Mortality estimation and prediction: Models, Methods and Issues

Jon Forster
Mathematical Sciences \& ESRC Centre for Population Change University of Southampton, UK

How should pension liabilities be valued? Risk aversion and demographic uncertainty 25-26 March 2016, Royal Society, London

Joint work with Jakub Bijak, Erengul Dodd, Jason Hilton and Peter Smith

Consider an annuity paying $£ A$ now and annually to death, for an individual current age x.
The expected present value of this annuity is

$$
E=A \sum_{k=0}^{\infty} v_{k k} p_{x}
$$

where v_{k} is the expected present value of k years hence $£ 1$, and

$$
{ }_{k} p_{x}=P(T>x+k \mid T>x)=\frac{P(T>x+k)}{P(T>x)}=\frac{\ell_{x+k}}{\ell_{x}}
$$

where T is the random variable denoting age at death.
Knowledge of survivorship probabilities is essential.

The life table

A static summary of the distribution of age at death for a population:

English Life Tables No 17

Period expectation of life
Based on data for England and Wales for the years 2010-2012

Age	Males							
\boldsymbol{x}	m_{x}	\boldsymbol{q}	I_{x}	d_{x}	L_{x}	$\boldsymbol{T}_{\boldsymbol{x}}$	μ_{x}	e_{x}
0	0.004757	0.004746	100000	475	99576.3	7896837		78.97
1	0.000306	0.000306	99525	30	99510.2	7797072	0.000369	78.34
2	0.000207	0.000207	99495	21	99484.6	7697562	0.000246	77.37
3	0.000147	0.000147	99474	14	99467.0	7598078	0.000172	76.38
4	0.000115	0.000115	99460	12	99453.9	7498612	0.000128	75.39
:	:	:	:	:	:	:	:	
-	.	-	-	-	-	-	-	
109	0.676172	0.491440	8	4	5.5	11	0.661588	1.43
110	0.701065	0.503943	4	2	2.8	5	0.685990	1.39
111	0.725677	0.516003	2	1	1.4	3	0.709972	1.34
112	0.750015	0.528125	1	1	0.7	1	0.733841	1.30

John Graunt and the first life table

Natural and Political OBSERVATIONS

Mentioned in a following INDEX, and made upon the
Bills of Mortality.

B Y

Capt. $70 H N$ GRAV NT, Fellow of the Rogal Society.

With reference to the Government, Religion, Trade, Growth, Air, Difes/es, and the feveral Changes of the faid CITY.

Non, we ut miretur Twrba, labore, Contentau pasis LeCloribus.-

> The Fifth Edition, much Enlarged.

LONDON

Printed by Gohn Martgs, Printer to the Koyal Society, at the Sigo of the Bell in St, Penl's Church-yard, MDCLXXYI.

John Graunt (1620-1674)
"From whence it follows, that of the said 100 conceived there remains alive at six years end 64
At Sixteen years end 40 At Fifty six 6
At Twenty six 25 At Sixty six 3
At Thirty six
At Fourty six
$\left\{y_{x}\right\}$ - number of male (female) deaths in England and Wales observed aged x at last birthday, in a given time period.
$\left\{E_{x}^{C}\right\}$ - corresponding central exposed to risk for age x at last birthday
The observed (or crude) central mortality rate is

$$
\tilde{m}_{x}=\frac{y_{x}}{E_{x}^{C}}
$$

This is an estimator of the underlying central mortality rate

$$
m_{x}=\frac{E\left[Y_{x}\right]}{E_{x}^{C}}
$$

under any model for $\left\{Y_{x}\right\}$.
Other quantities, survival probabilities ${ }_{k} p_{x}$, death probabilities ${ }_{k} q_{x} \equiv 1-{ }_{k} p_{x}$ etc can be derived from m_{x} (by approximation/assumption).

Crude mortality rates 2010-2012

A basic smoothing model

As this is a large inhomogenous population, we propose a negative binomial model

$$
Y_{x} \sim \operatorname{NB}\left(E_{x}^{C} m_{x}, \alpha\right)
$$

where $E\left[Y_{x}\right]=E_{x}^{C} m_{x} \quad$ and $\quad \operatorname{Var}\left[Y_{x}\right]=E_{x}^{C} m_{x}+\left(E_{x}^{C} m_{x}\right)^{2} / \alpha$.

Then, in a generalised additive (smooth) model

$$
\log m_{x}=s(x ; \beta)
$$

where $s(x ; \beta)$ is a linear (in β) function representing regression on a spline basis.

The graduated estimates \hat{m}_{x} are obtained as

$$
\hat{m}_{x}=\exp s(x ; \hat{\beta})
$$

Smooth mortality rates 2010-2012

Models for older ages and extrapolation (1) Southamplivirn

To obtain a more robust fit at older ages, and to extrapolate the mortality function m_{x} beyond the range of the observed data, one might use a parametric model.

Only parsimonious models considered, as data are sparse.
The simplest obvious choice is the log-linear Gompertz model

$$
\log m_{x}=\beta_{0}+\beta_{1} x, \quad x \geq x_{0}
$$

where x_{0} is a suitable threshold

Models for older ages and extrapolation (2) Southamplon

A competing extrapolation model is a logistic model (Beard, 1963)

$$
m_{x}=\frac{\beta_{2} \exp \left(\beta_{0}+\beta_{1} x\right)}{1+\exp \left(\beta_{0}+\beta_{1} x\right)}, \quad x \geq x_{0}
$$

where mortality rates flatten off, converging to the limit β_{2} as $x \rightarrow \infty$. Arises naturally as Gompertz with frailty.

A special case of this model, with $\beta_{2}=1$, (Thatcher et al, 1998) is used in graduating the human mortality data base (Wilmoth et al 2007).

A possible model across the entire range of x is

$$
m_{x}= \begin{cases}\exp s(x ; \beta) & x<x_{0} \\ \frac{\exp \left(\beta_{0}+\beta_{1} x\right)}{1+\exp \left(\beta_{0}+\beta_{1} x\right)} & x \geq x_{0}\end{cases}
$$

Model uncertainty

Hence, we have two possible models, log-linear and logistic both of which require the choice of a threshold age x_{0} to determine the age range over which the parametric component will be fitted, and applied.

- No fundamental reason to prefer one model over the other, or to apply a particular value of x_{0}.
- Rather, we should base our decision on the observed data.
- Given the sparsity of the data at the highest ages, there is considerable uncertainty about this choice. Graduation should acknowledge this uncertainty.

A natural approach for incorporation of model uncertainty into estimates is a Bayesian approach.

ELT17 model-averaged graduation

Mortality improvement

Observed mortality rates (UK males, logarithmic scale)

$\left\{y_{x t}\right\}$ - number of observed deaths aged x at last birthday, in year t, in population of interest, for $t=1, \ldots, T$.
$\left\{E_{x t}^{C}\right\}$ - corresponding central exposed to risk
Mortality models provide a framwork for estimating the central mortality rates

$$
m_{x t}=\frac{E\left[Y_{x t}\right]}{E_{x t}^{C}}
$$

based on the data array $\left\{y_{x t}\right\}$ and computing relevant estimates for ${ }_{k} p_{x}$, ${ }_{k} q_{x}$ etc and...
\ldots projecting $m_{x t}$ etc for $t=T+1, T+2, \ldots$

UK mortality improvements

Southanamptor

Mortality projection models

Models for central mortality rates $m_{x t}$ over age x and time t generally have the form:

$$
g\left(m_{x t}\right)=f_{1}(x) \quad+f_{2}(t) \quad+f_{3}(x, t)
$$

age baseline common period effect age-period interaction
where typically $g\left(m_{x t}\right)=\log m_{x t}$ or $g\left(m_{x t}\right)=\log \left(e^{m_{x t}}-1\right)$
For projection, $f_{2}(t)+f_{3}(x, t)$ need to be able to be extrapolated for $t=T+1, T+2, \ldots$ (structure is required)

The most venerable model is the Lee-Carter (1992; generalised bilnear) model

$$
\log m_{x t}=\alpha_{x}+\beta_{x} \kappa_{t}
$$

[multiplicative age-period interaction, κ_{t} structured as $\left.\kappa_{t}=\mu t+R W\left(0, \sigma^{2}\right)\right]$

Cohorts

A cohort is a subpopulation sharing a common birth-year. (1930 birth cohort identified above)

A cohort effect is a structured age-period interaction.

Selected mortality models

Models for central mortality rates $m_{x t}$ over age x and time t include:

- Lee Carter with cohort (Renshaw and Haberman, 2006)

$$
\log m_{x t}=\alpha_{x}+\beta_{x} \kappa_{t}+\gamma_{t-x}
$$

- CBD generalised linear (Cairns et al, various)

$$
\log \left(e^{m_{x t}}-1\right)=\kappa_{t}^{(1)}+x \kappa_{t}^{(2)}+x^{2} \kappa_{t}^{(3)}+\gamma_{t-x}
$$

- APCI generalised linear (CMI 2016, Richards et al, 2017)

$$
\log m_{x t}=\alpha_{x}+t \beta_{x}+\kappa_{t}+\gamma_{t-x}
$$

- generalised additive (GAM)

$$
\log m_{x t}=s_{\alpha}(x)+t s_{\beta}(x)+\kappa_{t}+s_{\gamma}(t-x)
$$

Cohort effect caveat

Well-understood lack of identifiability or the classic age-period-cohort (APC) model

$$
\alpha_{x}+\beta_{t}+\gamma_{t-x}=\left[\alpha_{x}+\mu x\right]+\left[\beta_{t}-\mu t\right]+\left[\gamma_{t-x}+\mu(t-x)\right]
$$

Even models which are algebraically identified may be prone to 'awkward behaviour' due to complex APC dependence (e.g. Palin, 2016, everyone!)

Attribution of linear effect (by constraint) may even be a benefit for forecasting?

Age-period-cohort (APC) GAM for mortality improvements

$$
\log \frac{m_{x t}}{m_{x t-1}}=s_{\alpha}(x)+\kappa_{t}+s_{\gamma}(t-x)
$$

or 'equivalently' APCI GAM for mortality rates

$$
\log m_{x t}=s_{\mu}(x)+s_{\alpha}(x) t+\kappa_{t}+s_{\gamma}(t-x) .
$$

where s_{μ}, s_{α} and s_{γ} are arbitrary smooth functions.
For the highest ages x, use parametric model

$$
\log \frac{m_{x t}}{\beta-m_{x t}}=\mu_{0}+\mu_{1} x+\left(\alpha_{0}+\alpha_{1} x\right) t+\kappa_{t}+s_{\gamma}(t-x) \quad x>x_{0}
$$

where $\kappa_{t}, s_{\gamma}(t-x)$ are estimates obtained from fitting the APC GAM to the main body of the data $\left(0<x \leq x_{0}\right)$.

Mortality improvement estimates

Period and Cohort estimates

$\log m_{x t}=\hat{s}_{\mu}(x)+\hat{s}_{\alpha}(x) t+\hat{\kappa}_{t}+\hat{s}_{\gamma}(t-x) \quad$ for $t=T+1, \ldots$
requires us to forecast

- $\left\{\kappa_{t}, t=T+1, \ldots\right\}$
- $s_{\gamma}(t-x)$ for $t-x>T-x_{\text {min }}$

In practice this is done by

- κ_{t} : random walk dynamics
- $s_{\gamma}(t-x)$: extrapolation of GAM smooth

Potential for forecasts over long horizons to be expert-moderated, e.g.

$$
\hat{s}_{\alpha}(x) \rightarrow \alpha_{x}^{\exp } \quad \hat{s}_{\gamma}(t-x) \rightarrow 0
$$

over some intermediate time horizon

- Modelling assumptions
- Uncertainty
- Prior/expert opinion and Bayesian methods
- Series length and moderated forecasts
- Cohorts
- Joint modelling and borrowing strength
- Recent experience and random walks

Modelling assumptions

- Smoothness
- 'Error' distribution:
- Poisson
- negative binomial
- quasi-Poisson
- lognormal
- Cohort assumptions
- Sparse regions
- Joint v. hierarchical fitting

Uncertainty

A Bayesian approach allows coherent quantification of uncertainty encompassing all aspects (males 60+, data up to 2006)

Forecast uncertainty

Fit on data up to 2006, 10 year projection.
Log Rates, year $=2016$

Forecast uncertainty (life expectancy

Fit on data up to 2006, 10 year projection.

ONS Variant

- . High
- . Low
- Principal

Interval
0.75
0.50
0.25
0.00

Prior/expert opinion and Bayesian methods Southampton

- Smoothness (regularisation)
- Parameter values (restrictions?)
- Parameter 'sharing' (male/female or other splits)
- Expert moderation of forecasts (to follow)
- Borrowing of strength (to follow)

In all these cases Bayes methods combine uncertainties into a single posterior (predictive) distribution for inference.

Series length and moderated forecasts

By necessity observed data series are always shorter than we would like.
For a given observed series length, what is a reasonable range for extrapolation?

Potential for forecasts over long horizons to be expert-moderated.

Cohorts

Cohort-identifying assumption can be sensitive to range of data used for fitting.
How strong is cohort-effect persistence through the life-cycle?
Potential for borrowing of strength for forecasting unobserved cohorts?

Joint modelling and borrowing strength

A much smaller (but helpful) literature on joint modelling of two populations or modelling of a portfolio and its population, e.g.

- Li (2012)
- Villegas and Haberman (2014)
and including Bayesian multi-population approaches, e.g.
- Cairns et al (2011)
- van Berkum et al (2017)

Joint modelling and expert opinion?

Recent experience

2015 experience stands out, but is not an outlier

Residuals

Random walks (simulated)

Discussion

- Modelling assumptions
- Uncertainty
- Prior/expert opinion and Bayesian methods
- Series length and moderated forecasts
- Cohorts
- Joint modelling and borrowing strength
- Recent experience and random walks

