Introduction	Interpretation	Applications & Extensions	Conclusions	References
00	0000			

Auxiliary Particle Methods Perspectives & Applications

Adam M. Johansen¹

adam.johansen@bristol.ac.uk

Oxford University Man Institute — 29th May 2008

Introduction	Interpretation	Applications & Extensions	Conclusions	References
00	0000			

Introduction

Introduction	Interpretation	Applications & Extensions	Conclusions	References
000 00	00 00 0000	0000000 00 0		
$\mathbf{Outline}$				

- ▶ Background: Particle Filters
 - Hidden Markov Models & Filtering
 - ▶ Particle Filters & Sequential Importance Resampling
 - Auxiliary Particle Filters
- Interpretation
 - ▶ Auxiliary Particle Filters are SIR Algorithms
 - Theoretical Considerations
 - Practical Implications
- Applications
 - Auxiliary SMC Samplers
 - ▶ The Probability Hypothesis Density
 - On Stratification
- Conclusions

・ロト ・回ト ・ヨト ・ヨー うへの

Introduction	Interpretation	Applications & Extensions	Conclusions	References
000 00	00 00 0000	0000000 00 0		
$\mathbf{Outline}$				

- ▶ Background: Particle Filters
 - Hidden Markov Models & Filtering
 - ▶ Particle Filters & Sequential Importance Resampling
 - Auxiliary Particle Filters
- Interpretation
 - ▶ Auxiliary Particle Filters are SIR Algorithms
 - Theoretical Considerations
 - Practical Implications
- Applications
 - Auxiliary SMC Samplers
 - ▶ The Probability Hypothesis Density
 - On Stratification
- Conclusions

◆□ > ◆□ > ◆三 > ◆三 > ● ● ●

Introduction	Interpretation	Applications & Extensions	Conclusions	References
000 00	00 00 0000	0000000 00 0		
$\mathbf{Outline}$				

- ▶ Background: Particle Filters
 - Hidden Markov Models & Filtering
 - ▶ Particle Filters & Sequential Importance Resampling
 - Auxiliary Particle Filters
- Interpretation
 - ▶ Auxiliary Particle Filters are SIR Algorithms
 - Theoretical Considerations
 - Practical Implications
- Applications
 - Auxiliary SMC Samplers
 - ▶ The Probability Hypothesis Density
 - On Stratification
- Conclusions

◆□ > ◆□ > ◆三 > ◆三 > ● ● ●

Introduction	Interpretation	Applications & Extensions	Conclusions	References
000 00	00 00 0000	0000000 00 0		
$\mathbf{Outline}$				

- ▶ Background: Particle Filters
 - Hidden Markov Models & Filtering
 - ▶ Particle Filters & Sequential Importance Resampling
 - Auxiliary Particle Filters
- Interpretation
 - ▶ Auxiliary Particle Filters are SIR Algorithms
 - Theoretical Considerations
 - Practical Implications
- Applications
 - Auxiliary SMC Samplers
 - ▶ The Probability Hypothesis Density
 - On Stratification
- Conclusions

◆□ > ◆□ > ◆三 > ◆三 > ● ● ●

Introduction	Interpretation	Applications & Extensions	Conclusions	References	
0					
000	00 0000	00 0			
UMMs & Destide Biltons					

Hidden Markov Models

▶ X_n is a \mathcal{X} -valued Markov Chain with transition density f:

$$X_n | \{ X_{n-1} = x_{n-1} \} \sim f(\cdot | x_{n-1})$$

• Y_n is a \mathcal{Y} -valued stochastic process:

$$Y_n|\{X_n = x_n\} \sim g(\cdot|x_n)$$

・ロト ・回ト ・ヨト ・ヨト

- 2

Introduction	Interpretation	Applications & Extensions	Conclusions	References	
0 0●0	00 00	0000000 00			
HMMs & Particle Filters					

Optimal Filtering

▶ The *filtering distribution* may be expressed recursively as:

$$p(x_n|y_{1:n-1}) = \int p(x_{n-1}|y_{1:n-1})f(x_n|x_{n-1})dx_{n-1} \quad \text{Prediction}$$

$$p(x_n|y_{1:n}) = \frac{p(x_n|y_{1:n-1})g(y_n|x_n)}{\int p(x_n|y_{1:n-1})g(y_n|x_n)dx_n} \qquad \text{Update.}$$

▶ The *smoothing distribution* may be expressed recursively as:

$$p(x_{1:n}|y_{1:n-1}) = p(x_{1:n-1}|y_{1:n-1})f_n(x_n|x_{n-1})$$
Prediction
$$p(x_{1:n}|y_{1:n}) = \frac{p(x_{1:n}|y_{1:n-1})g_n(y_n|x_n)}{\int p(x_{1:n}|y_{1:n-1})g_n(y_n|x_n)dx_{1:n}}$$
Update.

Introduction	Interpretation	Applications & Extensions	Conclusions	References	
0 0●0	00 00	0000000 00			
HMMs & Particle Filters					

Optimal Filtering

▶ The *filtering distribution* may be expressed recursively as:

$$p(x_n|y_{1:n-1}) = \int p(x_{n-1}|y_{1:n-1})f(x_n|x_{n-1})dx_{n-1} \quad \text{Prediction}$$

$$p(x_n|y_{1:n}) = \frac{p(x_n|y_{1:n-1})g(y_n|x_n)}{\int p(x_n|y_{1:n-1})g(y_n|x_n)dx_n} \quad \text{Update.}$$

▶ The *smoothing distribution* may be expressed recursively as:

$$p(x_{1:n}|y_{1:n-1}) = p(x_{1:n-1}|y_{1:n-1})f_n(x_n|x_{n-1})$$
Prediction
$$p(x_{1:n}|y_{1:n}) = \frac{p(x_{1:n}|y_{1:n-1})g_n(y_n|x_n)}{\int p(x_{1:n}|y_{1:n-1})g_n(y_n|x_n)dx_{1:n}}$$
Update.

Introduction	Interpretation	Applications & Extensions	Conclusions	References	
	00	000000			
000					
00	0000				
HMMs & Particle Filters					

Particle Filters: Sequential Importance Resampling

At time n = 1:

- Sample $X_{1,1}^i \sim q_1(\cdot)$.
- ► Weight

 $W_1^i \propto f(X_{1,1}^i)g(y_1|X_{1,1}^i)/q_1(X_{1,1}^i)$

▶ Resample.

At times n > 1, iterate:

▶ Sample $X_{n,n}^i \sim q_n(\cdot | X_{n-1,n-1}^i)$. Set $X_{n,1:n-1}^i = X_{n-1}^i$. ▶ Weight

$$W_n^i \propto \frac{f(X_{n,n}^i | X_{n,n-1}^i) g(X_{n,n}^i | y_n)}{q_n(X_{n,n} | X_{n,1:n-1})}$$

▶ Resample.

Introduction	Interpretation	Applications & Extensions	Conclusions	References	
	00	000000			
•0	0000				
Auxiliary Particle Filters					

Auxiliary [v] Particle Filters (Pitt & Shephard '99)

If we have access to the next observation before resampling, we could use this structure:

- Pre-weight every particle with $\lambda_n^{(i)} \propto \hat{p}(y_n | X_{n-1}^{(i)})$.
- ▶ Propose new states, from the mixture distribution

$$\sum_{i=1}^N \lambda_n^{(i)} q(\cdot | X_{n-1}^{(i)}) / \sum_{i=1}^N \lambda_n^{(i)}$$

▶ Weight samples, correcting for the pre-weighting.

$$W_{n}^{i} \propto \frac{f(X_{n,n}^{i}|X_{n,n-1}^{i})g(X_{n,n}^{i}|y_{n})}{\lambda_{n}^{i}q_{n}(X_{n,n}|X_{n,1:n-1})}$$

▶ Resample particle set.

Introduction	Interpretation	Applications & Extensions	Conclusions	References	
	00	000000			
00	0000				
Auxiliary Particle Filters					

Some Well Known Refinements

We can tidy things up a bit:

- 1. The auxiliary variable step is equivalent to multinomial resampling.
- 2. So, there's no need to resample before the pre-weighting.

Now we have:

- Pre-weight every particle with $\lambda_n^{(i)} \propto \hat{p}(y_n | X_{n-1}^{(i)})$.
- ▶ Resample
- Propose new states
- ▶ Weight samples, correcting for the pre-weighting.

$$W_{n}^{i} \propto \frac{f(X_{n,n}^{i}|X_{n,n-1}^{i})g(X_{n,n}^{i}|y_{n})}{\lambda_{n}^{i}q_{n}(X_{n,n}|X_{n,1:n-1})}$$

Introduction Interpretation	Applications & Extensions	Conclusions	References
00 0000			

Interpretation

Introduction	Interpretation	Applications & Extensions	Conclusions	References	
	•o	000000			
00	0000				
APFs without Auxiliary Variables					

General SIR Algorithms

The SIR algorithm can be used somewhat more generally. Given $\{\pi_n\}$ defined on $E_n = \mathcal{X}^n$:

► Sample $X_{n,n}^i \sim q_n(\cdot | X_{n-1}^i)$. Set $X_{n,1:n-1}^i = X_{n-1}^i$.

Weight

$$W_n^i \propto \frac{\pi_n(X_n^i)}{\pi_{n-1}(X_{n,1:n-1})q_n(X_{n,n}|X_{n,1:n-1})}$$

Resample.

Introduction	Interpretation	Applications & Extensions	Conclusions	References	
	00				
	0000				
APFs without Auxiliary Variables					

An Interpretation of the APF

If we move the first step at time n + 1 to the last at time n, we get:

- ▶ Resample
- Propose new states
- ▶ Weight samples, correcting earlier pre-weighting.

▶ Pre-weight every particle with $\lambda_{n+1}^{(i)} \propto \hat{p}(y_{n+1}|X_n^{(i)})$. which is an SIR algorithm targetting the sequence of distributions

$$\eta_n(x_n) \propto p(x_{1:n}|y_{1:n})\hat{p}(y_{n+1}|x_n)$$

which allows estimation under the actually interesting distribution via importance sampling.

Introduction	Interpretation	Applications & Extensions	Conclusions	References	
	00	000000			
	•0				
00	0000				
Theoretical Considerations					

Theoretical Considerations

- ▶ Direct analysis of the APF is largely unnecessary.
- Results can be obtained by considering the associated SIR algorithm.
- ▶ SIR has a (discrete time) Feynman-Kac interpretation.

For example...

Proposition. Under standard regularity conditions

$$\sqrt{N}\left(\widehat{\varphi}_{n,APF}^{N}-\overline{\varphi}_{n}\right) \rightarrow \mathcal{N}\left(0,\sigma_{n}^{2}\left(\varphi_{n}\right)\right)$$

where,

$$\begin{split} \sigma_{1}^{2}\left(\varphi_{1}\right) &= \int \frac{p\left(x_{1} \mid y_{1}\right)^{2}}{q_{1}\left(x_{1}\right)} \left(\varphi_{1}\left(x_{1}\right) - \overline{\varphi}_{1}\right)^{2} dx_{1} \\ \sigma_{n}^{2}(\varphi_{n}) &= \int \frac{p(x_{1} \mid y_{1:n})^{2}}{q_{1}\left(x_{1}\right)} \left(\int \varphi_{n}(x_{1:n}) p(x_{2:n} \mid y_{2:n}, x_{1}) dx_{2:n} - \bar{\varphi}_{n}\right)^{2} dx_{1} \\ &+ \sum_{k=2}^{t-1} \int \frac{p(x_{1:k} \mid y_{1:n})^{2}}{\hat{\mathbf{p}}(\mathbf{x}_{1:k-1} \mid \mathbf{y}_{1:k}) q_{k}(x_{k} \mid x_{k-1})} \left(\int \varphi_{n}(x_{1:n}) p(x_{k+1:n} \mid y_{k+1:n}, x_{k}) dx_{k+1:n} - \bar{\varphi}_{n}\right)^{2} dx_{1:k} \\ &+ \int \frac{p(x_{1:n} \mid y_{1:n})^{2}}{\hat{\mathbf{p}}(\mathbf{x}_{1:n-1} \mid \mathbf{y}_{1:n}) q_{n}(x_{n} \mid x_{n-1})} \left(\varphi_{n}(x_{1:n}) - \bar{\varphi}_{n}\right)^{2} dx_{1:n}. \end{split}$$

< □ > < @ > < 글 > < 글 > 글 - 키익은 17

Introduction	Interpretation	Applications & Extensions	Conclusions	References	
	00	000000			
00	0000				
Practical Implications					

Practical Implications

- ▶ It means we're doing importance sampling.
- ► Choosing $\hat{p}(y_n|x_{n-1}) = p(y_n|x_n = \mathbb{E}[X_n|x_{n-1}])$ is dangerous.
- ▶ A safer choice would be ensure that

$$\sup_{x_{n-1},x_n} \frac{g(y_n|x_n)f(x_n|x_{n-1})}{\hat{p}(y_n|x_{n-1})q(x_n|x_{n-1})} < \infty$$

▶ Using APF doesn't *ensure* superior performance.

Introduction	Interpretation	Applications & Extensions	Conclusions	References	
	00	000000			
00	0000				
Practical Implications					

A Contrived Illustration

Consider the following binary state-space model with common state and observation spaces:

$$\mathcal{X} = \{0, 1\}$$
 $p(x_1 = 0) = 0.5$ $p(x_n = x_{n-1}) = 1 - \delta$
 $\mathcal{Y} = \mathcal{X}$ $p(y_n = x_n) = 1 - \varepsilon.$

- δ controls ergodicity of the state process.
- \blacktriangleright ϵ controls the information contained in observations.

Consider estimating $\mathbb{E}(X_2|Y_{1:2} = (0, 1)).$

・ロト ・回ト ・ヨト ・ヨー うへの

Introduction	Interpretation	Applications & Extensions	Conclusions	References
	00	000000		
000	00	00		
	0000			
Practical Impli	cations			

Variance of SIR - Variance of APF

δ

▲ロト ▲園 ▶ ▲ 国 ▶ ▲ 国 ▶ ● 国 ● の 9

Introduction	Interpretation	Applications & Extensions	Conclusions	References
000	00	00		
	0000			

Applications & Extensions

Introduction	Interpretation	Applications & Extensions	Conclusions	References
	00	000000		
00	0000			
Auxiliary SMC Samplers				

SMC Samplers (Del Moral, Doucet & Jasra, 2006)

SIR Techniques can be adapted for any sequence of distributions $\{\pi_n\}$.

Define

$$\widetilde{\pi_n}(x_{1:n}) = \pi_n(x_n) \prod_{k=1}^{n-1} L_k(x_{k+1}, x_k).$$

 \blacktriangleright Sample at time n,

$$X_n^i \sim K_n(X_{n-1}^i, \cdot)$$

$$W_n^i \propto \frac{\pi_n(X_n^i)L_{n-1}(X_n^i, X_{n-1}^i)}{\pi_{n-1}(X_{n-1}^i)K_n(X_{n-1}^i, X_n^i)}$$

▶ Resample.

Introduction	Interpretation	Applications & Extensions	Conclusions	References	
	00	000000			
00	0000				
Auxiliary SMC Samplers					

Auxiliary SMC Samplers

An auxiliary SMC sampler for a sequence of distributions π_n comprises:

- ► An SMC sampler targeting some auxiliary sequence of distributions µ_n.
- ▶ A sequence of importance weight functions

$$\widetilde{w_n}(x_n) \propto \frac{\mathrm{d}\pi_n}{\mathrm{d}\mu_n}(x_n).$$

Generic approaches:

• Choose $\mu_n(x_n) \propto \pi_n(x_n) V_n(x_n)$.

 Incorporate as much information as possible prior to resampling.

Introduction	Interpretation	Applications & Extensions	Conclusions	References	
		000000			
00	0000				
Auxiliary SMC Samplers					

Auxiliary SMC Samplers

An auxiliary SMC sampler for a sequence of distributions π_n comprises:

- ► An SMC sampler targeting some auxiliary sequence of distributions µ_n.
- ▶ A sequence of importance weight functions

$$\widetilde{w_n}(x_n) \propto \frac{\mathrm{d}\pi_n}{\mathrm{d}\mu_n}(x_n).$$

Generic approaches:

- Choose $\mu_n(x_n) \propto \pi_n(x_n) V_n(x_n)$.
- Incorporate as much information as possible prior to resampling.

Introduction	Interpretation	Applications & Extensions	Conclusions	References
	00	000000		
00	0000			
Auxiliary SMC Samplers				

Resample-Move Approaches

A common approach in SMC Samplers:

- Choose $K_n(x_{n-1}, x_n)$ to be π_n -invariant.
- Set $L_{n-1}(x_n, x_{n-1}) = \frac{\pi_n(x_{n-1})K_n(x_{n-1}, x_n)}{\pi_n(x_n)}.$
- ► Leading to

$$W_n(x_{n-1}, x_n) = \frac{\pi_n(x_{n-1})}{\pi_{n-1}(x_{n-1})}.$$

▶ It would make more sense to resample and then move...

・ロ・・母・・ヨ・・ヨ・ ヨー うへの

Introduction	Interpretation	Applications & Extensions	Conclusions	References	
	00	0000000			
00	0000				
Auxiliary SMC Samplers					

An Interpretation of Pure Resample-Move

It's SIR with auxiliary distributions...

$$\mu_n(x_n) = \pi_{n+1}(x_n)$$

$$L_{n-1}(x_n, x_{n-1}) = \frac{\mu_{n-1}(x_{n-1})K_n(x_{n-1}, x_n)}{\mu_{n-1}(x_n)} = \frac{\pi_n(x_{n-1})K_n(x_{n-1}, x_n)}{\pi_n(x_n)}$$

$$w_n(x_{n-1:n}) = \frac{\mu_n(x_n)}{\mu_{n-1}(x_n)} = \frac{\pi_{n+1}(x_n)}{\pi_n(x_n)}$$

$$\widetilde{w}_n(x_n) = \frac{\mu_{n-1}(x_n)}{\mu_n(x_n)} = \frac{\pi_n(x_n)}{\pi_{n+1}(x_n)}.$$

Introduction	Interpretation	Applications & Extensions	Conclusions	References	
	00	0000000			
00	0000				
Auxiliary SMC Samplers					

Piecewise-Deterministic Processes

Introduction	Interpretation	Applications & Extensions	Conclusions	References	
		0000000			
00	0000				

"Filtering" of Piecewise-Deterministic Processes (Whiteley, Johansen & Godsill, 2007)

- ► $X_n = (k_n, \tau_{n,1:k_n}, \theta_{n,0:k_n})$ specifies a continuous time trajectory $(\zeta_t)_{t \in [0,t_n]}$.
- ► ζ_t observed in the presence of noise, e.g. $Y_n = \zeta_{t_n} + V_n$
- Target sequence of distributions $\{\pi_n\}$ on nested spaces:

$$\pi_n(k, \tau_{1:k}, \theta_{0:k}) \propto q(\theta_0) \prod_{j=1}^k f(\tau_j | \tau_{j-1}) q(\theta_j | \tau_j, \theta_{j-1}, \tau_{j-1})$$
$$\times S(t_n, \tau_k) \prod_{p=1}^n g(y_p | \zeta_{t_p})$$

・ロト ・回ト ・ヨト ・ヨー うへの

Introduction	Interpretation	Applications & Extensions	Conclusions	References	
	00	000000			
00	0000				
Auxiliary SMC Samplers					

"Filtering" of Piecewise-Deterministic Processes (Whiteley, Johansen & Godsill, 2007)

- ▶ π_n yields posterior marginal distributions for recent history of ζ_t
- ▶ Employ auxiliary SMC samplers
- Choose $\mu_n(k, \tau_{1:k}, \theta_{0:k}) \propto \pi_n(k, \tau_{1:k}, \theta_{0:k}) V_n(\tau_k, \theta_k)$
- ▶ Kernel proposes new pairs (τ_j, θ_j) and adjusts recent pairs
- ▶ Applications in object-tracking and finance

Introduction	Interpretation	Applications & Extensions	Conclusions	References	
	00	000000			
000	00	●○			
The Auxiliant SMC BUD Filter					

Probability Hypothesis Density Filtering (Mahler, 2003; Vo et al. 2005)

- ▶ Approximates the optimal filter for a class of spatial point process-valued HMMs
- ► A recursion for intensity functions:

$$\alpha_n(x_n) = \int_E f(x_n | x_{n-1}) p_S(x_{n-1}) \widehat{\alpha}_{n-1}(x_{n-1}) \mathrm{d}x_{n-1} + \gamma(x_n)$$
$$\widehat{\alpha}_n(x_n) = \left[1 - p_D(x_n) + \sum_{r=1}^{m_n} \frac{\psi_{n,r}(x_n)}{\mathcal{Z}_{n,r}}\right] \alpha_n(x_n).$$

• Approximate the intensity functions $\{\widehat{\alpha}_n\}_{n\geq 0}$ using SMC

Introduction	Interpretation	Applications & Extensions	Conclusions	References
	00	000000		
		00		
00	0000			

The Auxiliary SMC-PHD Filter

An ASMC Implementation (Whiteley et al., 2007)

•
$$\widehat{\alpha}_{n-1}(dx_{n-1}) \approx \widehat{\alpha}_{n-1}^N(dx_{n-1}) = \frac{1}{N} \sum_{i=1}^N W_{n-1}^i \delta_{X_{n-1}^i}(dx_{n-1})$$

 \blacktriangleright In a simple case, target integral at *n*th iteration:

$$\int_{E} \int_{E} \sum_{r=1}^{m_{n}} \varphi(x_{n}) \frac{\psi_{n,r}(x_{n})}{\mathcal{Z}_{n,r}} f(x_{n}|x_{n-1}) p_{S}(x_{n-1}) dx_{n} \widehat{\alpha}_{n-1}^{N}(dx_{n-1})$$

▶ Proposal distribution $q_n(x'_n, x'_{n-1}, r_n)$ built from $\widehat{\alpha}_{n-1}^N$, potential functions $\{V_{n,r}\}$ and factorises:

$$q_{n}(x'_{n}|x'_{n-1},r)\frac{\sum_{i=1}^{N}V_{n,r}(X_{n-1}^{(i)})W_{n-1}\delta_{X_{n-1}^{(i)}}(dx'_{n-1})}{\sum_{i=1}^{N}V_{n,r}(X_{n-1}^{(i)})W_{n-1}}q_{n}(r)$$

▶ and also estimate normalising constants $\{Z_{n,r}\}$ by IS

Introduction	Interpretation	Applications & Extensions	Conclusions	References
	00	000000		
00	0000	•		
On Stratification	n			

Stratification...

- ▶ Back to HMM, let $(A_p)_{p=1}^M$ denote a partition of \mathcal{X}
- Introduce stratum indicator variable $R_n = \sum_{p=1}^M p \mathbb{I}_{A_p}(X_n)$
- ▶ Define extended model:

$$p(x_{1:n}, r_{1:n}|y_{1:n}) \propto g(y_n|x_n) f(x_n|r_n, x_{n-1}) f(r_n|x_{n-1})$$
$$\times p(x_{1:n-1}, r_{1:n-1}|y_{1:n-1})$$

- An auxiliary SMC filter resamples from distribution with $N \times M$ support points, over *particles* \times *strata*
- ▶ Applications in switching state space models

Introduction	Interpretation	Applications & Extensions	Conclusions	References
00	0000			

Conclusions

<□> <□> <□> <=> <=> <=> <=> <=> <=> <</p>

Introduction	Interpretation	Applications & Extensions	Conclusions	References
			•	
00	0000			
Conclusions				

▶ The APF is a standard SIR algorithm for nonstandard distributions.

- ▶ This interpretation...
 - ▶ allows standard results to be applied directly,
 - ▶ provides guidance on implementation,
 - ▶ and allows the same technique to be applied in more general settings.
- ▶ Thanks for listening...any questions?

Introduction	Interpretation	Applications & Extensions	Conclusions	References
			•	
00	0000			
Conclusions				

- ▶ The APF is a standard SIR algorithm for nonstandard distributions.
- ▶ This interpretation...
 - ▶ allows standard results to be applied directly,
 - ▶ provides guidance on implementation,
 - ▶ and allows the same technique to be applied in more general settings.
- ▶ Thanks for listening...any questions?

Introduction	Interpretation	Applications & Extensions	Conclusions	References
			•	
00	0000			
Conclusions				

- ▶ The APF is a standard SIR algorithm for nonstandard distributions.
- ▶ This interpretation...
 - ▶ allows standard results to be applied directly,
 - ▶ provides guidance on implementation,
 - ▶ and allows the same technique to be applied in more general settings.
- ▶ Thanks for listening...any questions?

Introduction	Interpretation	Applications & Extensions	Conclusions	References
0	00	000000	•	
000	00	00		
Conclusions		Č		

- ▶ The APF is a standard SIR algorithm for nonstandard distributions.
- ▶ This interpretation...
 - ▶ allows standard results to be applied directly,
 - ▶ provides guidance on implementation,
 - ▶ and allows the same technique to be applied in more general settings.
- ▶ Thanks for listening...any questions?

Introduction	Interpretation	Applications & Extensions	Conclusions	References
			•	
000	00	00		
Conclusions	0000			
Contractions				

- ▶ The APF is a standard SIR algorithm for nonstandard distributions.
- ▶ This interpretation...
 - ▶ allows standard results to be applied directly,
 - ▶ provides guidance on implementation,
 - ▶ and allows the same technique to be applied in more general settings.
- ▶ Thanks for listening...any questions?

Introduction	Interpretation	Applications & Extensions	Conclusions	References
			•	
00	0000			
Conclusions				

- ▶ The APF is a standard SIR algorithm for nonstandard distributions.
- ▶ This interpretation...
 - ▶ allows standard results to be applied directly,
 - ▶ provides guidance on implementation,
 - ▶ and allows the same technique to be applied in more general settings.
- ▶ Thanks for listening...any questions?

Introduction	Interpretation	Applications & Extensions	Conclusions	References
			•	
000	00	00		
Conclusions	0000			
Contractions				

- ▶ The APF is a standard SIR algorithm for nonstandard distributions.
- ▶ This interpretation...
 - ▶ allows standard results to be applied directly,
 - provides guidance on implementation,
 - ▶ and allows the same technique to be applied in more general settings.
- ▶ Thanks for listening...any questions?

References

- P. Del Moral, A. Doucet, and A. Jasra. Sequential Monte Carlo samplers. Journal of the Royal Statistical Society B, 63(3):411-436, 2006.
- [2] A. M. Johansen and A. Doucet. Auxiliary variable sequential Monte Carlo methods. Technical Report 07:09, University of Bristol, Department of Mathematics – Statistics Group, University Walk, Bristol, BS8 1TW, UK, July 2007.
- [3] A. M. Johansen and A. Doucet. A note on the auxiliary particle filter. Statistics and Probability Letters, 2008. To appear.
- [4] A. M. Johansen and N. Whiteley. A modern perspective on auxiliary particle filters. In Proceedings of Workshop on Inference and Estimation in Probabilistic Time Series Models. Isaac Newton Institute, June 2008. To appear.
- R. P. S. Mahler. Multitarget Bayes filtering via first-order multitarget moments. *IEEE Transactions on Aerospace and Electronic Systems*, 39(4):1152, October 2003.
- [6] M. K. Pitt and N. Shephard. Filtering via simulation: Auxiliary particle filters. Journal of the American Statistical Association, 94(446):590-599, 1999.
- [7] B. Vo, S.S. Singh, and A. Doucet. Sequential Monte Carlo methods for multi-target filtering with random finite sets. *IEEE Transactions on Aerospace and Electronic Systems*, 41(4):1223–1245, October 2005.
- [8] N. Whiteley, A. M. Johansen, and S. Godsill. Monte Carlo filtering of piecewise-deterministic processes. Technical Report CUED/F-INFENG/TR-592, University of Cambridge, Department of Engineering, Cambridge University Engineering Department, Trumpington Street, Cambridge, CB2 1PZ, December 2007.
- [9] N. Whiteley, S. Singh, and S. Godsill. Auxiliary particle implementation of the probability hypothesis density filter. Technical Report CUED F-INFENG/590, University of Cambridge, Department of Engineering, Trumpington Street, Cambridge, CB1 2PZ, United Kingdom, 2007.