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Outline

I Background
I What?
I How?
I Why?

I Bayesian Inference
I Maximum Likelihood Parameter Estimation
I Rare Event Simulation
I Filtering (of Piecewise Deterministic Processes)
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Introduction
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Monte Carlo Methods

Why Sample from Distributions?

I Integration (Bayesian methods,. . . ).
I Solving integral equations.
I Optimisation (SA,. . . ).
I Characterisation of the distribution (SMC,. . . ).
I Instead of evaluating a density (ABC).

General principle:
I Represent quantity of interest probabilistically.
I Use a sampling interpretation.

4



Introduction What? How? Why? Conclusion References

Monte Carlo Methods

Estimating π
I Rain is uniform.
I Circle is inscribed

in square.
I Asquare = 4r2.
I Acircle = πr2.
I p = Acircle

Asquare
= π

4 .
I 383 of 500

“successes”.
I π̂ = 4383

500 = 3.06.
I Also obtain

confidence
intervals.
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Monte Carlo Methods

The Monte Carlo Method
I Given a probability density, f ,

I =
∫
E
ϕ(x)f(x)dx

I Simple Monte Carlo solution:
I Sample X1, . . . , XN

iid∼ f .

I Estimate Î = 1
N

N∑
i=1

ϕ(Xi).

I Justified by the law of large numbers. . .
I and the central limit theorem.
I Can also be viewed as approximating π(dx) = f(x)dx with

π̂N (dx) =
1
N

N∑
i=1

δXi(dx).
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Monte Carlo Methods

The Importance–Sampling Identity

I Given g, such that
I f(x) > 0⇒ g(x) > 0
I and f(x)/g(x) <∞,

define w(x) = f(x)/g(x) and:

I =
∫
ϕ(x)f(x)dx

=
∫
ϕ(x)f(x)g(x)/g(x)dx

=
∫
ϕ(x)w(x)g(x)dx.
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Monte Carlo Methods

Illustration of the Importance Sampling Identity
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Monte Carlo Methods

Importance Sampling

I This suggests the importance sampling estimator:
I Sample X1, . . . , XN

iid∼ g.

I Estimate Î = 1
N

N∑
i=1

w(Xi)ϕ(Xi).

I Justified by the law of large numbers. . .
I and the central limit theorem.
I Can also be viewed as approximating π(dx) = f(x)dx with

π̂N (dx) =
1
N

N∑
i=1

w(Xi)δXi(dx).
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Monte Carlo Methods

Interesting Features of Importance Sampling

I Doesn’t require samples from the distribution of interest.
I Variance of

1
N

(
Eg[(wϕ)2]− Eg[wϕ]2

)
=

1
N

(
Ef [wϕ2]− Ef [ϕ]2

)
.

Simple Monte Carlo has a variance of

1
N

(
Ef [ϕ2]− Ef [ϕ]2

)
.

I Importance sampling can reduce the variance. If

g(x) =
f(x)ϕ(x)∫
f(x)ϕ(x)dx

,

then the variance is exactly 0.
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Monte Carlo Methods

Self-Normalised Importance Sampling
I Often, f is known only up to a normalising constant.
I As Eg(Cwϕ) = CEf (ϕ). . .
I If v(x) = Cw(x), then

Eg(vϕ)
Eg(v1)

=
CEf (ϕ)
CEf (1)

= Ef (ϕ).

I Estimate the numerator and denominator with the same
sample:

Î =

N∑
i=1

v(Xi)ϕ(Xi)

N∑
i=1

v(Xi)
.

I Biased for finite samples, but consistent.
I Typically reduces variance.
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Monte Carlo Methods

Resampling

I We can produce unweighted samples from weighted ones.
I Given {Wi, Xi}Ni=1 a consistent resampling {X̃i}Ni=1 is such

that

E

[
1
N

N∑
i=1

ϕ(X̃i)

∣∣∣∣∣ {Wi, Xi}Ni=1

]
=

N∑
i=1

Wiϕ(Xi)

for any continuous bounded ϕ.
I Simplest option: sample from empirical distribution

X̃i ∼
N∑
i=1

WiδXi(·)

I Other approaches reduce the additional variance.
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Monte Carlo Methods

Markov Chain Monte Carlo
I A Markov chain with kernel K(x, y) is f -invariant iff:∫

f(x)K(x, y)dx = f(y).

I MCMC simulates such a chain, X1, . . . , XN .
I It’s ergodic averages:

1
N

N∑
i=1

ϕ(Xi)

approximate Ef [ϕ].
I Justified by ergodic theorems / central limit theorems.
I Difficulties include:

I Constructing a good transition kernel.
I Verifying convergence.
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What?
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What

What are sequential Monte Carlo methods?

“A class of methods for sampling
from each of an ‘arbitrary’ sequence
of distributions using importance

sampling and resampling
mechanisms.”

Iteratively, efficiently and using the structure of the problem.
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What

Or graphically. . .
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How?
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How. . . An Illustrative Example

A Motivating Example: Filtering / Smoothing

I Let X1, . . . denote the position of an object which follows
Markovian dynamics:

Xn|{Xn−1 = xn−1} ∼ f(·|xn−1).

I Let Y1, . . . denote a collection of observations:

Yi|{Xi = xi} ∼ g(·|xi).

I Smoothing: estimate, as observations arrive, p(x1:n|y1:n).
I Filtering: estimate, as observations arrive, p(xn|y1:n).
I Formal Solution:

p(x1:n|y1:n) = p(x1:n−1|y1:n−1)
f(xn|xn−1)g(yn|xn)

p(yn|y1:n−1)
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How. . . An Illustrative Example
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How. . . An Illustrative Example

But we could do importance sampling. . .

I If we sample {X(i)
1:n} at time n from qn(x1:n), define

wn(x1:n) ∝p(x1:n|y1:n)
q(x1:n)

=
p(x1:n, y1:n)
q(x1:n)p(y1:n)

∝
f(x1)g(y1|x1)

∏n
m=2 f(xm|xm−1)g(ym|xm)
qn(x1:n)

I and set W (i)
n = wn(X(i)

1:n)/
∑

j wn(X(j)
1:n),

I then {W (i)
n , X

(i)
n } is a consistently weighted sample.

I This seems inefficient.
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How. . . An Illustrative Example

Sequential Importance Sampling I

I Importance weight

wn(x1:n) ∝
f(x1)g(y1|x1)

∏n
m=2 f(xm|xm−1)g(ym|xm)
qn(x1:n)

=
f(x1)g(y1|x1)

qn(x1)

n∏
m=2

f(xm|xm−1)g(ym|xm)
qn(xm|x1:m−1)

I Given {W (i)
n−1, X

(i)
1:n−1} targetting p(x1:n−1|y1:n−1)

I We could let qn(x1:n−1) = qn−1(x1:n−1) and sample each
X

(i)
n ∼ qn(·|X(i)

n−1).
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How. . . An Illustrative Example

Sequential Importance Sampling II
I And update the weights:

wn(x1:n) =wn−1(x1:n−1)
f(xn|xn−1)g(yn|xn)

qn(xn|xn−1)

W (i)
n =wn(X(i)

1:n)

=wn−1(X(i)
1:n−1)

f(X(i)
n |X(i)

n−1)g(yn|X(i)
n )

qn(X(i)
n |X(i)

n−1)

=W (i)
n−1

f(X(i)
n |X(i)

n−1)g(yn|X(i)
n )

qn(X(i)
n |X(i)

n−1)

I If
∫
p(x1:n|y1:n)dxn ≈ p(x1:n−1|y1:n−1) this makes sense.

I We only need to store {W (i)
n , X

(i)
n−1:n}.

I Same computation every iteration.
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How. . . An Illustrative Example

Importance Sampling on Huge Spaces Doesn’t Work

I It’s said that IS breaks the curse of dimensionality:

√
N

[
1
N

N∑
i=1

w(Xi)ϕ(Xi)−
∫
ϕ(x)f(x)dx

]
d→ N (0,Varg(wϕ))

I This is true.
I But it’s not enough.
I Varg(wϕ) increases (often exponentially) with dimension.
I Eventually, an SIS estimator (of p(x1:n|y1:n)) will fail.
I We’re only concerned with p(xn|y1:n): a fixed-dimensional

distribution.
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How. . . An Illustrative Example

Resampling Again: The SIR Algorithm

I Problem: variance of the weights builds up over time.
I Solution? Given {W (i)

n−1, X
(i)
1:n−1}:

1. Resample, to obtain { 1
N , X̃

(i)
1:n−1}.

2. Sample X(i)
n ∼ qn(·|X̃(i)

n−1).
3. Set X(i)

1:n−1 = X̃
(i)
1:n−1.

4. Set W (i)
n = f(X(i)

n |X(i)
n−1)g(yn|X(i)

n )/qn(X(i)
n |X(i)

n−1).

I And continue as with SIS.
I There is a cost, but this really works.

Cf. Doucet and Johansen, 2010 (4) for a review of “particle
filtering” methods.
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How. . .Mathematically

More Generally

I The problem in the previous example is really tracking a
sequence of distributions.

I Key structural properties:
I Size of space is increasing with time.
I Consistency between existing part between distributions.
I Most interested in what’s new.

I Any problem of sequentially approximating a sequence of
such distributions, pn, can be addressed in the same way.
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How. . .Mathematically

Importance Sampling in This Setting

I Given pn(x1:n) for n = 1, 2, . . . .
I We could sample from a sequence qn(x1:n) for each n.
I Or we could let qn(x1:n) = qn(xn|x1:n−1)qn−1(x1:n−1) and

re-use our samples.
I The importance weights become:

wn(x1:n) ∝ pn(x1:n)
qn(x1:n)

=
pn(x1:n)

qn(xn|x1:n−1)qn−1(x1:n−1)

=
pn(x1:n)

qn(xn|x1:n−1)pn−1(x1:n−1)
wn−1(x1:n−1)
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How. . .Mathematically

Sequential Importance Sampling

At time 1.
For i = 1 : N , sample X

(i)
1 ∼ q1 (·).

For i = 1 : N , compute W
(i)
1 ∝ w1

(
X

(i)
1

)
=

p1

“
X

(i)
1

”
q1
“
X

(i)
1

” .

At time n, n ≥ 2.
Sampling Step
For i = 1 : N , sample X

(i)
n ∼ qn

(
·|X(i)

n−1

)
.

Weighting Step
For i = 1 : N , compute

wn

(
X

(i)
1:n−1, X

(i)
n

)
=

pn

“
X

(i)
1:n−1,X

(i)
n

”
pn−1

“
X

(i)
1:n−1

”
qn
“
X

(i)
n

˛̨̨
X

(i)
n−1

”
and W

(i)
n ∝W (i)

n−1wn

(
X

(i)
1:n−1, X

(i)
n

)
.
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How. . .Mathematically

Sequential Importance Resampling

At time n, n ≥ 2.
Sampling Step
For i = 1 : N , sample X

(i)
n,n ∼ qn

(
·| X̃(i)

n−1

)
.

Resampling Step
For i = 1 : N , compute

wn

(
X̃

(i)
n−1, X

(i)
n,n

)
=

pn

“ eX(i)
n−1,X

(i)
n,n

”
pn−1

“ eX(i)
n−1

”
qn
“
X

(i)
n,n

˛̨̨ eX(i)
n−1

”
and W

(i)
n =

wn

“ eX(i)
n−1,X

(i)
n,n

”
PN

j=1 wn

“ eX(j)
n−1,X

(j)
n,n

” .

For i = 1 : N , sample X̃
(i)
n ∼

∑N
j=1W

(j)
n δ“ eX(j)

n−1,X
(j)
n,n

” (dx1:n) .
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How. . .Mathematically

SMC Samplers: In Essence

I Let ηn−1, ηn be distributions over E.
I Let Kn and Ln−1 be Markov kernels from E to E.

I Given a set of weighted samples {X(i)
n−1,W

(i)
n−1}Ni=1 such that

X
(i)
n−1 ∼ qn−1 and W

(i)
n−1 = ηn−1(X(i)

n−1)/qn−1(X(i)
n−1) :

I Sample X(i)
n ∼ Kn

(
X

(i)
n−1, ·

)
.

I Calculate W (i)
n ∝W (i)

n−1

ηn(Xi
n)Ln−1(X

(i)
n ,X

(i)
n−1)

ηn−1(X
(i)
n−1)Kn(X

(i)
n−1,X

(i)
n )

I Now, {W (i)
n , (X(i)

n−1, X
(i)
n )} targets ηn(xn)Ln−1(xn, xn−1)

and marginally {W (i)
n , X

(i)
n } targets ηn(xn).
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How. . .Mathematically

Del Moral et al., 2006 (3) suggest the SMC Sampler for a
sequence of distributions η1, η2, . . .

I Sample X(i)
n ∼ Kn(X(i)

n−1, ·).

I

{
(X(i)

n−1, X
(i)
n ),W (i)

n−1

}N
i=1
∼ ηn−1(Xn−1)Kn(Xn−1, Xn).

I Set weights W (i)
n = W

(i)
n−1

ηn(Xn)Ln−1(Xn,Xn−1)
ηn−1(Xn−1)Kn(Xn−1,Xn) .

I Thus: {
(X(i)

n−1, X
(i)
n ),W (i)

n

}N
i=1

targets∼ ηn(Xn)Ln−1(Xn, Xn−1)

and, marginally,
{
X(i)
n ,W (i)

n

}(i)

i=1

targets∼ ηn.

I Optionally, resample to obtain an unweighted particle set.
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How. . .Mathematically

SMC Samplers are SIR Algorithms

I Given a sequence of target distributions, ηn, on En . . . ,

I construct a synthetic sequence η̃n on spaces
n⊗
p=1

Ep

I by introducing Markov kernels, Lp from Ep+1 to Ep:

η̃n(x1:n) = ηn(xn)
n−1∏
p=1

Lp (xp+1, xp) ,

I These distributions
I have the target distributions as time marginals,
I have the correct structure to employ SMC techniques,
I lead to precisely the SMC sampler algorithm.
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How. . .Mathematically

SMC Outline

I Given a sample {X(i)
1:n−1}Ni=1 targeting η̃n−1,

I sample X(i)
n ∼ Kn(X(i)

n−1, ·),
I calculate

Wn(X(i)
1:n) =

ηn(X(i)
n )Ln−1(X(i)

n , X
(i)
n−1)

ηn−1(X(i)
n−1)Kn(X(i)

n−1, X
(i)
n )

.

I Resample, yielding: {X(i)
1:n}Ni=1 targeting η̃n.

I Hints that we’d like to use

Ln−1(xn, xn−1) =
ηn−1(xn−1)Kn(xn−1, xn)∫
ηn−1(x′n−1)Kn(x′n−1, xn)

.
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How. . . Computationally

Things to remember when doing SMC

I Choose proposals which ensure weights are bounded.
I Logarithms are good:

I Unnormalized weights may be very large or small.
I Importance weights may be the ratio of two similar

expressions.

I Efficient resampling algorithms are O(N).
I Parallelisation is possible, but resampling complicates

things.

Actually, it’s rather easy in MatLab/R or similar.
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How. . . Computationally

SMCTC: C++ Template Class for SMC Algorithms

I Implementing SMC algorithms in C/C++ isn’t hard.

I Software for implementing general SMC algorithms (9).
I C++ element largely confined to the library.
I Available (under a GPL-3 license from)

www2.warwick.ac.uk/fac/sci/statistics/staff/
academic/johansen/smctc/

or type “smctc” into google.
I Example code included.

34
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Why?
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Bayesian Inference

Bayesian Inference

See:
I Chopin, 2004 (1)
I Del Moral, Doucet and Jasra 2006 (2)
I Fan, Leslie and Wand 2008 (6)

and others.
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Bayesian Inference

Bayesian Inference and Decision Making
Given

I prior p(θ),
I likelihood p(y|θ) and data y,
I Bayesian inference depends upon

p(θ|y) = p(y|θ)p(θ)/p(y)

Given a loss function L(d, θ) we’re interested in minimising

L̄(d) =
∫
L(d, θ)p(θ|y)dθ

With LSE(d, θ) = (d− θ)2:

d?SE =
∫
θp(θ|y)dθ.
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Bayesian Inference

Data Tempering — Online Bayesian Inference

I Given data, y1,2,... we have:

Prior: η0(θ) =p(θ)
η1(θ) =p(θ|y1) ∝ p(y1|θ)p(θ)
η2(θ) =p(θ|y1:2) ∝ p(y1:2|θ)p(θ)

...
Posterior: ηt(θ) =p(θ|y1:t) ∝ p(y1:t|θ)p(θ)

I ηt(θ) ∝ ηt−1(θ)p(yt|θ, y1:t−1) — ideal for online inference.
I We can be flexible with {ηn}.
I Appealing interpretability.
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Bayesian Inference

Tempering — Offline Bayesian Inference

I Given data, y1,2,...,t we have:

Prior: η0(θ) =p(θ) = p(θ)p(y1:t|θ)0

η1(θ) ∝p(y1:t|θ)γ1p(θ)
η2(θ) ∝p(y1:t|θ)γ2p(θ)

...

Posterior: ηP (θ) =p(θ|x1:t) ∝ p(x1:n|θ)1p(θ).

I Choose {γn}Pn=0 (non-decreasing, from 0 to 1).
I More regular than DT for offline inference.
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Bayesian Inference
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Bayesian Inference

Example: Changepoint Detection1

I Given data, y1:t modelled by:

Yt|{S1:t−1 = s1:t−1, Y1:t−1 = y1:t−1} ∼gθ(·;St−r:t, y1:t−1)
St|{S1:t−1 = s1:t−1, Y1:t−1 = y1:t−1} ∼fθ(·; st−1)

I Changepoints are:
the beginning of a run of length ≥ k in {St}

I Given θ, the changepoint distribution is available explicitly.
I What about parameter uncertainty?

1Thanks to Christopher Nam and John Aston
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Bayesian Inference

An SMC approach to Parameter Uncertainty
I Let η0(θ) = p(θ) and ηn(θ) = p(θ)p(y|θ)γn .
I Use SMC to obtain a marginal approximation of p(θ|y):

p̂(θ|y) =
n∑
i=1

W
(i)
T δ

θ
(i)
T

(θ)

I Look at the marginal of interest:

p(CP |y) =
∫
p(CP |y, θ)p(θ|y)dθ

≈
∫
p(CP |y, θ)p̂(θ|y)dθ

=
n∑
i=1

W
(i)
T p(CP |y, θ(i)

T )

I A Monte Carlo estimate of the marginal distribution.
42
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Parameter Estimation in Latent Variable Models

Parameter Estimation in

Latent Variable Models
See Johansen, Doucet and Davy 2008 (11)
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Parameter Estimation in Latent Variable Models

Maximum {Likelihood|a Posteriori} Estimation
I Consider a model with:

I parameters, θ,
I latent variables, x, and
I observed data, y.

I Aim to maximise Marginal likelihood

p(y|θ) =
∫
p(x, y|θ)dx

or posterior

p(θ|y) ∝
∫
p(x, y|θ)p(θ)dx.

I Traditional approach is Expectation-Maximisation (EM)
I Requires objective function in closed form.
I Susceptible to trapping in local optima.
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Parameter Estimation in Latent Variable Models

A Probabilistic Approach

I A distribution of the form

π(θ|y) ∝ p(θ)p(y|θ)γ

will become concentrated, as γ →∞ on the maximisers of
p(y|θ) under weak conditions (Hwang, 1980).

I Key point: Synthetic distributions of the form:

π̄γ(θ, x1:γ |y) ∝ p(θ)
γ∏
i=1

p(xi, y|θ)

admit the marginals

π̄γ(θ|y) ∝ p(θ)p(y|θ)γ .
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Parameter Estimation in Latent Variable Models

Maximum Likelihood via SMC

I Use a sequence of distributions ηn = πγn for some {γn}.
I Suggested in an MCMC context [Doucet et al., 2002 (5)].

I Requires extremely slow “annealing”.
I Separation between distributions is large.

I SMC has two main advantages:
I Introducing bridging distributions, for γ = bγc+ 〈γ〉, of:

π̄γ(θ, x1:bγc+1|y) ∝ p(θ)p(xbγc+1, y|θ)〈γ〉
bγc∏
i=1

p(xi, y|θ)

is straightforward.
I Population of samples improves robustness.
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Parameter Estimation in Latent Variable Models

Three Algorithms

I A generic SMC sampler can be written down directly. . .
I Easy case:

I Sample from p(xn|y, θn−1) and p(θn|xn, y).
I Weight according to p(y|θn−1)γn−γn−1 .

I General case:
I Sample existing variables from a ηn−1-invariant kernel:

(θn, Xn,1:γn−1) ∼ Kn−1((θn−1, Xn−1), ·).

I Sample new variables from an arbitrary proposal:

Xn,γn−1+1:γn
∼ q(·|θn).

I Use the composition of a time-reversal and optimal
auxiliary kernel.

I Weight expression does not involve the marginal likelihood.
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Parameter Estimation in Latent Variable Models

Toy Example

I Student t-distribution of unknown location parameter θ
with ν = 0.05.

I Four observations are available, y = (−20, 1, 2, 3).
I Log likelihood is:

log p(y|θ) = −0.525
4∑
i=1

log
(
0.05 + (yi − θ)2

)
.

I Global maximum is at 1.997.
I Local maxima at {−19.993, 1.086, 2.906}.
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Parameter Estimation in Latent Variable Models

It actually works. . .
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Parameter Estimation in Latent Variable Models

Example: Gaussian Mixture Model – MAP Estimation

I Likelihood p(y|x, ω, µ, σ) = N (y|µx, σ2
x).

I Marginal likelihood p(y|ω, µ, σ) =
3∑
j=1

ωjN (y|µj , σ2
j ).

I Diffuse conjugate priors were employed.
I All full conditional distributions of interest are available.
I Marginal posterior can be calculated.

51



Introduction What? How? Why? Conclusion References

Parameter Estimation in Latent Variable Models

Example: GMM (Galaxy Data Set)
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Rare Events

Rare Event Simulation
See Johansen, Doucet and Del Moral, 2006 (10).
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Rare Events

The Trouble with Rare Events

I Consider a random variable, X, with density f .
I If {X ∈ T } is a rare event, p = P({X ∈ T }) < 10−6.

I With simple Monte Carlo simulation X(i) ∼ P:

E

[
1
N

N∑
i=1

IT (X(i))

]
=P({X ∈ T }) = p

Var

[
1
N

N∑
i=1

IT (X(i))

]
=p(1− p)/N

I But
√
p(1− p)/N/p ≈

√
1/Np.
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Rare Events

Importance Sampling of Rare Events

I In principle, if we sample from:

g(x) =
f(x)IT (x)∫
f(x′)IT (x′)dx′

I And use weighting:

w(x) =
f(x)
g(x)

= f(x)
∫
f(x′)IT (x′)dx′

f(x)IT (x)
a.e.=
∫
f(x′)IT (x′)dx′

I We get the answer with zero variance using 1 sample.
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Rare Events

Static Rare Events

Consider static rare events:
I Do the first P + 1 elements of a Markov chain lie in a T ?
I We are interested in

Pµ0 (x0:P ∈ T )

and
Pµ0 (x0:P ∈ dx0:P |x0:P ∈ T )

I We assume that the rare event is characterised as a level
set of a suitable potential function:

V : T → [V̂ ,∞), and V : E0:P \ T → (−∞, V̂ ).
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Rare Events

Static Rare Events: Our Approach

I Initialise by sampling from the law of the Markov chain.
I Iteratively obtain samples from a sequence of distributions

which moves “smoothly” towards the target.
I Proposed sequence of distributions:

ηn(dx0:P ) ∝ Pµ0(dx0:P )gn/T (x0:P )

gθ(x0:P ) =
(

1 + exp
(
−α(θ)

(
V (x0:P )− V̂

)))−1

I Estimate the normalising constant of the final distribution
and correct via importance sampling.
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Rare Events

Path Sampling [See ?? or Gelman and Meng, 1998]

I Given a sequence of densities p(x|θ) = q(x|θ)/z(θ):

d
dθ

log z(θ) = Eθ
[

d
dθ

log q(·|θ)
]

(?)

where the expectation is taken with respect to p(·|θ).
I Consequently, we obtain:

log
(
z(1)
z(0)

)
=
∫ 1

0
Eθ
[

d
dθ

log q(·|θ)
]

I In our case, we use our particle system to approximate both
integrals.
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Rare Events

Approximate the path sampling identity to estimate the
normalising constant:

Ẑ1 =
1
2

exp

[
T∑
n=1

(α(n/T )− α((n− 1)/T ))
Ên−1 + Ên

2

]

Ên =

N∑
j=1

W
(j)
n

V
“
X

(j)
n

”
−V̂

1+exp
“
αn

“
V
“
X

(j)
n

”
−V̂
””

N∑
j=1

W
(j)
n

Estimate the rare event probability:

p? = Ẑ1

N∑
j=1

W
(j)
T

(
1 + exp(α(1)(V

(
X

(j)
T

)
− V̂ ))

)
I(V̂ ,∞]

(
V
(
X

(j)
T

))
N∑
j=1

W
(j)
T

.
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Rare Events

Example: Gaussian Random Walk

I A toy example: Mt(Rt−1, Rt) = N (Rt|Rt−1, 1).
I T = RP × [V̂ ,∞).
I Proposal kernel:

Kn(Xn−1, Xn) =
S∑

j=−S
αn+1(Xn−1, Xn)

P∏
i=1

δXn−1,i+ijδ(Xn,i),

where the weighting of individual moves is given by

αn(Xn−1, Xn) ∝ ηn(Xn).

I Linear annealing schedule.
I Number of distributions T ∝ V̂ 3/2 (T=2500 when V̂ = 25).
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Rare Events
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Rare Events

-5

 0

 5

 10

 15

 20

 25

 30

 0  2  4  6  8  10  12  14  16

M
ar

ko
v 

C
ha

in
 S

ta
te

 V
al

ue

Markov Chain State Number

Typical SMC Run -- All Particles

62



Introduction What? How? Why? Conclusion References

Rare Events
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Filtering

Filtering of Piecewise

Deterministic Processes
See Whiteley, Johansen and Godsill, 2007;2010 (12, 13)
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Filtering

Motivation: Observing a Manoeuvring Object

I For t ∈ R+
0 , consider object with

I position st,
I velocity vt and
I acceleration at

I Let ζt = (st, vt, at)
I From initial condition ζ0, state evolves until random time
τ1, at which acceleration jumps to a new random value,
yielding ζτ1

I From ζτ1 , evolution until τ2, state becomes ζτ2 , etc.
I At each Observation time, (tn)n∈N, a noisy measurement of

the object’s position is made.
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Filtering
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Filtering

An Abstract Formulation

I Pair Markov chain (τj , θj)j∈N, τj ∈ R+, θj ∈ Θ

p(d(τj , θj)|τj−1, θj−1) = q(dθj |θj−1, τj , τj−1)f(dτj |τj−1),

I Count the jumps νt :=
∑

j I[τj≤t]
I Deterministic evolution function F : R+

0 ×Θ→ Θ, s.t.
∀θ ∈ Θ,

F (0, θ) = θ

I Signal process (ζt)t∈R+
0

,

ζt := F (t− τνt , θνt)
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Filtering

Filtering 1

I This describes a Piecewise Deterministic Process.
I It’s partially observed via observations (Yn)n∈N, e.g.,

Yn = G(ζtn) + Vn

and likelihood function gn(yn|ζtn)
I Filtering: given observations, y1:n, estimate ζtn .
I How can we approximate p(ζtn |y1:n), p(ζtn+1 |y1:n+1), ... ?
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Filtering

Filtering 2
I Sequence of spaces (En)n∈N,

En =
∞⊎
k=0

{k} × Tn,k ×Θk+1,

Tn,k = {τ1:k : 0 < τ1 < τ2 < ... < τk ≤ tn}.
I Define kn := νtn and Xn = (ζ0, kn, τ1:kn , θ1:kn) ∈ En
I Sequence of posterior distributions (ηn)n∈N

ηn(xn) ∝q(ζ0)
kn∏
j=1

f(τj |τj−1)q(θj |θj−1, τj , τj−1)

×
n∏
p=1

gp(yp|ζtp)S(τkn , tn)
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Filtering

SMC Filtering

I Recall Xn = (ζ0, kn, τ1:kn , θ1:kn) specifies a path (ζt)t∈[0,tn]

I If forward kernel Kn only alters the recent components of
xn−1 and adds new jumps/parameters in En \ En−1, online
operation is possible

p(dζtn |y1:n) ≈
N∑
i=1

W (i)
n δ

F (tn−τ (i)
kn
,θ

(i)
kn

)
(dζtn)

I A mixture proposal

Kn(xn−1, xn) =
∑
m

αn,m(xn−1)Kn,m(xn−1, xn),
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Filtering

SMC Filtering

I When Kn corresponds to extending xn−1 into En by
sampling from the prior, obtain the algorithm of (Godsill et
al., 2007).

I This is inefficient as involves propagating multiple copies of
particles after resampling

I A more efficient strategy is to propose births and to
perturb the most recent jump time/parameter, (τk, θk)

I To minimize the variance the importance weights, we
would like to draw from ηn(τk, θk|xn−1 \ (τk, θk)), or
sensible approximations thereof.
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Filtering
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Filtering

Godsill et al. 2007 Whiteley et al. 2007
N RMSE / km CPU / s RMSE / km CPU / s
50 42.62 0.24 0.88 1.32
100 33.49 0.49 0.66 2.62
250 22.89 1.23 0.54 6.56
500 17.26 2.42 0.51 12.98
1000 12.68 5.00 0.50 26.07
2500 6.18 13.20 0.49 67.32
5000 3.52 28.79 0.48 142.84

RMSE and CPU time (200 runs).
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Filtering

Convergence

I This framework allows us to analyse algorithm of Godsill et
al. 2007

I µn(ϕ) :=
∫
ϕ(ζtn)p(dζtn |y1:n) and µNn (ϕ) the corresponding

SMC approximation
I Under standard regularity conditions

√
N(µNn (ϕ)− µn(ϕ))⇒ N (0, σ2

n(ϕ))

I Under rather strong assumptions*

E
[
|µNn (ϕ)− µn(ϕ)|p

]1/p ≤ cp(ϕ)√
N

*which include: (ζtn)n∈N is uniformly ergodic Markov, likelihood
bounded above and away from zero uniformly in time
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Conclusion
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In Conclusion

I Monte Carlo Methods have uses beyond the calculation of
posterior means.

I SMC provides a viable alternative to MCMC.
I SMC is effective at:

I ML and MAP estimation;
I rare event estimation;
I filtering outside the standard particle filtering framework.
I . . .
I Other published applications include: approximate Bayesian

computation, Bayesian estimation in GLMMs, options
pricing and estimation in partially observed marked point
processes, filtering of diffusions, air traffic control, optimal
design.
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Path Sampling Identity

Given a probability density, p(x|θ) = q(x|θ)/z(θ):

∂

∂θ
log z(θ) =

1
z(θ)

∂

∂θ
z(θ)

=
1
z(θ)

∂

∂θ

∫
q(x|θ)dx

=
∫

1
z(θ)

∂

∂θ
q(x|θ)dx (??)

=
∫
p(x|θ)
q(x|θ)

∂

∂θ
q(x|θ)dx

=
∫
p(x|θ) ∂

∂θ
log q(x|θ)dx = Ep(·|θ)

[
∂

∂θ
log q(x|θ)

]
wherever ?? is permissible. Back to ?.
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