Auxiliary Particle Methods
Perspectives & Applications

Adam M. Johansen!

adam. johansen@bristol.ac.uk

Oxford University Man Institute — 29th May 2008

1C‘Jollaﬂaorautors include: Arnaud Doucet, Nick Whiteley



Introduction

Introduction



Introduction
[ ]

Outline

Outline

» Background: Particle Filters

» Hidden Markov Models & Filtering
» Particle Filters & Sequential Importance Resampling
» Auxiliary Particle Filters



Introduction
[ ]

Outline

Outline

» Background: Particle Filters

» Hidden Markov Models & Filtering
» Particle Filters & Sequential Importance Resampling
» Auxiliary Particle Filters
» Interpretation
» Auxiliary Particle Filters are SIR Algorithms
» Theoretical Considerations
» Practical Implications



Introduction
[ ]

Outline

Outline

» Background: Particle Filters

» Hidden Markov Models & Filtering
» Particle Filters & Sequential Importance Resampling
» Auxiliary Particle Filters
» Interpretation
» Auxiliary Particle Filters are SIR Algorithms
» Theoretical Considerations
» Practical Implications
» Applications

» Auxiliary SMC Samplers
» The Probability Hypothesis Density
» On Stratification



Introduction
[ ]

Outline

Outline

» Background: Particle Filters

» Hidden Markov Models & Filtering
» Particle Filters & Sequential Importance Resampling
» Auxiliary Particle Filters

» Interpretation

» Auxiliary Particle Filters are SIR Algorithms
» Theoretical Considerations
» Practical Implications
» Applications
» Auxiliary SMC Samplers
» The Probability Hypothesis Density
» On Stratification

» Conclusions



Introduction

@00

HMDMs & Particle Filters

Hidden Markov Models

» X, is a X-valued Markov Chain with transition density f:

Xn|{Xn71 = $n,1} ~ f(’l'nfl)

» Y, is a Y-valued stochastic process:
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HMDMs & Particle Filters

Optimal Filtering

» The filtering distribution may be expressed recursively as:

P(@nly1n-1) = / P(Tn-1]y1:n—1) f(Tn|Tp—1)dzy—1  Prediction

P(Tnly1:n—1)9(Yn|Tn)
Tn|Y1n) =
p( |y1 ) fp(xn‘yl:n—l)g(yn|xn)d$n

Update.
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HMDMs & Particle Filters

Optimal Filtering

» The filtering distribution may be expressed recursively as:

P(@nly1n-1) = / P(Tn-1]y1:n—1) f(Tn|Tp—1)dzy—1  Prediction

p(l‘ |y1_ ): p(xn‘ylzn—l)g(yn‘$n>
e fp(xn‘yl:n—l)g(yn|$n)dxn

Update.

» The smoothing distribution may be expressed recursively as:

P(T1n|yim—1) = P(@rn-1Y1n—1) fu(Tn|Zn-1) Prediction

p($1- |y1. ): p(x1:n|y1:n71)gn(yn|xn)
T (@1 Yin—1)gn (Yn|Tn) dT1m

Update.
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HMDMs & Particle Filters

Particle Filters: Sequential Importance Resampling

At time n = 1:
» Sample Xil ~q(-)-
» Weight
le X f(Xf,l)g(y1|Xf’1)/q1(Xf,1)
» Resample.

At times n > 1, iterate:

> Sample sz,n ~ %("X;—l,n—l)- Set sz,l;n—l =X},
» Weight ' . '
i f(X;z,n|X7Zz,n—1)g(X711,n‘yn)
W, o
Qn(Xnm, Xn,l:n—l)

» Resample.
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Auxiliary Particle Filters

Auxiliary [v] Particle Filters (Pitt & Shephard '99)

If we have access to the next observation before resampling, we

could use this structure:
» Pre-weight every particle with )\1(11) x ﬁ(yn|X7(Ql).

» Propose new states, from the mixture distribution

N ‘ N
Do MaC1x )/ A,
i=1 i=1
» Weight samples, correcting for the pre-weighting.

i f(qu‘L,n|X;L,n—1)g(X$L,n|yn)
W, -
)\;?LQn(Xn,n Xn,l:n—l)

» Resample particle set.

11
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Auxiliary Particle Filters

Some Well Known Refinements

We can tidy things up a bit:

1. The auxiliary variable step is equivalent to multinomial
resampling.

2. So, there’s no need to resample before the pre-weighting.
Now we have:

» Pre-weight every particle with )\1@ x ﬁ(yn|X7(Ql).

» Resample

» Propose new states

» Weight samples, correcting for the pre-weighting.

f(XaéL,n|Xg,nfl)g(X7i,n‘yn)

W? o ,
" A%lqn(Xn,n Xn,l:nfl)

12
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APFs without Auxiliary Variables

General SIR Algorithms

The SIR algorithm can be used somewhat more generally.
Given {m,} defined on E,, = X™:

» Sample Xﬁ,n ~ Qn(‘\Xfl— ). Set Xfl,lzn—1 = sz—r
» Weight

7Tn—1(Xn,lzn—l)Qn(Xn,n|Xn,1:n—1)

i
W, o«

» Resample.

14
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APFs without Auxiliary Variables

An Interpretation of the APF

If we move the first step at time n + 1 to the last at time n, we
get:

» Resample

» Propose new states

» Weight samples, correcting earlier pre-weighting.

» Pre-weight every particle with )\,53_1 x ﬁ(yn+1|X,(f)).

which is an SIR algorithm targetting the sequence of
distributions

nn(xn) X p(xl:n‘ylzn)ﬁ(yn—&—l ‘xn)

which allows estimation under the actually interesting
distribution via importance sampling.

15
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Theoretical Considerations

Theoretical Considerations

» Direct analysis of the APF is largely unnecessary.

» Results can be obtained by considering the associated SIR
algorithm.

» SIR has a (discrete time) Feynman-Kac interpretation.

16
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Theoretical Considerations

For example. ..

Proposition. Under standard regularity conditions
VN (@nN,APF - @n) - N (Oa 07% ((Pn))
where,

2
ot (o) = [P (o) ) ) ey

q1 (z1)
p(@ilyin)? 2
o2 (¢n) 2/771 (/<Pn(951:n)17(902:n|y2:mwl)dm;n — @n ) dzy
q1(z1)
t—1 2 .
g p(x1:%1Y1:n) _)\?
+> / = z /wn(m1:n)p(ﬂfk+1m|yk+1:mxk)dﬂck+1:n —@n ) dzig
o) P(xrk—1lyik)ak(zklzr—1)

2

P(z1:n|y1:n) _ 2

+ /= (n(@1m) = n)? dw1in:
P(X1n—11¥1:n)qn(@n|Tn_1)

17



Interpretation

@000

Practical Implications

Practical Implications

» It means we're doing importance sampling.

» Choosing ﬁ(yn‘xn—l) =D (yn‘xn =E [Xn’xn—l]) is
dangerous.

» A safer choice would be ensure that

wp Il @)

Tn—1,Tn ﬁ(yn’xn—l)Q(xn’xn—l)

» Using APF doesn’t ensure superior performance.

18
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Practical Implications

A Contrived lustration

Consider the following binary state-space model with common
state and observation spaces:

X = {07 1} p(xl = 0) =0.5 p(a:n = a:n_l) =1-4
y=x plyn =) =1 —¢.

» § controls ergodicity of the state process.

» ¢ controls the information contained in observations.

Consider estimating E(X»|Y1.2 = (0,1)).

19
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Practical Implications

Variance of SIR - Variance of APF
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Practical Implications

Variance Comparison at € = 0.25
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Auxiliary SMC Samplers

SMC Samplers (Del Moral, Doucet & Jasra, 2006)

SIR Techniques can be adapted for any sequence of
distributions {m,}.

» Define

n—1

a_7-\7;(-r1:n) = 7Tn(ﬂgn) H Lk(xk+17$k)'
k=1

» Sample at time n,

X:‘zNKn( : )

n—11"
» Weight ' o
ﬂ'n(sz)Ln—l (Xfw szhl)
o - - -
Tn—1 (X5 ) Kn (X5, 1, X))

n—1’

)

» Resample.

23
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Auxiliary SMC Samplers

Auxiliary SMC Samplers

An auziliary SMC sampler for a sequence of distributions 7,
comprises:

» An SMC sampler targeting some auxiliary sequence of
distributions p,.

» A sequence of importance weight functions

W () SZ(%).

24
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Auxiliary SMC Samplers

Auxiliary SMC Samplers

An auziliary SMC sampler for a sequence of distributions 7,
comprises:

» An SMC sampler targeting some auxiliary sequence of
distributions p,.

» A sequence of importance weight functions

W () jZ:(xn).

Generic approaches:
» Choose iy (xn) X Tn(n) Vi (2n).
» Incorporate as much information as possible prior to

resampling.

25
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Auxiliary SMC Samplers

Resample-Move Approaches

A common approach in SMC Samplers:
» Choose K, (zp—1,y) to be m,-invariant.

> Set
7Tn(gjnfl)I(n(mnfl7 xn)

7"'n(l'n)

Ln—l(xny xn—l) =
» Leading to
7"'n(l’nfl)

Wn(xnflaxn) = . 71(11 71)-

» It would make more sense to resample and then move. ..

26



Applications & Extensions

[e]o]e] le]ele)

Auxiliary SMC Samplers

An Interpretation of Pure Resample-Move

It’s SIR with auxiliary distributions. ..

pn(Tn) = Tp1(Tn)

Ln—1(xn,$n—1) _ Nn—l(a:n—l)Kn(l'n—laxn) o 7Tn<xn—1)Kn(xn—1yxn)

fin—1(zn) (@)
Wn(Tn_1im) = fn (@) _ Tn+1(Zn)
e fn—1(Tn) Tn (T
T (n) = fn—1(zn) _ Tn(zn)

fin () a Tn+1(Tn)
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Auxiliary SMC Samplers

Piecewise-Deterministic Processes

-10
35
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Auxiliary SMC Samplers

“Filtering” of Piecewise-Deterministic Processes
(Whiteley, Johansen & Godsill, 2007)

> Xpn = (kn, Tn1:k > On,0:k, ) SPecifies a continuous time
trajectory (Ct)ic(o,tn]-

> (; observed in the presence of noise, e.g. Y,, = (;, + Vi

» Target sequence of distributions {m,} on nested spaces:

k
Tn (K, T1k, Bo:) o< q(6o) H (751m5-1)a(0;]75,65-1,75-1)

n

x S(tn,7) [T 9wl

p=1

29
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Auxiliary SMC Samplers

“Filtering” of Piecewise-Deterministic Processes
(Whiteley, Johansen & Godsill, 2007)

v

7, yields posterior marginal distributions for recent history
of Gt
Employ auxiliary SMC samplers

Choose Mn(ka T1:ks 90:]6) X Wn(k7 T1:ks GO:k)Vn (Tka ek)

Kernel proposes new pairs (75, 60;) and adjusts recent pairs

vV v vy

Applications in object-tracking and finance
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The Auxiliary SMC-PHD Filter

Probability Hypothesis Density Filtering
(Mahler, 2003; Vo et al. 2005)

» Approximates the optimal filter for a class of spatial point
process-valued HMMs

» A recursion for intensity functions:
an(l'n) = / f($n|$n71)p5’(xnfl)anfl(l'nfl)dxnfl + 7($n)
E

an(xn> = [1 - pD(an) + Zn wni’;(xn) an(xn>
— n,r

» Approximate the intensity functions {&y, }n>0 using SMC
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The Auxiliary SMC-PHD Filter

An ASMC Implementation (Whiteley et al., 2007)

> Qp—1(dz,— 1)~a 1(dxp—1) = NZz 1 (5Xl (da;n_l)

» In a simple case, target integral at nth iteration:

/E/ i@(wn)w f@n|zn1)ps(@n—1)de, @ (dwn 1)

Er=1 Zn,r

» Proposal distribution g, (), !, _;,7,) built from a2 ,,
potential functions {V;, .} and factorises:

e )zfilvn,r<xé’21>wn_laxg>l<dx;1> o
q x 17 s Qn r
it Zz]\;1 Vn,T(Xa(zzl)Wn—l

» and also estimate normalising constants {Z,, ,} by IS

32
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On Stratification

Stratification. . .

v

Back to HMM, let (Ap);,],‘/i1 denote a partition of X

v

Introduce stratum indicator variable R,, = Zﬁi 1Pl (X5)

Define extended model:

v

p(xlzm Tl:n‘ylzn) X g(yn‘xn)f(xn‘rny wn—l)fonn‘xn—l)

X p(fUl:n—l, Tl:n—l’ylzn—l)

» An auxiliary SMC filter resamples from distribution with
N x M support points, over particles X strata

v

Applications in switching state space models
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Conclusions

» The APF is a standard SIR algorithm for nonstandard
distributions.
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» The APF is a standard SIR algorithm for nonstandard
distributions.
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Conclusions

» The APF is a standard SIR algorithm for nonstandard
distributions.
» This interpretation. . .

» allows standard results to be applied directly,

» provides guidance on implementation,

» and allows the same technique to be applied in more general
settings.

» Thanks for listening. ..any questions?
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