt−x

• APCI generalised linear (CMI 2016, Richards et al, 2017)

logmxt = αx + tβx + κt + γt−x

• generalised additive (GAM)

logmxt = sα(x) + t sβ(x) + κt + sγ(t − x)
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Cohort effect caveat

Well-understood lack of identifiability or the classic age-period-cohort
(APC) model

αx + βt + γt−x = [αx + µx ] + [βt − µt] + [γt−x + µ(t − x)]

Even models which are algebraically identified may be prone to ‘awkward
behaviour’ due to complex APC dependence (e.g. Palin, 2016, everyone!)

Attribution of linear effect (by constraint) may even be a benefit for
forecasting?
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The model from here ...

Age-period-cohort (APC) GAM for mortality improvements

log
mxt

mx t−1
= sα(x) + κt + sγ(t − x)

or ‘equivalently’ APCI GAM for mortality rates

logmxt = sµ(x) + sα(x)t + κt + sγ(t − x).

where sµ, sα and sγ are arbitrary smooth functions.

For the highest ages x , use parametric model

log
mxt

β −mxt
= µ0 + µ1x + (α0 + α1x)t + κt + sγ(t − x) x > x0

where κt , sγ(t − x) are estimates obtained from fitting the APC GAM to
the main body of the data (0 < x ≤ x0).
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Mortality improvement estimates
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Period and Cohort estimates
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The forecast

logmxt = ŝµ(x) + ŝα(x)t + κ̂t + ŝγ(t − x) for t = T + 1, . . .

requires us to forecast

• {κt , t = T + 1, . . .}
• sγ(t − x) for t − x > T − xmin

In practice this is done by

• κt : random walk dynamics

• sγ(t − x): extrapolation of GAM smooth

Potential for forecasts over long horizons to be expert-moderated, e.g.

ŝα(x)→ αexp
x ŝγ(t − x)→ 0

over some intermediate time horizon
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Issues

• Modelling assumptions

• Uncertainty

• Prior/expert opinion and Bayesian methods

• Series length and moderated forecasts

• Cohorts

• Joint modelling and borrowing strength

• Recent experience and random walks
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Modelling assumptions

• Smoothness
• ‘Error’ distribution:

I Poisson
I negative binomial
I quasi-Poisson
I lognormal

• Cohort assumptions
• Sparse regions
• Joint v. hierarchical fitting

κt γt−x

mxt

κt γt−x

mxt
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Uncertainty

A Bayesian approach allows coherent quantification of uncertainty
encompassing all aspects (males 60+, data up to 2006)
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Forecast uncertainty

Fit on data up to 2006, 10 year projection.
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Forecast uncertainty (life expectancy

Fit on data up to 2006, 10 year projection.
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Prior/expert opinion and Bayesian methods

• Smoothness (regularisation)

• Parameter values (restrictions?)

• Parameter ‘sharing’ (male/female or other splits)

• Expert moderation of forecasts (to follow)

• Borrowing of strength (to follow)

In all these cases Bayes methods combine uncertainties into a single
posterior (predictive) distribution for inference.
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Series length and moderated forecasts

By necessity observed data series are always shorter than we would like.

For a given observed series length, what is a reasonable range for
extrapolation?
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Potential for forecasts over long horizons to be expert-moderated.
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Cohorts

Cohort-identifying assumption can be sensitive to range of data used for
fitting.

How strong is cohort-effect persistence through the life-cycle?

Potential for borrowing of strength for forecasting unobserved cohorts?
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Joint modelling and borrowing strength

A much smaller (but helpful) literature on joint modelling of two
populations or modelling of a portfolio and its population, e.g.

• Li (2012)

• Villegas and Haberman (2014)

and including Bayesian multi-population approaches, e.g.

• Cairns et al (2011)

• van Berkum et al (2017)

Joint modelling and expert opinion?
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Recent experience
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2015 experience stands out, but is not an outlier
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Residuals
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Random walks (simulated)
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Discussion

• Modelling assumptions

• Uncertainty

• Prior/expert opinion and Bayesian methods

• Series length and moderated forecasts

• Cohorts

• Joint modelling and borrowing strength

• Recent experience and random walks
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