Adam M. Johansen*, Arnaud Doucet[‡] and Nick Whiteley[†]

*University of Warwick Department of Statistics, [†]University of Bristol School of Mathematics, [‡]University of Oxford Department of Statistics

a.m.johansen@warwick.ac.uk http://go.warwick.ac.uk/amjohansen/talks

October 11th, 2012 SMC Methods and Efficient Simulation in Finance Background

└─ Outline

Context & Outline

Filtering in State-Space Models:

- SIR Particle Filters [GSS93]
- Rao-Blackwellized Particle Filters [AD02, CL00]
- Block-Sampling Particle Filters [DBS06]

Exact Approximation of Monte Carlo Algorithms:

Particle MCMC [ADH10]

Approximating the RBPF

- Approximated Rao-Blackwellized Particle Filters [CSOL11]
- Exactly-approximated RBPFs [JWD12]

Approximating the BSPF

Local SMC [JD12]

Background

Particle MCMC & Related Concepts

Particle MCMC

- MCMC algorithms which employ SMC proposals [ADH10]
- SMC algorithm as a collection of RVs
 - Values
 - Weights
 - Ancestral Lines
- Construct MCMC algorithms:
 - With many auxiliary variables
 - Exactly invariant for distribution on extended space
 - Standard MCMC arguments justify strategy
- Does this suggest anything about SMC?
- Can something similar help with smoothing?

Background

Particle MCMC & Related Concepts

Ancestral Trees

Background

Particle MCMC & Related Concepts

SMC Distributions

We'll need the SMC Distribution:

$$\psi_{n,L}^{M}\left(\overline{\mathbf{a}}_{n-L+2:n}, \overline{\mathbf{x}}_{n-L+1:n}, \overline{k}; x_{n-L}\right) = \left[\prod_{i=1}^{M} q\left(\overline{x}_{n-L+1}^{i} \middle| \overline{x}_{n-L}\right)\right] \prod_{p=n-L+2}^{n} \left[r(\overline{\mathbf{a}}_{p} \middle| \overline{\mathbf{w}}_{p-1}) \prod_{i=1}^{M} q\left(\overline{x}_{p}^{i} \middle| \overline{x}_{p-1}^{\overline{a}_{p}^{i}}\right)\right] r(\overline{k} \middle| \overline{\mathbf{w}}_{n})$$

and the conditional SMC Distribution:

$$= \frac{\widetilde{\psi}_{n,L}^{M}\left(\widetilde{\mathbf{a}}_{n-L+2:n}^{\ominus k}, \widetilde{\mathbf{x}}_{n-L+1:n}^{\ominus k}; x_{n-L} \middle| \middle| \widetilde{b}_{n-L+1:n-1}^{k}, \widetilde{x}_{n-L+1:n}^{k} \right)}{q\left(\widetilde{x}_{n-L+1}^{\tilde{b}_{n,n-L+1}^{k}} \middle| x_{n-L}\right) \left[\prod_{p=n-L+2}^{n} r\left(\widetilde{b}_{n,p}^{k} \middle| \widetilde{\mathbf{w}}_{p-1}\right) q\left(\widetilde{x}_{p}^{\tilde{b}_{n,p}^{k}} \middle| \widetilde{x}_{p-1}^{\tilde{b}_{n,p-1}^{k}} \right)\right] r(k|\widetilde{\mathbf{w}}_{n})}$$

Approximating the RBPF

A Class of Hidden Markov Models

A (Rather Broad) Class of Hidden Markov Models

- Unobserved Markov chain $\{(X_n, Z_n)\}$ transition f.
- Observed process $\{Y_n\}$ conditional density g.
- Density:

$$p(x_{1:n}, z_{1:n}, y_{1:n}) = f_1(x_1, z_1)g(y_1|x_1, z_1)\prod_{i=2}^n f(x_i, z_i|x_{i-1}, z_{i-1})g(y_i|x_i, z_i).$$

Approximating the RBPF

A Class of Hidden Markov Models

Formal Solutions

Filtering and Prediction Recursions:

$$p(x_n, z_n | y_{1:n}) = \frac{p(x_n, z_n | y_{1:n-1})g(y_n | x_n, z_n)}{\int p(x'_n, z'_n | y_{1:n-1})g(y_n | x'_n, z'_n)d(x'_n, z'_n)}$$
$$p(x_{n+1}, z_{n+1} | y_{1:n}) = \int p(x_n, z_n | y_{1:n})f(x_{n+1}, z_{n+1} | x_n, z_n)d(x_n, z_n)$$

Smoothing:

 $p((x,z)_{1:n}|y_{1:n}) \propto p((x,z)_{1:n-1}|y_{1:n-1})f((x,z)_n|(x,z)_{n-1})g(y_n|(x,z)_n)$

Elementary Algorithms

A Simple SIR Filter

Algorithmically, at iteration n:

- Given $\{W_{n-1}^{i}, (X, Z)_{1:n-1}^{i}\}$ for i = 1, ..., N:
- **Resample**, obtaining $\{\frac{1}{N}, (\widetilde{X}, \widetilde{Z})_{1:n-1}^{i}\}$.

• Sample
$$(X, Z)_n^i \sim q_n(\cdot | (\widetilde{X}, \widetilde{Z})_{n-1}^i)$$

• Weight $W_n^i \propto \frac{f((X, Z)_n^i | (\widetilde{X}, \widetilde{Z})_{n-1}^i)g(y_n | (X, Z)_n^i)}{q_n((X, Z)_n^i | (\widetilde{X}, \widetilde{Z})_{n-1}^i)}$

Actually:

- Resample efficiently.
- Only resample when necessary.

▶ ...

Elementary Algorithms

A Rao-Blackwellized SIR Filter

Algorithmically, at iteration n:

- Given $\{W_{n-1}^{X,i}, (X_{1:n-1}^{i}, p(z_{1:n-1}|X_{1:n-1}^{i}, y_{1:n-1})\}$
- **Resample**, obtaining $\{\frac{1}{N}, (\widetilde{X}_{1:n-1}^i, p(z_{1:n-1}|\widetilde{X}_{1:n-1}^i, y_{1:n-1}))\}$.
- For i = 1, ..., N:
 - Sample $X_n^i \sim q_n(\cdot | \widetilde{X}_{n-1}^i)$
 - Set $X_{1:n}^i \leftarrow (\widetilde{X}_{1:n-1}^i, X_n^i)$.
 - Weight $W_n^{X,i} \propto \frac{p(X_n^i, y_n | \widetilde{X}_{n-1}^i)}{q_n(X_n^i | \widetilde{X}_{n-1}^i)}$
 - Compute $p(z_{1:n}|y_{1:n}, X_{1:n}^i)$.

Requires analytically tractable substructure.

Exact Approximation of the RBPF

An Approximate Rao-Blackwellized SIR Filter

Algorithmically, at iteration n:

- Given $\{W_{n-1}^{X,i}, (X_{1:n-1}^{i}, \widehat{p}(z_{1:n-1}|X_{1:n-1}^{i}, y_{1:n-1})\}$
- **Resample**, obtaining $\{\frac{1}{N}, (\widetilde{X}_{1:n-1}^i, \widehat{p}(z_{1:n-1}|\widetilde{X}_{1:n-1}^i, y_{1:n-1}))\}.$
- For i = 1, ..., N:
 - Sample $X_n^i \sim q_n(\cdot | \widetilde{X}_{n-1}^i)$
 - Set $X_{1:n}^i \leftarrow (\widetilde{X}_{1:n-1}^i, X_n^i)$.
 - Weight $W_n^{X,i} \propto \frac{\widehat{p}(X_n^i, y_n | \widetilde{X}_{n-1}^i)}{q_n(X_n^i | \widetilde{X}_{n-1}^i)}$
 - Compute $\hat{p}(z_{1:n}|y_{1:n}, X_{1:n}^i)$.

Is approximate; how does error accumulate?

Approximating the RBPF

Exact Approximation of the RBPF

Exactly Approximated Rao-Blackwellized SIR Filter

At time n = 1

- Sample, $X_1^i \sim q^x (\cdot | y_1)$.
- Sample, $Z_1^{i,j} \sim q^z \left(\cdot | X_1^i, y_1 \right)$.
- Compute and normalise the local weights

$$w_{1}^{z}\left(X_{1}^{i},Z_{1}^{i,j}\right) := \frac{p(X_{1}^{i},y_{1},Z_{1}^{i,j})}{q^{z}\left(Z_{1}^{i,j} \middle| X_{1}^{i},y_{1}\right)}, W_{1}^{z,i,j} := \frac{w_{1}^{z}\left(X_{1}^{i},Z_{1}^{i,j}\right)}{\sum_{k=1}^{M} w_{1}^{z}\left(X_{1}^{i},Z_{1}^{i,k}\right)}$$

define
$$\widehat{p}(X_{1}^{i}, y_{1}) := \frac{1}{M} \sum_{j=1}^{M} w_{1}^{z} \left(X_{1}^{i}, Z_{1}^{i,j}\right).$$

Compute and normalise the top-level weights

$$w_1^{x}\left(X_1^{i}
ight) := rac{\widehat{p}(X_1^{i}, y_1)}{q^{x}\left(X_1^{i}|y_1
ight)}, \ W_1^{x,i} := rac{w_1^{x}\left(X_1^{i}
ight)}{\sum_{k=1}^{N} w_1^{x}\left(X_1^{k}
ight)}.$$

1

. . . .

Approximating the RBPF

Exact Approximation of the RBPF

At times $n \ge 2$

► Resample

$$\left\{ W_{n-1}^{x,i}, \left(X_{1:n-1}^{i}, \left\{ W_{n-1}^{z,i,j}, Z_{1:n-1}^{i,j} \right\}_{j} \right) \right\}_{i}$$

to obtain

$$\left\{\frac{1}{N}, \left(\widetilde{X}_{1:n-1}^{i}, \left\{\overline{W}_{n-1}^{z,i,j}, \overline{Z}_{1:n-1}^{i,j}\right\}_{j}\right)\right\}_{i}.$$

• Resample $\{\overline{W}_{n-1}^{z,i,j}, \overline{Z}_{1:n-1}^{i,j}\}_j$ to obtain $\{\frac{1}{M}, \widetilde{Z}_{1:n-1}^{i,j}\}_j$.

• Sample
$$X_n^i \sim q^x(\cdot | \widetilde{X}_{1:n-1}^i, y_{1:n})$$
; set $X_{1:n}^i := (\widetilde{X}_{1:n-1}^i, X_n^i)$.

► Sample
$$Z_n^{i,j} \sim q^z \left(\cdot | X_{1:n}^i, y_{1:n}, \widetilde{Z}_{1:n-1}^{i,j} \right)$$
; set
 $Z_{1:n}^{i,j} := (\widetilde{Z}_{1:n-1}^{i,j}, Z_n^{i,j}).$

Approximating the RBPF

Exact Approximation of the RBPF

Compute and normalise the local weights

$$w_{n}^{z}\left(X_{1:n}^{i}, Z_{1:n}^{i,j}\right) := \frac{p\left(X_{n}^{i}, y_{n}, Z_{n}^{i,j} \middle| \widetilde{X}_{n-1}^{i}, \widetilde{Z}_{n-1}^{i,j}\right)}{q^{z}\left(Z_{n}^{i,j} \middle| X_{1:n}^{i}, y_{1:n}, \widetilde{Z}_{1:n-1}^{i,j}\right)},$$

$$\begin{aligned} \widehat{p}(X_{n}^{i}, y_{n} | \widetilde{X}_{1:n-1}^{i}, y_{1:n-1}) &:= & \frac{1}{M} \sum_{j=1}^{M} w_{n}^{z} \left(X_{1:n}^{i}, Z_{1:n}^{i,j} \right), \\ W_{n}^{z,i,j} &:= & \frac{w_{n}^{z} \left(X_{1:n}^{i}, Z_{1:n}^{i,j} \right)}{\sum_{k=1}^{M} w_{n}^{z} \left(X_{1:n}^{i}, Z_{1:n}^{i,k} \right)}. \end{aligned}$$

Exact Approximation of the RBPF

Compute and normalise the top-level weights

$$w_{n}^{x}(X_{1:n}^{i}) := \frac{\widehat{p}(X_{n}^{i}, y_{n} | \widetilde{X}_{1:n-1}^{i}, y_{1:n-1})}{q^{x}(X_{n}^{i} | \widetilde{X}_{1:n-1}^{i}, y_{1:n})},$$
$$W_{n}^{x,i} := \frac{w_{n}^{x}(X_{1:n}^{i})}{\sum_{k=1}^{N} w_{n}^{x}(X_{1:n}^{k})}.$$

Approximating the RBPF

Exact Approximation of the RBPF

How can this be justified?

- As an extended space SIR algorithm.
- Via unbiased estimation arguments.

Note also the M = 1 and $M \rightarrow \infty$ cases.

How does this differ from CSOL11?

Principally in the *local* weights, benefits including:

- ► Valid (N-consistent) for all M ≥ 1 rather than (M, N)-consistent.
- Computational cost $\mathcal{O}(MN)$ rather than $\mathcal{O}(M^2N)$.
- ► Only requires knowledge of joint behaviour of x or z; doesn't require say p(x_n|x_{n-1}, z_{n-1}).

Approximating the RBPF

Exact Approximation of the RBPF

Toy Example: Model

We use a simulated sequence of 100 observations from the model defined by the densities:

$$\mu(x_1, z_1) = \mathcal{N}\left(\begin{pmatrix} x_1 \\ z_1 \end{pmatrix}; \begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\right)$$
$$f(x_n, z_n | x_{n-1}, z_{n-1}) = \mathcal{N}\left(\begin{pmatrix} x_n \\ z_n \end{pmatrix}; \begin{pmatrix} x_{n-1} \\ z_{n-1} \end{pmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\right)$$
$$g(y_n | x_n, z_n) = \mathcal{N}\left(y_n; \begin{pmatrix} x_n \\ z_n \end{pmatrix}, \begin{bmatrix} \sigma_x^2 & 0 \\ 0 & \sigma_z^2 \end{bmatrix}\right)$$

Consider IMSE (relative to optimal filter) of filtering estimate of first coordinate marginals.

Approximating the RBPF

Exact Approximation of the RBPF

Approximation of the RBPF

Approximating the RBPF

Exact Approximation of the RBPF

Computational Performance

Approximating the RBPF

Exact Approximation of the RBPF

Computational Performance

Block Sampling Particle Filters

L Model

What About Other HMMs / Algorithms?

- Unobserved Markov chain $\{X_n\}$ transition f.
- Observed process $\{Y_n\}$ conditional density g.
- Density:

$$p(x_{1:n}, y_{1:n}) = f_1(x_1)g(y_1|x_1)\prod_{i=2}^n f(x_i|x_{i-1})g(y_i|z_i)$$

Block Sampling Particle Filters

Lealised Algorithms

Block Sampling: An Idealised Approach

At time *n*, given $x_{1:n-1}$; discard $x_{n-L+1:n-1}$:

- Sample from $q(x_{n-L+1:n}|x_{n-L}, y_{n-L+1:n})$.
- Weight with

$$W(x_{1:n}) = \frac{p(x_{1:n}|y_{1:n})}{p(x_{1:n-L}|y_{1:n-1})q(x_{n-L+1:n}|x_{n-L},y_{1:n-L+1:n})}$$

Optimally,

$$q(x_{n-L+1:n}|x_{n-L}, y_{n-L+1:n}) = p(x_{n-L+1:n}|x_{n-L}, y_{n-L+1:n})$$
$$W(x_{1:n}) \propto \frac{p(x_{1:n-L}|y_{1:n})}{p(x_{1:n-L}|y_{1:n-1})} = p(y_n|x_{1:n-L}, y_{n-L+1:n-1})$$

► Typically intractable; auxiliary variable approach in [DBS06].

Block Sampling Particle Filters

Lealised Algorithms

Why Try To Block-Sample?

Explicit motivation from the linear Gaussian case:

$$\begin{aligned} & \operatorname{Var}_{p(x_{n-L}|y_{1:n-1})} \left[w_{n,L}(X_{n-L}) \right] \\ &= \int_{-\infty}^{\infty} \frac{\mathcal{N}^2(x_{n-L}; \mu_{n-L|n}, \Sigma_{n-L|n})}{\mathcal{N}(x_{n-L}; \mu_{n-L|n-1}, \Sigma_{n-L|n-1})} dx_{n-L} - 1 \\ &= \frac{\Sigma_{n-L|n-1}}{\sqrt{\Sigma_{n-L|n}(2\Sigma_{n-L|n-1} - \Sigma_{n-L|n})}} \exp\left(\frac{(\mu_{n-L|n} - \mu_{n-L|n-1})^2}{2\Sigma_{n-L|n-1} - \Sigma_{n-L|n}} \right) - 1. \end{aligned}$$

Block Sampling Particle Filters

Lealised Algorithms

Optimal Block Sampling Central Limit Theorem

- Let $\varphi_n : \mathcal{X}^n \to \mathbb{R}$, $\bar{\varphi}_n = \int \varphi_n(x_{1:n}) p(x_{1:n}|y_{1:n}) dx_{1:n}$.
- Allow $\widehat{\varphi}_{n,L}^N$ to denote the estimate obtained with lag-L.

Then:

$$\widehat{\varphi}_{n,L}^{N} = \frac{\sum_{i=1}^{N} \varphi(X_{n,\star}^{i}) \prod_{p=L+1}^{n} \left[w_{p,L}(X_{p-1,p-L}^{i}) \right]}{\sum_{i=L+1}^{N} \prod_{p=L+1}^{n} w_{p,L}(X_{p-1,p-L}^{i})}$$

where $X_{n,\star}^i := (X_{L,1}^i, X_{L+1,2}^i, \dots, X_{n-1,n-L}^i, X_{n,n-L+1:n}^i)$. • Under basic regularity conditions:

$$\lim_{N \to \infty} \sqrt{N} (\widehat{\varphi}_{n,L}^N - \overline{\varphi}_n) \xrightarrow{d} \mathcal{N}(0, V_n(\varphi_n))$$

where $V(\widehat{\varphi}) = \int \prod_{p=L+1}^n \frac{p(x_{p-L}|y_{1:p})^2}{p(x_{p-L}|y_{1:p-1})} (\varphi(x_{1:n}) - \overline{\varphi})^2 dx_{1:n}.$

Block Sampling Particle Filters

Linear Gaussian Model

Toy Model: Linear Gaussian HMM

Linear, Gaussian state transition:

$$f(x_t|x_{t-1}) = \mathcal{N}(x_t; x_{t-1}, 1)$$

and likelihood

$$g(y_t|x_t) = \mathcal{N}(y_t; x_t, 1)$$

- Analytically: Kalman filter/smoother/etc.
- Simple bootstrap PF:
 - Proposal:

$$q(x_t|x_{t-1}, y_t) = f(x_t|x_{t-1})$$

Weighting:

$$W(x_{t-1}, x_t) \propto g(y_t|x_t)$$

Resample residually every iteration.

Block Sampling Particle Filters

Linear Gaussian Model

More than one SMC Algorithm?

- Standard approach:
 - Run an SIR algorithm with *N* particles.
 - Use

$$\pi_n^N(dx_{1:n}) = \sum_{i=1}^N W_n^i \delta_{X_{1:n}^i}(dx_{1:n}).$$

- A crude alternative:
 - Run $L = \lfloor N/M \rfloor$ algorithms with M particles.
 - Use

$$\pi_n^{M,l}(dx_{1:n}) = \sum_{i=1}^M W_n^{l,i} \delta_{X_{1:n}^{l,i}}(dx_{1:n}).$$

- Guarantees *L* i.i.d. samples.
- ▶ For small *M* their distribution may be poor.

Block Sampling Particle Filters

Linear Gaussian Model

Covariance Estimation: 1d Linear Gaussian Model

Block Sampling Particle Filters

Linear Gaussian Model

Local Particle Filtering: Current Trajectories

Block Sampling Particle Filters

Linear Gaussian Model

Local Particle Filtering: First Particle

Block Sampling Particle Filters

Linear Gaussian Model

Local Particle Filtering: SMC Proposal

Block Sampling Particle Filters

Linear Gaussian Model

Local Particle Filtering: CSMC Auxiliary Proposal

Block Sampling Particle Filters

Exact Approximation of BSPFs / Local Particle Filtering

Local SMC

Propose from:

$$\mathcal{U}_{1:M}^{\otimes n-1}(b_{1:n-2},k)p(x_{1:n-1}|y_{1:n-1})\psi_{n,L}^{M}(\overline{\mathbf{a}}_{n-L+2:n},\overline{\mathbf{x}}_{n-L+1:n},\overline{k};x_{n-L})$$

$$\widetilde{\psi}_{n-1,L-1}^{M}(\widetilde{\mathbf{a}}_{n-L+2:n-1}^{\ominus k},\widetilde{\mathbf{x}}_{n-L+1:n-1}^{\ominus k};x_{n-L}||b_{n-L+2:n-1},x_{n-L+1:n-1})$$

► Target:

$$\mathcal{U}_{1:M}^{\otimes n}(b_{1:n-L}, \bar{b}_{n,n-L+1:n-1}^{\bar{k}}, \bar{k}) p(x_{1:n-L}, \bar{x}_{n-L+1:n}^{\bar{b}_{n,n-L+1:n}^{\bar{k}}} | y_{1:n}) \\ \widetilde{\psi}_{n,L}^{M}\left(\overline{\mathbf{a}}_{n-L+2:n}^{\ominus \bar{k}}, \overline{\mathbf{x}}_{n-L+1:n}^{\ominus \bar{k}}; x_{n-L} \middle\| \overline{b}_{n,n-L+1:n}^{\bar{k}}, \overline{\mathbf{x}}_{n-L+1:n}^{\overline{b}_{n,n-L+1:n}^{\bar{k}}} \right) \\ \psi_{n-1,L-1}^{M}\left(\widetilde{\mathbf{a}}_{n-L+2:n-1}, \widetilde{\mathbf{x}}_{n-L+1:n-1}, k; x_{n-L}\right).$$

• Weight: $\overline{Z}_{n-L+1:n}/\widetilde{Z}_{n-L+1:n-1}$.

Block Sampling Particle Filters

Exact Approximation of BSPFs / Local Particle Filtering

Key Identity

$$=\frac{\psi_{n,L}^{M}(\mathbf{a}_{n-L+2:n},\mathbf{x}_{n-L+1:n},k;x_{n-L})}{p(x_{n-L+1:n}|x_{n-L},y_{n-L+1:n})\widetilde{\psi}_{n,L}^{M}(\mathbf{a}_{n-L+2:n}^{\ominus k},\mathbf{x}_{n-L+1:n}^{\ominus k},k;x_{n-L}||...)}$$

$$=\frac{q\left(x_{n-L+1}^{b_{n,n-L+1}^{k}}|x_{n-L}\right)\left[\prod_{p=n-L+2}^{n}r\left(b_{n,p}^{k}|\mathbf{w}_{p-1}\right)q\left(x_{p}^{b_{n,p}^{k}}|x_{p-1}^{b_{n,p-1}^{n}}\right)\right]r(k|\mathbf{w}_{n})}{p(x_{n-L+1:n}|x_{n-L},y_{n-L+1:n})}$$

$$=\widehat{Z}_{n-L+1:n}/p(y_{n-L+1:n}|x_{n-L})$$

Block Sampling Particle Filters

Exact Approximation of BSPFs / Local Particle Filtering

Bootstrap Local SMC

- ► Top Level:
 - Local SMC proposal.
 - Stratified resampling when ESS < N/2.
- Local SMC Proposal:
 - Proposal:

$$q(x_t|x_{t-1}, y_t) = f(x_t|x_{t-1})$$

Weighting:

$$W(x_{t-1}, x_t) \propto \frac{f(x_t | x_{t-1})g(y_t | x_t)}{f(x_t | x_{t-1})} = g(y_t | x_t)$$

Resample multinomially every iteration.

Block Sampling Particle Filters

Exact Approximation of BSPFs / Local Particle Filtering

Bootstrap Local SMC: M=100

Block Sampling Particle Filters

Exact Approximation of BSPFs / Local Particle Filtering

Bootstrap Local SMC: M=1000

Block Sampling Particle Filters

Exact Approximation of BSPFs / Local Particle Filtering

Bootstrap Local SMC: M=10000

Block Sampling Particle Filters

Stochastic Volatility Model

Stochastic Volatility Bootstrap Local SMC

Model:

$$f(x_i|x_{i-1}) = \mathcal{N} (\phi x_{i-1}, \sigma^2)$$
$$g(y_i|x_i) = \mathcal{N} (0, \beta^2 \exp(x_i))$$

- Top Level:
 - Local SMC proposal.
 - Stratified resampling when ESS < N/2.
- Local SMC Proposal:
 - Proposal:

$$q(x_t|x_{t-1}, y_t) = f(x_t|x_{t-1})$$

Weighting:

$$W(x_{t-1}, x_t) \propto \frac{f(x_t | x_{t-1})g(y_t | x_t)}{f(x_t | x_{t-1})} = g(y_t | x_t)$$

Resample residually every iteration.

Block Sampling Particle Filters

Stochastic Volatility Model

SV Simulated Data

Block Sampling Particle Filters

Stochastic Volatility Model

SV Bootstrap Local SMC: M=100

N = 100, M = 100

Block Sampling Particle Filters

Stochastic Volatility Model

SV Bootstrap Local SMC: M=1000

N = 100, M = 1000

40

Block Sampling Particle Filters

Stochastic Volatility Model

100

SV Bootstrap Local SMC: M=10000

Block Sampling Particle Filters

Stochastic Volatility Model

SV Exchange Rata Data

Block Sampling Particle Filters

Stochastic Volatility Model

SV Bootstrap Local SMC: M=100

Block Sampling Particle Filters

Stochastic Volatility Model

SV Bootstrap Local SMC: M=1000

Block Sampling Particle Filters

Stochastic Volatility Model

SV Bootstrap Local SMC: M=10000

N=100, M=10,000 Average Number of Unique Values = 22 n

Block Sampling Particle Filters

Stochastic Volatility Model

SV Exchange Rata Data

In Conclusion

- SMC can be used hierarchically.
- Software implementation is not difficult [Joh09].
- The Rao-Blackwellized particle filter can be approximated exactly
 - Can reduce estimator variance at fixed cost.
 - Attractive for distributed/parallel implementation.
 - Allows combination of different sorts of particle filter.
 - Can be combined with other techniques for parameter estimation etc..
- The optimal block-sampling particle filter can be approximated *exactly*
 - Requiring only simulation from the transition and evaluation of the likelihood
 - Easy to parallelise
 - Low storage cost

└─ Summary

References I

- C. A
 - C. Andrieu and A. Doucet. Particle filtering for partially observed Gaussian state space models. *Journal of the Royal Statistical Society B*, 64(4):827–836, 2002.

C. Andrieu, A. Doucet, and R. Holenstein. Particle Markov chain Monte Carlo. *Journal of the Royal Statistical Society B*, 72(3):269–342, 2010.

R. Chen and J. S. Liu. Mixture Kalman filters. *Journal of the Royal Statistical Society B*, 62(3):493–508, 2000.

T. Chen, T. Schön, H. Ohlsson, and L. Ljung. Decentralized particle filter with arbitrary state decomposition. *IEEE Transactions on Signal Processing*, 59(2):465–478, February 2011.

A. Doucet, M. Briers, and S. Sénécal. Efficient block sampling strategies for sequential Monte Carlo methods. Journal of Computational and Graphical Statistics, 15(3):693–711, 2006.

N. J. Gordon, S. J. Salmond, and A. F. M. Smith. Novel approach to nonlinear/non-Gaussian Bayesian state estimation. *IEE Proceedings-F*, 140(2):107–113, April 1993.

A. M. Johansen and A. Doucet. Hierarchical particle sampling for intractable state-space models. CRiSM working paper, University of Warwick, 2012. In preparation.

A. M. Johansen. SMCTC: Sequential Monte Carlo in C++. *Journal of Statistical Software*, 30(6):1–41, April 2009.

A. M. Johansen, N. Whiteley, and A. Doucet. Exact approximation of Rao-Blackwellised particle filters. In Proceedings of 16th IFAC Symposium on Systems Identification. IFAC, 2012.