Optimal design:

From insurance policy to economic policy

Mogens Steffensen
University of Copenhagen

The Royal Society London 2019

Consumption-investment-insurance problems

Humps by pricing

Separation of preferences

Humps by separation of preferences

Humps by habit

Stochastic mortality in a complete market

Stochastic mortality in an incomplete market

Equilibrium considerations/predictions and the absence of mortality markets

- Consumption-investment-insurance problems, Richard (JFE 1975)

$$
\begin{aligned}
d X(t) & =\underbrace{X(t) d G^{\pi}(t)}_{\text {capital gains }}+\underbrace{w(t) d t}_{\text {labor income }}-\underbrace{c(t) d t}_{\text {consumption }}-\underbrace{\hat{\mu}(t) b(t) d t}_{\text {life insurance premium }} \\
V(t, x)= & \max _{c, b, \pi} E_{t, x}[\int_{t}^{n}(\underbrace{u(c(s)) I(s) d s}_{\text {utility from consumption }}+\underbrace{u(X(s)+b(s)) d N(s)}_{\text {utility from bequest }})] \\
c^{*}(t, x) & =\underbrace{f(t)}_{\text {consumption-to-wealth ratio }}(x+\underbrace{g(t)}_{\text {human capital }}) \\
x+b^{*}(t, x) & =\underbrace{h(t)}_{\text {price and risk aversion impact }}) \\
\pi^{*}(t, x) x & =M(x+h(t))
\end{aligned}
$$

- Humps by pricing

$$
\begin{aligned}
d c(t) & =f\left(\text { 'MPRs' }^{\prime}\right) c(t) d t+\ldots c(t) d W^{f}(t) \\
d \pi(t) & =\ldots \\
d b(t) & =\ldots
\end{aligned}
$$

$$
\begin{aligned}
f\left(\text { 'MPRs' }^{\prime}\right) & =\frac{\widehat{\mu}-\mu}{1-\gamma}+\ldots \\
\widehat{\mu} & >\mu \text { during younger years } \\
\widehat{\mu} & <\mu \text { during older years }
\end{aligned}
$$

Ideas about how to dampen the volatility of consumption?

- Separation of preferences

Fahrenwaldt, Jensen, Steffensen (ssrn.com 2016)

$$
V(t, x)=\underbrace{\int_{t}^{n} \underbrace{v}_{\text {EIS }} \underbrace{\left(u^{-1}\left(E_{t, x}[u(c(s))]\right)\right)}_{\text {certainty equivalent }} d s}_{\text {global time aggregation }}
$$

$$
c^{*}(t, x)=f(t)(x+h(t))
$$

- Humps by separation of preferences

Jensen, Steffensen (IME 2015)

$$
V(t, x)=\int_{t}^{n} \underbrace{v}_{\text {EIS }}\left(w^{-1}\binom{\underbrace{w}_{\text {EBS }} \underbrace{\left(u^{-1}\left(E_{t, x}[u(c(s)) I(s)]\right)\right)}_{\text {certainty equivalent }}}{+\underbrace{w}_{\text {EBS }} \underbrace{u^{-1}}_{\text {certainty equivalent }} E_{t, x}^{\left[u(X(s)+b(s)) \frac{d N(s)}{d s}\right]}))} d s\right.
$$

Patience + lack of cross-generational elasticity $=$ humps

- Humps by habit

Kraft, Munk, Seifried, Wagner (ET 2017)

$$
\begin{gathered}
d h(t)=c(t)-\beta(t) h(t) \\
u(c, h)=\frac{1}{1-\gamma}(c-h)^{1-\gamma} \\
d c(t)=\ldots c(t) d t+\ldots(c(t)-h(t)) d t
\end{gathered}
$$

Habit formation + impatience $=$ humps

- Stochastic mortality in a complete market

Partly covered by Menoncin, Regis (IME 2017)

$$
\begin{aligned}
d \mu(t) & =\ldots d t+\ldots d W^{\mu}(t) \\
F(t, \mu) & =E_{t}^{Q}\left[e^{-\int_{t}^{n} r} \Phi(\mu(n))\right] \\
h(t) & =E_{t}^{Q}\left[\int_{t}^{n} e^{-\int_{t}^{s} r+\mu} a(s) d s\right] \\
c^{*}(t, x, \mu) & =\underbrace{f(t, \mu)}_{\text {consumption-to-wealth ratio }}(x+\underbrace{h(t, \mu)}_{\text {human capital }}) \\
d c(t)= & f(\text { 'MPRs' }) c(t) d t+\ldots c(t) d W^{f}(t)+\ldots c(t) d W^{\mu}(t) \\
d^{\prime} \text { Position in } F^{\prime} & =\ldots
\end{aligned}
$$

- Stochastic mortality in an incomplete market

$$
\begin{gathered}
d \mu(t)=\ldots d t+\ldots d W^{\mu}(t) \\
h(t)=\int_{t}^{m} e^{-\int_{t}^{s} r} a(s) \\
\text { or } h(t)=\int_{t}^{m} e^{-\int_{t}^{s} r}(a(s)-c(s)) d s \\
c^{*}(t, x, \mu)=\underbrace{f(t, \mu)}_{\text {consumption-to-wealth ratio }}(x+\underbrace{h(t)}_{\text {human capital }}) \\
d c(t)=f\left(\text { 'MPRs') } c(t) d t+\ldots c(t) d W^{f}(t)+\ldots c(t) d W^{\mu}(t)\right.
\end{gathered}
$$

All systematic mortality risk is borne by the policy holder (pure VA, f)

- Equilibrium considerations/predictions and the absence of mortality markets

$$
\text { MP financial } \mathrm{R}=\frac{\alpha-r}{\sigma}
$$

MP unsystematic mortality $\mathrm{R}=0(\widehat{\mu}=\mu)$

MP systematic mortality $R=0$

Zero market price on mortality risk and all risk is borne by the policy holder

