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HMMs & Particle Filters

Hidden Markov Models

x1 x2 x3 x4 x5 x6

y1 y2 y3 y4 y5 y6

I Xn is a X -valued Markov Chain with transition density f :

Xn|{Xn−1 = xn−1} ∼ f(·|xn−1)

I Yn is a Y-valued stochastic process:

Yn|{Xn = xn} ∼ g(·|xn)
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HMMs & Particle Filters

Optimal Filtering

I The filtering distribution may be expressed recursively as:

p(xn|y1:n−1) =
∫
p(xn−1|y1:n−1)f(xn|xn−1)dxn−1 Prediction

p(xn|y1:n) =
p(xn|y1:n−1)g(yn|xn)∫
p(xn|y1:n−1)g(yn|xn)dxn

Update.

I The smoothing distribution may be expressed recursively as:

p(x1:n|y1:n−1) = p(x1:n−1|y1:n−1)fn(xn|xn−1) Prediction

p(x1:n|y1:n) =
p(x1:n|y1:n−1)gn(yn|xn)∫

p(x1:n|y1:n−1)gn(yn|xn)dx1:n
Update.
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HMMs & Particle Filters

Particle Filters: Sequential Importance Resampling

At time n = 1:
I Sample Xi

1,1 ∼ q1(·).
I Weight

W i
1 ∝ f(Xi

1,1)g(y1|Xi
1,1)/q1(X

i
1,1)

I Resample.
At times n > 1, iterate:

I Sample Xi
n,n ∼ qn(·|Xi

n−1,n−1). Set Xi
n,1:n−1 = Xi

n−1.
I Weight

W i
n ∝

f(Xi
n,n|Xi

n,n−1)g(X
i
n,n|yn)

qn(Xn,n|Xn,1:n−1)

I Resample.

10



Introduction Interpretation Applications & Extensions Conclusions References

Auxiliary Particle Filters

Auxiliary [v] Particle Filters (Pitt & Shephard ’99)

If we have access to the next observation before resampling, we
could use this structure:

I Pre-weight every particle with λ(i)
n ∝ p̂(yn|X(i)

n−1).
I Propose new states, from the mixture distribution

N∑
i=1

λ(i)
n q(·|X(i)

n−1)
/ N∑

i=1

λ(i)
n .

I Weight samples, correcting for the pre-weighting.

W i
n ∝

f(Xi
n,n|Xi

n,n−1)g(X
i
n,n|yn)

λi
nqn(Xn,n|Xn,1:n−1)

I Resample particle set.
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Auxiliary Particle Filters

Some Well Known Refinements

We can tidy things up a bit:
1. The auxiliary variable step is equivalent to multinomial

resampling.
2. So, there’s no need to resample before the pre-weighting.

Now we have:
I Pre-weight every particle with λ(i)

n ∝ p̂(yn|X(i)
n−1).

I Resample
I Propose new states
I Weight samples, correcting for the pre-weighting.

W i
n ∝

f(Xi
n,n|Xi

n,n−1)g(X
i
n,n|yn)

λi
nqn(Xn,n|Xn,1:n−1)
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Interpretation
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APFs without Auxiliary Variables

General SIR Algorithms

The SIR algorithm can be used somewhat more generally.
Given {πn} defined on En = X n:

I Sample Xi
n,n ∼ qn(·|Xi

n−1). Set Xi
n,1:n−1 = Xi

n−1.
I Weight

W i
n ∝

πn(Xi
n)

πn−1(Xn,1:n−1)qn(Xn,n|Xn,1:n−1)

I Resample.
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APFs without Auxiliary Variables

An Interpretation of the APF

If we move the first step at time n+ 1 to the last at time n, we
get:

I Resample
I Propose new states
I Weight samples, correcting earlier pre-weighting.
I Pre-weight every particle with λ(i)

n+1 ∝ p̂(yn+1|X(i)
n ).

which is an SIR algorithm targetting the sequence of
distributions

ηn(xn) ∝ p(x1:n|y1:n)p̂(yn+1|xn)

which allows estimation under the actually interesting
distribution via importance sampling.
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Theoretical Considerations

Theoretical Considerations

I Direct analysis of the APF is largely unnecessary.
I Results can be obtained by considering the associated SIR

algorithm.
I SIR has a (discrete time) Feynman-Kac interpretation.
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Theoretical Considerations

For example. . .

Proposition. Under standard regularity conditions
√
N

(
ϕ̂N

n,APF − ϕn

)
→ N

(
0, σ2

n (ϕn)
)

where,

σ
2
1 (ϕ1) =

Z
p ( x1| y1)2

q1 (x1)
(ϕ1 (x1) − ϕ1)

2
dx1

σ
2
n(ϕn) =

Z
p(x1|y1:n)2

q1(x1)

„Z
ϕn(x1:n)p(x2:n|y2:n, x1)dx2:n − ϕ̄n

«2
dx1

+

t−1X
k=2

Z
p(x1:k|y1:n)2bp(x1:k−1|y1:k)qk(xk|xk−1)

„Z
ϕn(x1:n)p(xk+1:n|yk+1:n, xk)dxk+1:n − ϕ̄n

«2
dx1:k

+

Z
p(x1:n|y1:n)2bp(x1:n−1|y1:n)qn(xn|xn−1)

(ϕn(x1:n) − ϕ̄n)
2

dx1:n.
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Practical Implications

Practical Implications

I It means we’re doing importance sampling.
I Choosing p̂(yn|xn−1) = p (yn|xn = E [Xn|xn−1]) is

dangerous.
I A safer choice would be ensure that

sup
xn−1,xn

g(yn|xn)f(xn|xn−1)
p̂(yn|xn−1)q(xn|xn−1)

<∞

I Using APF doesn’t ensure superior performance.
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Practical Implications

A Contrived Illustration

Consider the following binary state-space model with common
state and observation spaces:

X = {0, 1} p(x1 = 0) = 0.5 p(xn = xn−1) = 1− δ

Y = X p(yn = xn) = 1− ε.

I δ controls ergodicity of the state process.
I ε controls the information contained in observations.

Consider estimating E(X2|Y1:2 = (0, 1)).
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Practical Implications

Variance of SIR - Variance of APF
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Practical Implications
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Applications & Extensions
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Auxiliary SMC Samplers

SMC Samplers (Del Moral, Doucet & Jasra, 2006)

SIR Techniques can be adapted for any sequence of
distributions {πn}.

I Define

π̃n(x1:n) = πn(xn)
n−1∏
k=1

Lk(xk+1, xk).

I Sample at time n,

Xi
n ∼ Kn(Xi

n−1, ·)

I Weight

W i
n ∝

πn(Xi
n)Ln−1(Xi

n, X
i
n−1)

πn−1(Xi
n−1)Kn(Xi

n−1, X
i
n)

I Resample.
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Auxiliary SMC Samplers

Auxiliary SMC Samplers

An auxiliary SMC sampler for a sequence of distributions πn

comprises:
I An SMC sampler targeting some auxiliary sequence of

distributions µn.
I A sequence of importance weight functions

w̃n(xn) ∝ dπn

dµn
(xn).

Generic approaches:
I Choose µn(xn) ∝ πn(xn)Vn(xn).
I Incorporate as much information as possible prior to

resampling.
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Auxiliary SMC Samplers

Resample-Move Approaches

A common approach in SMC Samplers:
I Choose Kn(xn−1, xn) to be πn-invariant.
I Set

Ln−1(xn, xn−1) =
πn(xn−1)Kn(xn−1, xn)

πn(xn)
.

I Leading to

Wn(xn−1, xn) =
πn(xn−1)
πn−1(xn−1)

.

I It would make more sense to resample and then move. . .
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Auxiliary SMC Samplers

An Interpretation of Pure Resample-Move

It’s SIR with auxiliary distributions. . .

µn(xn) = πn+1(xn)

Ln−1(xn, xn−1) =
µn−1(xn−1)Kn(xn−1, xn)

µn−1(xn)
=
πn(xn−1)Kn(xn−1, xn)

πn(xn)

wn(xn−1:n) =
µn(xn)
µn−1(xn)

=
πn+1(xn)
πn(xn)

w̃n(xn) =
µn−1(xn)
µn(xn)

=
πn(xn)
πn+1(xn)

.
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Auxiliary SMC Samplers

Piecewise-Deterministic Processes
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Auxiliary SMC Samplers

“Filtering” of Piecewise-Deterministic Processes
(Whiteley, Johansen & Godsill, 2007)

I Xn = (kn, τn,1:kn , θn,0:kn) specifies a continuous time
trajectory (ζt)t∈[0,tn].

I ζt observed in the presence of noise, e.g. Yn = ζtn + Vn

I Target sequence of distributions {πn} on nested spaces:

πn(k, τ1:k, θ0:k) ∝ q(θ0)
k∏

j=1

f(τj |τj−1)q(θj |τj , θj−1, τj−1)

× S(tn, τk)
n∏

p=1

g(yp|ζtp)
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Auxiliary SMC Samplers

“Filtering” of Piecewise-Deterministic Processes
(Whiteley, Johansen & Godsill, 2007)

I πn yields posterior marginal distributions for recent history
of ζt

I Employ auxiliary SMC samplers
I Choose µn(k, τ1:k, θ0:k) ∝ πn(k, τ1:k, θ0:k)Vn(τk, θk)
I Kernel proposes new pairs (τj , θj) and adjusts recent pairs
I Applications in object-tracking and finance
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The Auxiliary SMC-PHD Filter

Probability Hypothesis Density Filtering
(Mahler, 2003; Vo et al. 2005)

I Approximates the optimal filter for a class of spatial point
process-valued HMMs

I A recursion for intensity functions:

αn(xn) =
∫

E
f(xn|xn−1)pS(xn−1)α̂n−1(xn−1)dxn−1 + γ(xn)

α̂n(xn) =

[
1− pD(xn) +

mn∑
r=1

ψn,r(xn)
Zn,r

]
αn(xn).

I Approximate the intensity functions {α̂n}n≥0 using SMC
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The Auxiliary SMC-PHD Filter

An ASMC Implementation (Whiteley et al., 2007)

I α̂n−1(dxn−1) ≈ α̂N
n−1(dxn−1) = 1

N

∑N
i=1W

i
n−1δXi

n−1
(dxn−1)

I In a simple case, target integral at nth iteration:∫
E

∫
E

mn∑
r=1

ϕ(xn)
ψn,r(xn)
Zn,r

f(xn|xn−1)pS(xn−1)dxnα̂
N
n−1(dxn−1)

I Proposal distribution qn(x′n, x
′
n−1, rn) built from α̂N

n−1,
potential functions {Vn,r} and factorises:

qn(x′n|x′n−1, r)

∑N
i=1 Vn,r(X

(i)
n−1)Wn−1δX(i)

n−1

(dx′n−1)∑N
i=1 Vn,r(X

(i)
n−1)Wn−1

qn(r)

I and also estimate normalising constants {Zn,r} by IS
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On Stratification

Stratification. . .

I Back to HMM, let (Ap)M
p=1 denote a partition of X

I Introduce stratum indicator variable Rn =
∑M

p=1 pIAp(Xn)
I Define extended model:

p(x1:n, r1:n|y1:n) ∝ g(yn|xn)f(xn|rn, xn−1)f(rn|xn−1)
× p(x1:n−1, r1:n−1|y1:n−1)

I An auxiliary SMC filter resamples from distribution with
N ×M support points, over particles × strata

I Applications in switching state space models
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Conclusions
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Conclusions

Conclusions

I The APF is a standard SIR algorithm for nonstandard
distributions.

I This interpretation. . .
I allows standard results to be applied directly,
I provides guidance on implementation,
I and allows the same technique to be applied in more general

settings.

I Thanks for listening. . . any questions?
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