Introduction 000000000	$\mathbf{What?}_{00}$	How? 000000 00000000 00	Why? 0000000 0000000000 0000000000 00000000	Conclusion	

Sequential Monte Carlo: What, How and Some Reasons Why

Adam M. Johansen

a.m.johansen@warwick.ac.uk http://www2.warwick.ac.uk/fac/sci/statistics/staff/academic/johansen/talks

46th Gregynog Statistical Conference

16th April, 2010

00000000 00 00000000 0000000000	Introduction What? How? Why? Conclusion Reference 0000000000 00 0000000 0000000 0000000 00000000
---------------------------------------	--

Outline

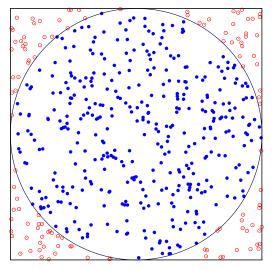
- Background
- ► What?
- ► How?
- ► Why?
 - Bayesian Inference
 - Maximum Likelihood Parameter Estimation
 - Rare Event Simulation
 - ▶ Filtering (of Piecewise Deterministic Processes)

Introduction 0000000000	What? 00	How? 000000 00000000 00	Why? 0000000 000000000 0000000000 00000000	Conclusion	

Introduction

Introduction ●000000000	$\mathbf{What?}_{00}$	How? 000000 00000000 00	Why? 00000000 0000000000 00000000000 000000	Conclusion	
Monte Carlo Met	thods				

Why Sample from Distributions?


- ▶ Integration (Bayesian methods,...).
- ▶ Solving integral equations.
- ▶ Optimisation (SA,...).
- ► Characterisation of the distribution (SMC,...).
- ▶ Instead of evaluating a density (ABC).

General principle:

- ▶ Represent quantity of interest probabilistically.
- Use a sampling interpretation.

Monte Carlo Methods

Estimating π

- ▶ Rain is uniform.
- Circle is inscribed in square.

•
$$A_{\text{square}} = 4r^2$$
.

•
$$A_{\text{circle}} = \pi r^2$$
.

$$\blacktriangleright p = \frac{A_{\text{circle}}}{A_{\text{square}}} = \frac{\pi}{4}.$$

$$\hat{\pi} = 4\frac{383}{500} = 3.06.$$

 Also obtain confidence intervals.

cc●ccccccc cc cccoccccc ccccccccc cccccccccc ccccccccccc ccccccccccccc cccccccccccccc ccccccccccccccccc cccccccccccccccccccccccccccccccccccc	Introduction 000000000	$\mathbf{What?}$ 00		000000000000000000000000000000000000000	Conclusion	
--	---------------------------	---------------------	--	---	------------	--

Monte Carlo Methods

The Monte Carlo Method

• Given a probability density, f,

$$I = \int_E \varphi(x) f(x) dx$$

▶ Simple Monte Carlo solution:

• Sample
$$X_1, \ldots, X_N \overset{iid}{\sim} f$$

• Estimate
$$\hat{I} = \frac{1}{N} \sum_{i=1}^{N} \varphi(X_i).$$

- ▶ Justified by the law of large numbers...
- ▶ and the central limit theorem.
- ► Can also be viewed as approximating $\pi(dx) = f(x)dx$ with

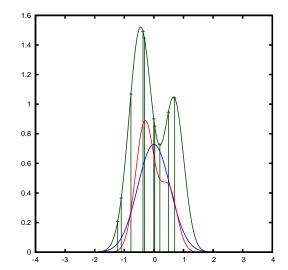
$$\hat{\pi}^N(dx) = \frac{1}{N} \sum_{i=1}^N \delta_{X_i}(dx)$$

Introduction 000000000	$\mathbf{What?}_{00}$	How? 000000 00000000 00	Why? 00000000 0000000000 00000000000 000000	Conclusion	
Monto Corlo Mot	hode				

The Importance–Sampling Identity

• Given g, such that

•
$$f(x) > 0 \Rightarrow g(x) > 0$$


• and $f(x)/g(x) < \infty$,

define w(x) = f(x)/g(x) and:

$$I = \int \varphi(x) f(x) dx$$

= $\int \varphi(x) f(x) g(x) / g(x) dx$
= $\int \varphi(x) w(x) g(x) dx.$

Introduction 000000000	$\mathbf{What?}_{00}$	How? 000000 00000000 00	Why? 0000000 000000000 0000000000 00000000	Conclusion	
Manta Carla Mat	la a d a				

Illustration of the Importance Sampling Identity

Introduction 00000€0000	$\mathbf{What?}_{00}$	How? 000000 00000000 00	Why? 0000000 000000000 0000000000 00000000	Conclusion	
Monte Carlo Me	thods				

Importance Sampling

- ▶ This suggests the importance sampling estimator:

 - ► Sample $X_1, \ldots, X_N \stackrel{iid}{\sim} g$. ► Estimate $\hat{I} = \frac{1}{N} \sum_{i=1}^N w(X_i) \varphi(X_i)$.
- Justified by the law of large numbers...
- and the central limit theorem.
- Can also be viewed as approximating $\pi(dx) = f(x)dx$ with

$$\hat{\pi}^N(dx) = \frac{1}{N} \sum_{i=1}^N w(X_i) \delta_{X_i}(dx).$$

Introduction 000000●000	What? 00	How? 000000 00000000 00	Why? 0000000 000000000 0000000000 00000000	Conclusion	

Monte Carlo Methods

Interesting Features of Importance Sampling

- ▶ Doesn't require samples from the distribution of interest.
- ▶ Variance of

$$\frac{1}{N} \left(\mathbb{E}_g[(w\varphi)^2] - \mathbb{E}_g[w\varphi]^2 \right) = \frac{1}{N} \left(\mathbb{E}_f[w\varphi^2] - \mathbb{E}_f[\varphi]^2 \right).$$

Simple Monte Carlo has a variance of

$$\frac{1}{N} \left(\mathbb{E}_f[\varphi^2] - \mathbb{E}_f[\varphi]^2 \right).$$

▶ Importance sampling can *reduce* the variance. If

$$g(x) = \frac{f(x)\varphi(x)}{\int f(x)\varphi(x)dx},$$

then the variance is exactly 0.

Monte Carlo Methods

Self-Normalised Importance Sampling

- Often, f is known only up to a normalising constant.
- As E_g(Cwφ) = CE_f(φ)...
 If v(x) = Cw(x), then

$$\frac{\mathbb{E}_g(v\varphi)}{\mathbb{E}_g(v\mathbf{1})} = \frac{C\mathbb{E}_f(\varphi)}{C\mathbb{E}_f(\mathbf{1})} = \mathbb{E}_f(\varphi).$$

Estimate the numerator and denominator with the same sample:

$$\hat{I} = \frac{\sum_{i=1}^{N} v(X_i)\varphi(X_i)}{\sum_{i=1}^{N} v(X_i)}$$

- ▶ Biased for finite samples, but consistent.
- ▶ Typically reduces variance.

Introduction ○○○○○○○●○	What? 00	How? 000000 00000000 00	Why? 0000000 000000000 0000000000 00000000	Conclusion	References
Monte Carlo Met	hods				

Resampling

- ▶ We can produce unweighted samples from weighted ones.
- ► Given $\{W_i, X_i\}_{i=1}^N$ a consistent resampling $\{\tilde{X}_i\}_{i=1}^N$ is such that

$$\mathbb{E}\left[\left.\frac{1}{N}\sum_{i=1}^{N}\varphi(\tilde{X}_{i})\right|\{W_{i},X_{i}\}_{i=1}^{N}\right] = \sum_{i=1}^{N}W_{i}\varphi(X_{i})$$

for any continuous bounded φ .

▶ Simplest option: sample from empirical distribution

$$\tilde{X}_i \sim \sum_{i=1}^N W_i \delta_{X_i}(\cdot)$$

▶ Other approaches reduce the *additional* variance.

Introduction ○○○○○○○○●	What? 00	How? 000000 00000000 00	Why? 0000000 0000000000 0000000000 00000000	Conclusion	

Markov Chain Monte Carlo

• A Markov chain with kernel K(x, y) is f-invariant iff:

$$\int f(x)K(x,y)dx = f(y).$$

• MCMC simulates such a chain, X_1, \ldots, X_N .

▶ It's ergodic averages:

$$\frac{1}{N}\sum_{i=1}^{N}\varphi(X_i)$$

approximate $\mathbb{E}_f[\varphi]$.

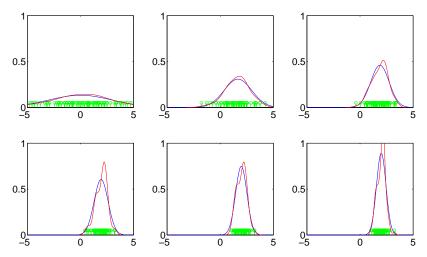
- ▶ Justified by ergodic theorems / central limit theorems.
- Difficulties include:
 - Constructing a good transition kernel.
 - ▶ Verifying convergence.

$\mathbf{What?}_{00}$	How? 0000000 00000000 00	Why? 0000000 000000000 0000000000 00000000	Conclusion	

What?

Introduction 000000000	What? $\bullet \circ$	How? 0000000 00000000 00	Why? 00000000 0000000000 0000000000000000	Conclusion	
What					

What are sequential Monte Carlo methods?


"A class of methods for sampling from each of an 'arbitrary' sequence of distributions using importance sampling and resampling mechanisms."

Iteratively, efficiently and using the structure of the problem.

What?		Why?	Conclusion	
00	000 0 00 00000000 00	0000000 0000000000 00000000000 00000000		

$_{\rm What}$

Or graphically...

$\mathbf{What?}$ 00	How? 000000 00000000 00	Why? 00000000 0000000000 00000000000 000000	Conclusion	

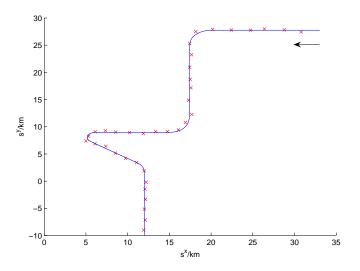
How?

	What? 00	How? •00000 000000000000000000000000000000	Why? 0000000 000000000 0000000000 00000000	Conclusion	
HowAn Illustra	ative Example				

A Motivating Example: Filtering / Smoothing

• Let X_1, \ldots denote the position of an object which follows Markovian dynamics:

$$X_n | \{ X_{n-1} = x_{n-1} \} \sim f(\cdot | x_{n-1}).$$


• Let Y_1, \ldots denote a collection of observations:

$$Y_i|\{X_i=x_i\}\sim g(\cdot|x_i).$$

- Smoothing: estimate, as observations arrive, $p(x_{1:n}|y_{1:n})$.
- Filtering: estimate, as observations arrive, $p(x_n|y_{1:n})$.
- ▶ Formal Solution:

$$p(x_{1:n}|y_{1:n}) = p(x_{1:n-1}|y_{1:n-1}) \frac{f(x_n|x_{n-1})g(y_n|x_n)}{p(y_n|y_{1:n-1})}$$

What?	How?	Why?	Conclusion	
	0000000 00000000 00	0000000 0000000000 00000000000 00000000		

$\mathbf{What?}_{00}$	How? 000000 00000000000000000000000000000	Why? 0000000 000000000 0000000000 00000000	Conclusion	

But we could do importance sampling...

• If we sample $\{X_{1:n}^{(i)}\}$ at time *n* from $q_n(x_{1:n})$, define

$$w_n(x_{1:n}) \propto \frac{p(x_{1:n}|y_{1:n})}{q(x_{1:n})} = \frac{p(x_{1:n}, y_{1:n})}{q(x_{1:n})p(y_{1:n})}$$
$$\propto \frac{f(x_1)g(y_1|x_1)\prod_{m=2}^n f(x_m|x_{m-1})g(y_m|x_m)}{q_n(x_{1:n})}$$

▶ and set $W_n^{(i)} = w_n(X_{1:n}^{(i)}) / \sum_j w_n(X_{1:n}^{(j)}),$

- then $\{W_n^{(i)}, X_n^{(i)}\}$ is a consistently weighted sample.
- ▶ This seems inefficient.

What? 00	How? 000000 0000000 00	Why? 0000000 0000000000 0000000000 00000000	Conclusion	

Sequential Importance Sampling I

Importance weight

$$w_n(x_{1:n}) \propto \frac{f(x_1)g(y_1|x_1) \prod_{m=2}^n f(x_m|x_{m-1})g(y_m|x_m)}{q_n(x_{1:n})}$$
$$= \frac{f(x_1)g(y_1|x_1)}{q_n(x_1)} \prod_{m=2}^n \frac{f(x_m|x_{m-1})g(y_m|x_m)}{q_n(x_m|x_{1:m-1})}$$

- Given $\{W_{n-1}^{(i)}, X_{1:n-1}^{(i)}\}$ targetting $p(x_{1:n-1}|y_{1:n-1})$
- We could let $q_n(x_{1:n-1}) = q_{n-1}(x_{1:n-1})$ and sample each $X_n^{(i)} \sim q_n(\cdot | X_{n-1}^{(i)}).$

$\mathbf{What?}_{00}$	How? 000000 00000000 00	Why? 0000000 000000000 0000000000 00000000	Conclusion	

U

Sequential Importance Sampling II ► And update the weights:

$$\begin{split} w_n(x_{1:n}) = & w_{n-1}(x_{1:n-1}) \frac{f(x_n | x_{n-1})g(y_n | x_n)}{q_n(x_n | x_{n-1})} \\ & W_n^{(i)} = & w_n(X_{1:n}^{(i)}) \\ = & w_{n-1}(X_{1:n-1}^{(i)}) \frac{f(X_n^{(i)} | X_{n-1}^{(i)})g(y_n | X_n^{(i)})}{q_n(X_n^{(i)} | X_{n-1}^{(i)})} \\ = & W_{n-1}^{(i)} \frac{f(X_n^{(i)} | X_{n-1}^{(i)})g(y_n | X_n^{(i)})}{q_n(X_n^{(i)} | X_{n-1}^{(i)})} \end{split}$$

- If $\int p(x_{1:n}|y_{1:n})dx_n \approx p(x_{1:n-1}|y_{1:n-1})$ this makes sense.
- We only need to store $\{W_n^{(i)}, X_{n-1:n}^{(i)}\}$.
- ▶ Same computation every iteration.

$\mathbf{What?}_{00}$	How? 000000 0000000 00	Why? 0000000 0000000000 0000000000 00000000	Conclusion	

Importance Sampling on Huge Spaces Doesn't Work

▶ It's said that IS breaks the curse of dimensionality:

$$\sqrt{N}\left[\frac{1}{N}\sum_{i=1}^{N}w(X_{i})\varphi(X_{i}) - \int\varphi(x)f(x)dx\right] \stackrel{d}{\to} \mathcal{N}(0,\mathsf{Var}_{g}(w\varphi))$$

- ▶ This is true.
- ▶ But it's not *enough*.
- ▶ $Var_g(w\varphi)$ increases (often exponentially) with dimension.
- Eventually, an SIS estimator (of $p(x_{1:n}|y_{1:n})$) will fail.
- ▶ We're only concerned with $p(x_n|y_{1:n})$: a fixed-dimensional distribution.

	$\mathbf{What?}$	How? 00000● 00000000 00	Why? 00000000 0000000000 00000000000 000000	Conclusion	
HowAn Illustr	ative Example				

Resampling Again: The SIR Algorithm

▶ Problem: variance of the weights builds up over time.

• Solution? Given
$$\{W_{n-1}^{(i)}, X_{1:n-1}^{(i)}\}$$
:

1. Resample, to obtain
$$\{\frac{1}{N}, \widetilde{X}_{1:n-1}^{(i)}\}$$
.

2. Sample
$$X_n^{(i)} \sim q_n(\cdot | \widetilde{X}_{n-1}^{(i)})$$
.

3. Set
$$X_{1:n-1}^{(i)} = \widetilde{X}_{1:n-1}^{(i)}$$

4. Set $W_n^{(i)} = f(X_n^{(i)}|X_{n-1}^{(i)})g(y_n|X_n^{(i)})/q_n(X_n^{(i)}|X_{n-1}^{(i)})$.

- And continue as with SIS.
- ▶ There is a cost, but this really works.

Cf. Doucet and Johansen, 2010 (4) for a review of "particle filtering" methods.

	What? 00	How? 0000000 0000000000000000000000000000	Why? 0000000 000000000 0000000000 00000000	Conclusion	References
HowMathema	tically				

More Generally

- ▶ The problem in the previous example is really tracking a sequence of distributions.
- ▶ Key structural properties:
 - Size of space is increasing with time.
 - Consistency between existing part between distributions.
 - Most interested in what's new.
- ▶ Any problem of sequentially approximating a sequence of such distributions, p_n , can be addressed in the same way.

$\mathbf{What?}_{00}$	How? 000000 00000000 00	Why? 00000000 0000000000 0000000000000000	Conclusion	

How... Mathematically

Importance Sampling in This Setting

- Given $p_n(x_{1:n})$ for n = 1, 2, ...
- We could sample from a sequence $q_n(x_{1:n})$ for each n.
- Or we could let $q_n(x_{1:n}) = q_n(x_n|x_{1:n-1})q_{n-1}(x_{1:n-1})$ and re-use our samples.
- ▶ The importance weights become:

$$w_n(x_{1:n}) \propto \frac{p_n(x_{1:n})}{q_n(x_{1:n})} = \frac{p_n(x_{1:n})}{q_n(x_n | x_{1:n-1}) q_{n-1}(x_{1:n-1})}$$
$$= \frac{p_n(x_{1:n})}{q_n(x_n | x_{1:n-1}) p_{n-1}(x_{1:n-1})} w_{n-1}(x_{1:n-1})$$

What? 00	How? 000000 00000000000000000000000000000	Why? 0000000 0000000000 00000000000000000	Conclusion	

How... Mathematically

Sequential Importance Sampling

$$\begin{split} \underline{\text{At time 1.}} & \\ & \text{For } i = 1: N \text{, sample } X_1^{(i)} \sim q_1\left(\cdot\right). \\ & \text{For } i = 1: N \text{, compute } W_1^{(i)} \propto w_1\left(X_1^{(i)}\right) = \frac{p_1\left(X_1^{(i)}\right)}{q_1\left(X_1^{(i)}\right)} \\ \underline{\text{At time } n, n \geq 2.} \\ & \overline{\text{Sampling Step}} \\ & \text{For } i = 1: N \text{, sample } X_n^{(i)} \sim q_n\left(\cdot | X_{n-1}^{(i)}\right). \\ & Weighting Step \\ & \text{For } i = 1: N \text{, compute} \\ & w_n\left(X_{1:n-1}^{(i)}, X_n^{(i)}\right) = \frac{p_n\left(X_{1:n-1}^{(i)}, X_n^{(i)}\right)}{p_{n-1}\left(X_{1:n-1}^{(i)}\right)q_n\left(X_n^{(i)} | X_{n-1}^{(i)}\right)} \\ & \text{ and } W_n^{(i)} \propto W_{n-1}^{(i)}w_n\left(X_{1:n-1}^{(i)}, X_n^{(i)}\right). \end{split}$$

.

	$\mathbf{What?}_{00}$	How? 000000 00000000000000000000000000000	Why? 00000000 0000000000 00000000000 000000	Conclusion	
HowMathema	tically				

Sequential Importance Resampling

$$\begin{split} & \underline{\text{At time } n, n \geq 2.} \\ & \overline{\text{Sampling Step}} \\ & \text{For } i = 1: N, \text{ sample } X_{n,n}^{(i)} \sim q_n \left(\cdot | \, \widetilde{X}_{n-1}^{(i)} \right). \\ & \text{Resampling Step} \\ & \text{For } i = 1: N, \text{ compute} \\ & w_n \left(\widetilde{X}_{n-1}^{(i)}, X_{n,n}^{(i)} \right) = \frac{p_n \left(\widetilde{X}_{n-1}^{(i)}, X_{n,n}^{(i)} \right)}{p_{n-1} \left(\widetilde{X}_{n-1}^{(i)} \right) q_n \left(X_{n,n}^{(i)} | \widetilde{X}_{n-1}^{(i)} \right)} \\ & \text{and } W_n^{(i)} = \frac{w_n \left(\widetilde{X}_{n-1}^{(i)}, X_{n,n}^{(i)} \right)}{\sum_{j=1}^N w_n \left(\widetilde{X}_{n-1}^{(j)}, X_{n,n}^{(j)} \right)}. \\ & \text{For } i = 1: N, \text{ sample } \widetilde{X}_n^{(i)} \sim \sum_{j=1}^N W_n^{(j)} \delta_{\left(\widetilde{X}_{n-1}^{(j)}, X_{n,n}^{(j)} \right)} \left(dx_{1:n} \right). \end{split}$$

	$\mathbf{What?}$ 00	How? ○○○○○○ ○○○○●○○○	Why? 0000000 000000000 0000000000 00000000	Conclusion	

SMC Samplers: In Essence

How...Mathematically

- Let η_{n-1}, η_n be distributions over E.
- Let K_n and L_{n-1} be Markov kernels from E to E.
- ▶ Given a set of weighted samples $\{X_{n-1}^{(i)}, W_{n-1}^{(i)}\}_{i=1}^N$ such that

$$X_{n-1}^{(i)} \sim q_{n-1}$$
 and $W_{n-1}^{(i)} = \eta_{n-1}(X_{n-1}^{(i)})/q_{n-1}(X_{n-1}^{(i)})$:

► Sample
$$X_n^{(i)} \sim K_n \left(X_{n-1}^{(i)}, \cdot \right)$$
.
► Calculate $W_n^{(i)} \propto W_{n-1}^{(i)} \frac{\eta_n(X_n^i)L_{n-1}(X_n^{(i)}, X_{n-1}^{(i)})}{\eta_{n-1}(X_{n-1}^{(i)})K_n(X_{n-1}^{(i)}, X_n^{(i)})}$
► Now $\{W_n^{(i)}, (Y_n^{(i)}, Y_n^{(i)})\}$ targets $n, (n, k)$.

Now, $\{W_n^{(\iota)}, (X_{n-1}^{(\iota)}, X_n^{(\iota)})\}$ targets $\eta_n(x_n)L_{n-1}(x_n, x_{n-1})$ and marginally $\{W_n^{(i)}, X_n^{(i)}\}$ targets $\eta_n(x_n)$.

	What?	How?	Why?	Conclusion	
000000000	00	000000 00000000 00	0000000 0000000000 00000000000 00000000		

Del Moral et al., 2006 (3) suggest the SMC Sampler for a sequence of distributions η_1, η_2, \ldots

► Thus:

$$\left\{ (X_{n-1}^{(i)}, X_n^{(i)}), W_n^{(i)} \right\}_{i=1}^N \overset{targets}{\sim} \eta_n(X_n) L_{n-1}(X_n, X_{n-1})$$

and, marginally, $\left\{ X_n^{(i)}, W_n^{(i)} \right\}_{i=1}^{(i)} \overset{targets}{\sim} \eta_n.$

▶ Optionally, resample to obtain an unweighted particle set.

	What? 00	How? 000000 00000000 00	Why? 0000000 0000000000 00000000000 0000000	Conclusion	
HowMathema	tically				

SMC Samplers are SIR Algorithms

- Given a sequence of *target* distributions, η_n , on $E_n \ldots$,
- ► construct a synthetic sequence $\tilde{\eta}_n$ on spaces $\bigotimes_{n=1}^{\infty} E_p$
- ▶ by introducing Markov kernels, L_p from E_{p+1} to E_p :

$$\widetilde{\eta}_n(x_{1:n}) = \eta_n(x_n) \prod_{p=1}^{n-1} L_p(x_{p+1}, x_p),$$

- These distributions
 - ▶ have the target distributions as time marginals,
 - ▶ have the correct structure to employ SMC techniques,
 - ▶ lead to precisely the SMC sampler algorithm.

	What? 00	How? ○○○○○○ ○○	Why? 0000000 000000000 0000000000 00000000	Conclusion	References
HowMathema	tically				

SMC Outline

- Given a sample $\{X_{1:n-1}^{(i)}\}_{i=1}^N$ targeting $\widetilde{\eta}_{n-1}$,
- ► sample $X_n^{(i)} \sim K_n(X_{n-1}^{(i)}, \cdot),$
- \blacktriangleright calculate

$$W_n(X_{1:n}^{(i)}) = \frac{\eta_n(X_n^{(i)})L_{n-1}(X_n^{(i)}, X_{n-1}^{(i)})}{\eta_{n-1}(X_{n-1}^{(i)})K_n(X_{n-1}^{(i)}, X_n^{(i)})}$$

- ► Resample, yielding: $\{X_{1:n}^{(i)}\}_{i=1}^N$ targeting $\tilde{\eta}_n$.
- ▶ Hints that we'd like to use

$$L_{n-1}(x_n, x_{n-1}) = \frac{\eta_{n-1}(x_{n-1})K_n(x_{n-1}, x_n)}{\int \eta_{n-1}(x'_{n-1})K_n(x'_{n-1}, x_n)}$$

	$\mathbf{What?}$	How? ○○○○○○ ●○	Why? 0000000 000000000 0000000000 00000000	Conclusion	References
How Computatio	nally				

Things to remember when doing SMC

- ▶ Choose proposals which ensure weights are bounded.
- ► Logarithms are good:
 - Unnormalized weights may be very large or small.
 - Importance weights may be the ratio of two similar expressions.
- Efficient resampling algorithms are $\mathcal{O}(N)$.
- Parallelisation is possible, but resampling complicates things.

Actually, it's rather easy in MatLab/R or similar.

	What? 00	How? 000000 00000000 0	Why? 0000000 000000000 0000000000 00000000	Conclusion	References	
HowComputationally						

SMCTC: C++ Template Class for SMC Algorithms

- ▶ Implementing SMC algorithms in C/C++ isn't hard.
- ► Software for implementing general SMC algorithms (9).
- ▶ C++ element largely confined to the library.
- ▶ Available (under a GPL-3 license from)

www2.warwick.ac.uk/fac/sci/statistics/staff/ academic/johansen/smctc/

or type "smctc" into google.

• Example code included.

-	What? 00	How? 000000 0000000 00	Why? 0000000 000000000 0000000000 00000000	Conclusion	

Why?

	$\mathbf{What?}_{00}$	How? 000000 00000000 00	Why? •000000 00000000000000000000000000000	Conclusion	
Bavesian Inference					

Bayesian Inference

See:

- ► Chopin, 2004 (1)
- ▶ Del Moral, Doucet and Jasra 2006 (2)
- ▶ Fan, Leslie and Wand 2008 (6)

and others.

		What? 00	How? 0000000 00000000 00	Why? 0000000 0000000000 00000000000000000	Conclusion	
--	--	--------------------	-----------------------------------	--	------------	--

Bayesian Inference

Bayesian Inference and Decision Making Given

- prior $p(\theta)$,
- ▶ likelihood $p(y|\theta)$ and data y,
- ▶ Bayesian inference depends upon

$$p(\theta|y) = p(y|\theta)p(\theta)/p(y)$$

Given a loss function $L(d,\theta)$ we're interested in minimising

$$\bar{L}(d) = \int L(d,\theta) p(\theta|y) d\theta$$

With $L_{\text{SE}}(d, \theta) = (d - \theta)^2$:

$$d_{\rm SE}^{\star} = \int \theta p(\theta|y) d\theta.$$

	What? 00	How? 000000 00000000 00	Why? 0000000 0000000000000000000000000000	Conclusion	
Bayesian Inferenc					

Data Tempering — Online Bayesian Inference

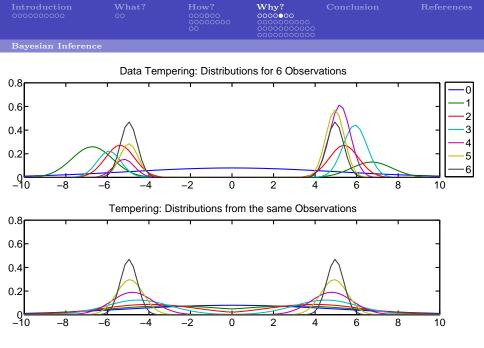
• Given data, $y_{1,2,\ldots}$ we have:

Prior: $\eta_0(\theta) = p(\theta)$ $\eta_1(\theta) = p(\theta|y_1) \propto p(y_1|\theta)p(\theta)$ $\eta_2(\theta) = p(\theta|y_{1:2}) \propto p(y_{1:2}|\theta)p(\theta)$ \vdots Posterior: $\eta_t(\theta) = p(\theta|y_{1:t}) \propto p(y_{1:t}|\theta)p(\theta)$

▶ $\eta_t(\theta) \propto \eta_{t-1}(\theta) p(y_t | \theta, y_{1:t-1})$ — ideal for online inference.

- We can be flexible with $\{\eta_n\}$.
- Appealing interpretability.

	$\mathbf{What?}_{00}$	How? 000000 00000000 00	Why? 0000000 000000000 000000000000000000	Conclusion	
Bayesian Inferenc					


Tempering — Offline Bayesian Inference

• Given data, $y_{1,2,\ldots,t}$ we have:

Prior:
$$\eta_0(\theta) = p(\theta) = p(\theta)p(y_{1:t}|\theta)^0$$

 $\eta_1(\theta) \propto p(y_{1:t}|\theta)^{\gamma_1}p(\theta)$
 $\eta_2(\theta) \propto p(y_{1:t}|\theta)^{\gamma_2}p(\theta)$.

Posterior: $\eta_P(\theta) = p(\theta|x_{1:t}) \propto p(x_{1:n}|\theta)^1 p(\theta).$

- Choose $\{\gamma_n\}_{n=0}^P$ (non-decreasing, from 0 to 1).
- ▶ More regular than DT for offline inference.

	What? 00	How? 0000000 00000000 00	Why? 0000000 000000000 000000000000000000	Conclusion	
Bayesian Inference					

Example: Changepoint Detection¹

• Given data,
$$y_{1:t}$$
 modelled by:

$$\begin{split} Y_t | \{ S_{1:t-1} = s_{1:t-1}, Y_{1:t-1} = y_{1:t-1} \} \sim & g_\theta(\cdot; S_{t-r:t}, y_{1:t-1}) \\ S_t | \{ S_{1:t-1} = s_{1:t-1}, Y_{1:t-1} = y_{1:t-1} \} \sim & f_\theta(\cdot; s_{t-1}) \end{split}$$

- Changepoints are: the beginning of a run of length $\geq k$ in $\{S_t\}$
- Given θ , the changepoint distribution is available explicitly.
- ▶ What about parameter uncertainty?

¹Thanks to Christopher Nam and John Aston

What? 00	How? 000000 00000000 00	Why? 000000● 00000000000000000000000000000	Conclusion	

An SMC approach to Parameter Uncertainty

- Let $\eta_0(\theta) = p(\theta)$ and $\eta_n(\theta) = p(\theta)p(y|\theta)^{\gamma_n}$.
- Use SMC to obtain a marginal approximation of $p(\theta|y)$:

$$\widehat{p}(\theta|y) = \sum_{i=1}^{n} W_T^{(i)} \delta_{\theta_T^{(i)}}(\theta)$$

▶ Look at the marginal of interest:

Bayesian Inference

$$p(CP|y) = \int p(CP|y,\theta)p(\theta|y)d\theta$$
$$\approx \int p(CP|y,\theta)\widehat{p}(\theta|y)d\theta$$
$$= \sum_{i=1}^{n} W_{T}^{(i)}p(CP|y,\theta_{T}^{(i)})$$

▶ A Monte Carlo estimate of the marginal distribution.

	What? 00	How? 0000000 00000000 00	Why? 0000000 000000000 000000000000000000	Conclusion	References
Parameter Estimation	ation in Latent	Variable Models			

Parameter Estimation in Latent Variable Models See Johansen, Doucet and Davy 2008 (11)

Maximum {Likelihood|a| Posteriori} Estimation

- Consider a model with:
 - parameters, θ ,
 - latent variables, x, and
 - observed data, y.
- ▶ Aim to maximise Marginal likelihood

$$p(y|\theta) = \int p(x, y|\theta) dx$$

or posterior

$$p(\theta|y) \propto \int p(x,y|\theta) p(\theta) dx.$$

- ▶ Traditional approach is Expectation-Maximisation (EM)
 - ▶ Requires objective function in closed form.
 - Susceptible to trapping in local optima.

	What? 00	How? 0000000 00000000 00	Why? ○○○○○○○ ○○○○○○○○○○○ ○○○○○○○○○○○○○○○○	Conclusion	References
Parameter Estim	ation in Latent	Variable Models			

A Probabilistic Approach

▶ A distribution of the form

 $\pi(\theta|y) \propto p(\theta) p(y|\theta)^{\gamma}$

will become concentrated, as $\gamma \to \infty$ on the maximisers of $p(y|\theta)$ under weak conditions (Hwang, 1980).

• Key point: Synthetic distributions of the form:

$$\bar{\pi}_{\gamma}(\theta, x_{1:\gamma}|y) \propto p(\theta) \prod_{i=1}^{\gamma} p(x_i, y|\theta)$$

admit the marginals

 $\bar{\pi}_{\gamma}(\theta|y) \propto p(\theta)p(y|\theta)^{\gamma}.$

	What? 00	How? 000000 00000000 00	Why? 000000000000000000000000000000000000	Conclusion	
Parameter Estim	ation in Latent	Variable Models			

Maximum Likelihood via SMC

- Use a sequence of distributions $\eta_n = \pi_{\gamma_n}$ for some $\{\gamma_n\}$.
- ▶ Suggested in an MCMC context [Doucet et al., 2002 (5)].
 - ▶ Requires extremely slow "annealing".
 - Separation between distributions is large.
- ▶ SMC has two main advantages:
 - Introducing bridging distributions, for $\gamma = \lfloor \gamma \rfloor + \langle \gamma \rangle$, of:

$$\bar{\pi}_{\gamma}(\theta, x_{1:\lfloor\gamma\rfloor+1}|y) \propto p(\theta) p(x_{\lfloor\gamma\rfloor+1}, y|\theta)^{\langle\gamma\rangle} \prod_{i=1}^{\lfloor\gamma\rfloor} p(x_i, y|\theta)$$

is straightforward.

Population of samples improves robustness.

Three Algorithms

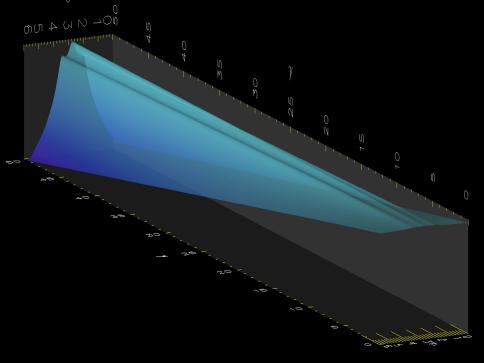
- ▶ A generic SMC sampler can be written down directly...
- ► Easy case:
 - ► Sample from $p(x_n|y, \theta_{n-1})$ and $p(\theta_n|x_n, y)$.
 - Weight according to $p(y|\theta_{n-1})^{\gamma_n-\gamma_{n-1}}$.
- ▶ General case:
 - ▶ Sample existing variables from a η_{n-1} -invariant kernel:

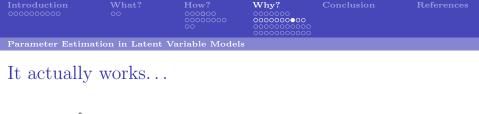
$$(\theta_n, X_{n,1:\gamma_{n-1}}) \sim \mathcal{K}_{n-1}((\theta_{n-1}, X_{n-1}), \cdot).$$

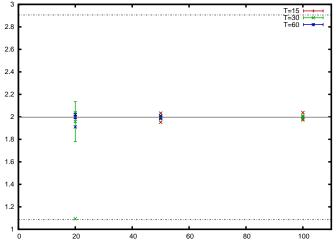
▶ Sample new variables from an arbitrary proposal:

$$X_{n,\gamma_{n-1}+1:\gamma_n} \sim q(\cdot|\theta_n).$$

- Use the composition of a time-reversal and optimal auxiliary kernel.
- ▶ Weight expression does not involve the marginal likelihood.


	What? 00	How? 000000 00000000 00	Why? 000000000000000000000000000000000000	Conclusion	
Parameter Estim	ation in Latent	Variable Models	;		


Toy Example


- Student *t*-distribution of unknown location parameter θ with $\nu = 0.05$.
- Four observations are available, y = (-20, 1, 2, 3).
- ▶ Log likelihood is:

$$\log p(y|\theta) = -0.525 \sum_{i=1}^{4} \log \left(0.05 + (y_i - \theta)^2 \right).$$

- ▶ Global maximum is at 1.997.
- ▶ Local maxima at {-19.993, 1.086, 2.906}.

Example: Gaussian Mixture Model – MAP Estimation

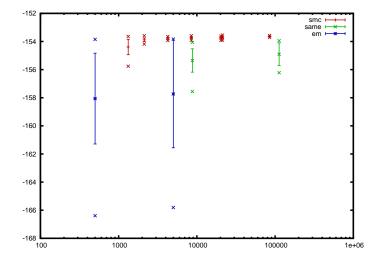
• Likelihood
$$p(y|x, \omega, \mu, \sigma) = \mathcal{N}(y|\mu_x, \sigma_x^2).$$

• Marginal likelihood
$$p(y|\omega, \mu, \sigma) = \sum_{j=1}^{3} \omega_j \mathcal{N}(y|\mu_j, \sigma_j^2).$$

- ▶ Diffuse conjugate priors were employed.
- ▶ All full conditional distributions of interest are available.
- ▶ Marginal posterior can be calculated.

Intro	duc	tion

What?


Why?

Conclusion

References

Parameter Estimation in Latent Variable Models

Example: GMM (Galaxy Data Set)

	What? 00	How? 0000000 00000000 00	Why? 0000000 0000000000000000000000000000	Conclusion	References
Rare Events					

Rare Event Simulation See Johansen, Doucet and Del Moral, 2006 (10).

	$\mathbf{What?}_{00}$	How? 000000 00000000 00	Why? 0000000 0000000000000000000000000000	Conclusion	
Rare Events					

The Trouble with Rare Events

- Consider a random variable, X, with density f.
- If $\{X \in \mathcal{T}\}$ is a rare event, $p = \mathbb{P}(\{X \in \mathcal{T}\}) < 10^{-6}$.
- With simple Monte Carlo simulation $X^{(i)} \sim \mathbb{P}$:

$$\mathbb{E}\left[\frac{1}{N}\sum_{i=1}^{N}\mathbb{I}_{\mathcal{T}}(X^{(i)})\right] = \mathbb{P}(\{X \in \mathcal{T}\}) = p$$
$$\operatorname{Var}\left[\frac{1}{N}\sum_{i=1}^{N}\mathbb{I}_{\mathcal{T}}(X^{(i)})\right] = p(1-p)/N$$

• But
$$\sqrt{p(1-p)/N}/p \approx \sqrt{1/Np}$$
.

What? 00	How? 000000 00000000 00	Why? 0000000 0000000000000000000000000000	Conclusion	

Rare Events

Importance Sampling of Rare Events

▶ In principle, if we sample from:

$$g(x) = \frac{f(x)\mathbb{I}_{\mathcal{T}}(x)}{\int f(x')\mathbb{I}_{\mathcal{T}}(x')dx'}$$

► And use weighting:

$$w(x) = \frac{f(x)}{g(x)} = f(x) \frac{\int f(x') \mathbb{I}_{\mathcal{T}}(x') dx'}{f(x) \mathbb{I}_{\mathcal{T}}(x)}$$
$$\stackrel{a.e.}{=} \int f(x') \mathbb{I}_{\mathcal{T}}(x') dx'$$

▶ We get the answer with zero variance using 1 sample.

	$\mathbf{What?}_{00}$	How? 000000 00000000 00	Why? 000000000000000000000000000000000000	Conclusion	
Rare Events					

Static Rare Events

Consider *static rare events*:

- ▶ Do the first P + 1 elements of a Markov chain lie in a T?
- ▶ We are interested in

$$\mathbb{P}_{\mu_0}\left(x_{0:P}\in\mathcal{T}\right)$$

and

$$\mathbb{P}_{\mu_0}\left(x_{0:P} \in dx_{0:P} \mid x_{0:P} \in \mathcal{T}\right)$$

• We assume that the rare event is characterised as a level set of a suitable potential function:

$$V: \mathcal{T} \to [\hat{V}, \infty), \text{ and } V: E_{0:P} \setminus \mathcal{T} \to (-\infty, \hat{V}).$$

	$\mathbf{What?}_{00}$	How? 000000 00000000 00	Why? 000000000000000000000000000000000000	Conclusion	
Bare Events					

Static Rare Events: Our Approach

- ▶ Initialise by sampling from the law of the Markov chain.
- ▶ Iteratively obtain samples from a sequence of distributions which moves "smoothly" towards the target.
- ▶ Proposed sequence of distributions:

$$\eta_n(dx_{0:P}) \propto \mathbb{P}_{\mu_0}(dx_{0:P})g_{n/T}(x_{0:P})$$
$$g_\theta(x_{0:P}) = \left(1 + \exp\left(-\alpha(\theta)\left(V(x_{0:P}) - \hat{V}\right)\right)\right)^{-1}$$

▶ Estimate the normalising constant of the final distribution and correct via importance sampling.

	$\mathbf{What?}$ 00	How? 0000000 00000000 00	Why? 000000000000000000000000000000000000	Conclusion	
Rare Events					

Path Sampling [See $\star\star$ or Gelman and Meng, 1998]

• Given a sequence of densities $p(x|\theta) = q(x|\theta)/z(\theta)$:

$$\frac{\mathrm{d}}{\mathrm{d}\theta}\log z(\theta) = \mathbb{E}_{\theta}\left[\frac{\mathrm{d}}{\mathrm{d}\theta}\log q(\cdot|\theta)\right] \tag{\star}$$

where the expectation is taken with respect to $p(\cdot|\theta)$.

• Consequently, we obtain:

$$\log\left(\frac{z(1)}{z(0)}\right) = \int_0^1 \mathbb{E}_\theta\left[\frac{\mathrm{d}}{\mathrm{d}\theta}\log q(\cdot|\theta)\right]$$

▶ In our case, we use our particle system to approximate *both* integrals.

Introduction	What?	How?	Why?	Conclusion	References
000000000	00	000 0 00 00000000 00	000000 000000000 0000000000 0000000000		

Rare Events

Approximate the path sampling identity to estimate the normalising constant:

$$\hat{Z}_{1} = \frac{1}{2} \exp\left[\sum_{n=1}^{T} \left(\alpha(n/T) - \alpha((n-1)/T)\right) \frac{\hat{E}_{n-1} + \hat{E}_{n}}{2}\right]$$

$$\hat{E}_{n} = \frac{\sum_{j=1}^{N} W_{n}^{(j)} \frac{V\left(X_{n}^{(j)}\right) - \hat{V}}{1 + \exp\left(\alpha_{n}\left(V\left(X_{n}^{(j)}\right) - \hat{V}\right)\right)}}{\sum_{j=1}^{N} W_{n}^{(j)}}$$

Estimate the rare event probability:

$$p^{\star} = \hat{Z}_{1} \frac{\sum_{j=1}^{N} W_{T}^{(j)} \left(1 + \exp(\alpha(1)(V\left(X_{T}^{(j)}\right) - \hat{V}))\right) \mathbb{I}_{(\hat{V},\infty]} \left(V\left(X_{T}^{(j)}\right)\right)}{\sum_{j=1}^{N} W_{T}^{(j)}}$$

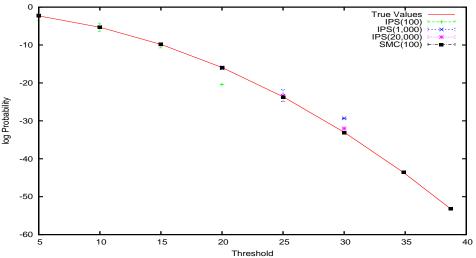
What? 00	How? 000000 00000000 00	Why? 0000000 0000000000000000000000000000	Conclusion	

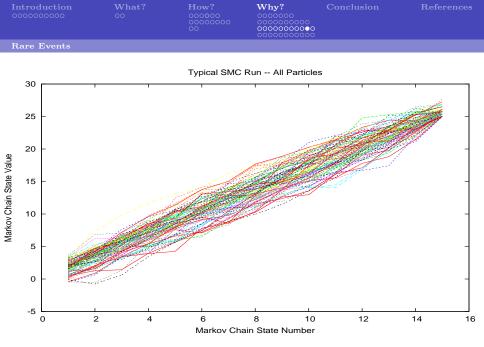
Example: Gaussian Random Walk

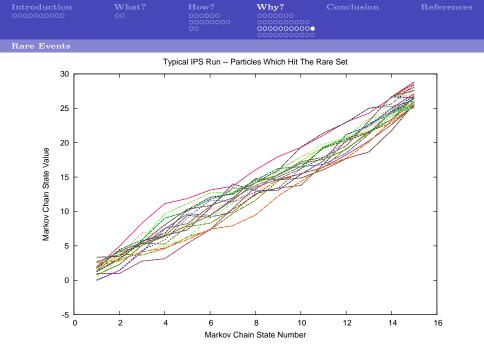
- A toy example: $M_t(R_{t-1}, R_t) = \mathcal{N}(R_t | R_{t-1}, 1).$
- $\blacktriangleright \ \mathcal{T} = \mathbb{R}^P \times [\hat{V}, \infty).$
- Proposal kernel:

$$K_n(X_{n-1}, X_n) = \sum_{j=-S}^{S} \alpha_{n+1}(X_{n-1}, X_n) \prod_{i=1}^{P} \delta_{X_{n-1,i}+ij\delta}(X_{n,i}),$$

where the weighting of individual moves is given by

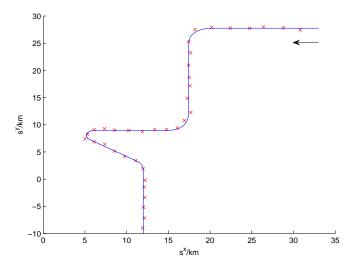

$$\alpha_n(X_{n-1}, X_n) \propto \eta_n(X_n).$$


- ▶ Linear annealing schedule.
- ▶ Number of distributions $T \propto \hat{V}^{3/2}$ (T=2500 when $\hat{V} = 25$).


What?		Why?	Conclusion	
	000 0 00 00000000 00	0000000 0000000000 000000000000 0000000		

Rare Events

	What? 00	How? 0000000 00000000 00	Why? 0000000 0000000000 00000000000000000	Conclusion	References
Filtering					


Filtering of Piecewise Deterministic Processes See Whiteley, Johansen and Godsill, 2007;2010 (12, 13)

	$\mathbf{What?}$ 00	How? 0000000 00000000 00	Why? 0000000 000000000 000000000000000000	Conclusion	
Filtering					

Motivation: Observing a Manoeuvring Object

- ▶ For $t \in \mathbb{R}_0^+$, consider object with
 - position s_t ,
 - velocity v_t and
 - acceleration a_t
- Let $\zeta_t = (s_t, v_t, a_t)$
- From initial condition ζ_0 , state evolves until random time τ_1 , at which acceleration jumps to a new random value, yielding ζ_{τ_1}
- From ζ_{τ_1} , evolution until τ_2 , state becomes ζ_{τ_2} , etc.
- ▶ At each Observation time, $(t_n)_{n \in \mathbb{N}}$, a noisy measurement of the object's position is made.

What?		Why?	Conclusion	
	000 0 00 00000000 00	0000000 0000000000 0000000000000000000		

	What?		Why?	Conclusion	
000000000	00	000 0 00 00000000 00	0000000 0000000000 00000000000 00000000		

An Abstract Formulation

▶ Pair Markov chain $(\tau_j, \theta_j)_{j \in \mathbb{N}}, \tau_j \in \mathbb{R}^+, \theta_j \in \Theta$

$$p(d(\tau_j, \theta_j) | \tau_{j-1}, \theta_{j-1}) = q(d\theta_j | \theta_{j-1}, \tau_j, \tau_{j-1}) f(d\tau_j | \tau_{j-1}),$$

• Count the jumps
$$\nu_t := \sum_j \mathbb{I}_{[\tau_j \leq t]}$$

► Deterministic evolution function $F : \mathbb{R}_0^+ \times \Theta \to \Theta$, s.t. $\forall \theta \in \Theta$,

$$F(0,\theta) = \theta$$

• Signal process $(\zeta_t)_{t \in \mathbb{R}^+_0}$,

$$\zeta_t := F(t - \tau_{\nu_t}, \theta_{\nu_t})$$

	$\mathbf{What?}$ 00	How? 0000000 00000000 00	Why? 0000000 000000000 000000000000000000	Conclusion	References
Filtering					

- ▶ This describes a Piecewise Deterministic Process.
- ▶ It's partially observed via observations $(Y_n)_{n \in \mathbb{N}}$, e.g.,

$$Y_n = G(\zeta_{t_n}) + V_n$$

and likelihood function $g_n(y_n|\zeta_{t_n})$

- ► Filtering: given observations, $y_{1:n}$, estimate ζ_{t_n} .
- ► How can we approximate $p(\zeta_{t_n}|y_{1:n}), p(\zeta_{t_{n+1}}|y_{1:n+1}), \dots$?

	$\mathbf{What?}_{00}$	How? 000000 00000000 00	Why? 0000000 0000000000 0000000000000000	Conclusion	References
Filtering					

• Sequence of spaces $(E_n)_{n \in \mathbb{N}}$,

$$E_n = \biguplus_{k=0}^{\infty} \{k\} \times \mathbb{T}_{n,k} \times \Theta^{k+1},$$

$$\mathbb{T}_{n,k} = \{\tau_{1:k} : 0 < \tau_1 < \tau_2 < \dots < \tau_k \le t_n\}.$$

► Define $k_n := \nu_{t_n}$ and $X_n = (\zeta_0, k_n, \tau_{1:k_n}, \theta_{1:k_n}) \in E_n$

▶ Sequence of posterior distributions $(\eta_n)_{n \in \mathbb{N}}$

$$\eta_n(x_n) \propto q(\zeta_0) \prod_{j=1}^{k_n} f(\tau_j | \tau_{j-1}) q(\theta_j | \theta_{j-1}, \tau_j, \tau_{j-1})$$
$$\times \prod_{p=1}^n g_p(y_p | \zeta_{t_p}) S(\tau_{k_n}, t_n)$$

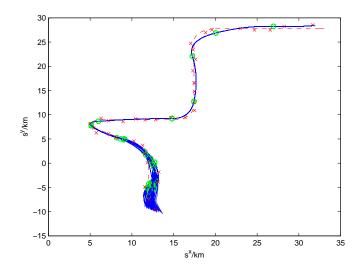
	What? 00	How? 000000 00000000 00	Why? 000000000000000000000000000000000000	Conclusion	

SMC Filtering

- ► Recall $X_n = (\zeta_0, k_n, \tau_{1:k_n}, \theta_{1:k_n})$ specifies a path $(\zeta_t)_{t \in [0,t_n]}$
- If forward kernel K_n only alters the recent components of x_{n-1} and adds new jumps/parameters in $E_n \setminus E_{n-1}$, online operation is possible

$$p(d\zeta_{t_n}|y_{1:n}) \approx \sum_{i=1}^N W_n^{(i)} \delta_{F(t_n - \tau_{k_n}^{(i)}, \theta_{k_n}^{(i)})}(d\zeta_{t_n})$$

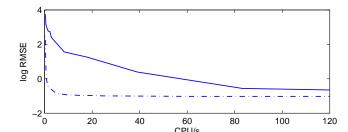
▶ A mixture proposal


$$K_n(x_{n-1}, x_n) = \sum_m \alpha_{n,m}(x_{n-1}) K_{n,m}(x_{n-1}, x_n),$$

	$\mathbf{What?}$	How? 0000000 00000000 00	Why? 0000000 0000000000000000000000000000	Conclusion	References
Filtering					

SMC Filtering

- When K_n corresponds to extending x_{n-1} into E_n by sampling from the prior, obtain the algorithm of (Godsill et al., 2007).
- This is inefficient as involves propagating multiple copies of particles after resampling
- A more efficient strategy is to propose births and to perturb the most recent jump time/parameter, (τ_k, θ_k)
- ► To minimize the variance the importance weights, we would like to draw from $\eta_n(\tau_k, \theta_k | x_{n-1} \setminus (\tau_k, \theta_k))$, or sensible approximations thereof.


What? 00	How? 000000 00000000 00	Why? 0000000 0000000000000000000000000000	Conclusion	

What?		Why?	Conclusion	
	000000 00000000 00	0000000 0000000000 00000000000 00000000		

	Godsill et a	d. 2007	Whiteley et al. 2007		
N	RMSE / km	CPU / s	RMSE / km	CPU / s	
50	42.62	0.24	0.88	1.32	
100	33.49	0.49	0.66	2.62	
250	22.89	1.23	0.54	6.56	
500	17.26	2.42	0.51	12.98	
1000	12.68	5.00	0.50	26.07	
2500	6.18	13.20	0.49	67.32	
5000	3.52	28.79	0.48	142.84	

RMSE and CPU time (200 runs).

	$\mathbf{What?}_{00}$	How? 000000 00000000 00	Why? 0000000 0000000000000000000000000000	Conclusion	
Filtering					

Convergence

- ▶ This framework allows us to analyse algorithm of Godsill et al. 2007
- ▶ $\mu_n(\varphi) := \int \varphi(\zeta_{t_n}) p(d\zeta_{t_n} | y_{1:n})$ and $\mu_n^N(\varphi)$ the corresponding SMC approximation
- ▶ Under standard regularity conditions

$$\sqrt{N}(\mu_n^N(\varphi) - \mu_n(\varphi)) \Rightarrow \mathcal{N}(0, \sigma_n^2(\varphi))$$

▶ Under rather strong assumptions*

$$\mathbb{E}\left[|\mu_n^N(\varphi) - \mu_n(\varphi)|^p\right]^{1/p} \le \frac{c_p(\varphi)}{\sqrt{N}}$$

*which include: $(\zeta_{t_n})_{n \in \mathbb{N}}$ is uniformly ergodic Markov, likelihood bounded above and away from zero uniformly in time

What? 00	How? 0000000 00000000 00	Why? 0000000 0000000000 00000000000 0000000	Conclusion	

Conclusion

Introduction 0000000000	What? 00	How? 000000 00000000 00	Why? 0000000 0000000000 00000000000 0000000	Conclusion	References

In Conclusion

- Monte Carlo Methods have uses beyond the calculation of posterior means.
- ▶ SMC provides a viable alternative to MCMC.
- ▶ SMC is effective at:
 - ▶ ML and MAP estimation;
 - rare event estimation;
 - ▶ filtering outside the standard particle filtering framework.
 - ▶ ...
 - Other published applications include: approximate Bayesian computation, Bayesian estimation in GLMMs, options pricing and estimation in partially observed marked point processes, filtering of diffusions, air traffic control, optimal design.

$\mathbf{What?}_{00}$	How? 000000 00000000 00	Why? 0000000 0000000000 0000000000 00000000	Conclusion	References

References I

- N. Chopin. A sequential particle filter method for static models. *Biometrika*, 89(3): 539-551, 2002.
- [2] P. Del Moral, A. Doucet, and A. Jasra. Sequential Monte Carlo methods for Bayesian Computation. In *Bayesian Statistics 8*. Oxford University Press, 2006.
- [3] P. Del Moral, A. Doucet, and A. Jasra. Sequential Monte Carlo samplers. Journal of the Royal Statistical Society B, 63(3):411-436, 2006.
- [4] A. Doucet and A. M. Johansen. A tutorial on particle filtering and smoothing: Fiteen years later. In D. Crisan and B. Rozovsky, editors, *The Oxford Handbook of Nonlinear Filtering*. Oxford University Press, 2010. To appear.
- [5] A. Doucet, S. J. Godsill, and C. P. Robert. Marginal maximum a posteriori estimation using Markov chain Monte Carlo. *Statistics and Computing*, 12:77–84, 2002.
- [6] Y. Fan, D. Leslie, and M. P. Wand. Generalized linear mixed model analysis via sequential Monte Carlo sampling. *Electronic Journal of Statistics*, 2:916–938, 2008.
- [7] S. J. Godsill, J. Vermaak, K.-F. Ng, and J.-F. Li. Models and algorithms for tracking of manoeuvring objects using variable rate particle filters. *Proceedings of IEEE*, 95(5): 925–952, 2007.
- [8] C.-R. Hwang. Laplace's method revisited: Weak convergence of probability measures. The Annals of Probability, 8(6):1177-1182, December 1980.
- [9] A. M. Johansen. SMCTC: Sequential Monte Carlo in C++. Journal of Statistical Software, 30(6):1-41, April 2009.
- [10] A. M. Johansen, P. Del Moral, and A. Doucet. Sequential Monte Carlo samplers for rare events. In Proceedings of the 6th International Workshop on Rare Event Simulation, pages 256–267, Bamberg, Germany, October 2006.

What? 00	How? 000000 00000000 00	Why? 0000000 0000000000 0000000000 00000000	Conclusion	References

References II

- [11] A. M. Johansen, A. Doucet, and M. Davy. Particle methods for maximum likelihood parameter estimation in latent variable models. *Statistics and Computing*, 18(1):47–57, March 2008.
- [12] N. Whiteley, A. M. Johansen, and S. Godsill. Efficient Monte Carlo filtering for discretely observed jumping processes. In *Proceedings of IEEE Statistical Signal Processing Workshop*, pages 89–93, Madison, WI, USA, August 26th–29th 2007. IEEE.
- [13] N. Whiteley, A. M. Johansen, and S. Godsill. Monte Carlo filtering of piecewise-deterministic processes. *Journal of Computational and Graphical Statistics*, 2010. To appear.

What?		Why?	Conclusion	References
	000 0 00 00000000 00	0000000 0000000000 00000000000 00000000		

Path Sampling Identity

Given a probability density, $p(x|\theta) = q(x|\theta)/z(\theta)$:

$$\begin{split} \frac{\partial}{\partial \theta} \log z(\theta) &= \frac{1}{z(\theta)} \frac{\partial}{\partial \theta} z(\theta) \\ &= \frac{1}{z(\theta)} \frac{\partial}{\partial \theta} \int q(x|\theta) dx \\ &= \int \frac{1}{z(\theta)} \frac{\partial}{\partial \theta} q(x|\theta) dx \qquad (\star\star) \\ &= \int \frac{p(x|\theta)}{q(x|\theta)} \frac{\partial}{\partial \theta} q(x|\theta) dx \\ &= \int p(x|\theta) \frac{\partial}{\partial \theta} \log q(x|\theta) dx = \mathbb{E}_{p(\cdot|\theta)} \left[\frac{\partial}{\partial \theta} \log q(x|\theta) \right] \end{split}$$

wherever $\star\star$ is permissible. Back to $\star.$