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Positron Emission Tomography (PET)

I Use compounds labeled with positron emission radionuclides
as molecular tracers to image and measure biochemical
process in vivo.

I One of the few methods available to neuroscientists to study
living brains.

I Research into diseases where biochemical changes are known
to be responsible symptomatic changes.

I For example, diagnostic procedure for cancer through
fluorodeoxyglucose ([18F]-FDG) tracers.
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Linear Compartmental models

I Comprise a finite number of macroscopic subunits called
compartments.

I Each is assumed to contain homogeneous and well-mixed
material.

I Material flows from one compartment to another at a
constant rate.

I In PET total concentration of material is measured.

These models yield sytems of ODEs:

ḟ(t) = Af(t) + b(t)

f(0) = ξ
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Plasma input PET compartmental models
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N.B. We actually focus on linear compartmental models.
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Plasma input PET compartmental models
System,

ĊT (t) = ACT (t) + bCP (t)

CT (t) = 1TCT (t)

CT (0) = 0

Solution,

CT (t) =

∫ t

0
CP (t− s)HTP (s) ds

HTP (t) =

r∑
i=1

φie
−θit

Parameter of interest,

VD =

∫ ∞
0

HTP (t) dt =
r∑
i=1

φi
θi
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Bayesian model selection for PET

I Determine the number of tissue compartments.
I “Mass univariate analysis.”

I Each time course of CT (t) is analyzed individually.
I Many: quarter of a million time series per PET scan.

I Data is measured at discrete times t = t1, . . . , tn,

yi = C(ti) +

√
C(ti)

ti − ti−1
εi

where εi are (iid) errors.
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Typical PET Time Courses
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Robust modeling of the error structure

I Low signal to noise ratio.
I Standard approach (in likelihood-based procedures)

I Use Normal distributions to model the error.
I Employ weighted Non-negative Least Squares.
I Assign (arbitrary) small weights to the most noisy data points.

I Bayesian modeling
I No justifiable way to bound “weights” with normal errors.
I Need more robust modeling of the error structure.

I Simple solution:
Use three-parameter t distribution instead of Normal.
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Biologically informative priors [Zhou et al., 2013a]

Starting point:

I Parameters φ1:r and θ1:r are functions of the rate constants.

I The matrix A of rate constants obey some simple rules.

I Rate constants are constrained by biophysical considerations.

Key observations: For θ1 ≤ θ2 ≤ · · · ≤ θr: into the environment.

I In the linear plasma input model, there is one outflow, k2,
θ1 ≤ k2.

I There is also only one inflow K1,
∑r

i=1 φi = K1.

Biophysical knowledge constrains possible values for φ1:r and θ1:r.
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Sequential Monte Carlo [Del Moral et al., 2006]

I Iteratively generate importance sampling proposal
distributions for a sequence {πt}Tt=0.

I Use MCMC kernels to propose samples

1. Generate {X(i)
0 }Ni=1 from π0. Set {W (i)

0 }Ni=1, the importance
weights, to 1/N .

2. For t = 1, . . . , T ,

2.1 Resample if necessary.

2.2 Generate {X(i)
t }Ni=1 from K(xt−1, xt), a πt-invariant Markov

kernel.
2.3 Set W

(i)
t ∝W (i)

t−1w̃
(i)
t , where w̃

(i)
t ∝ πt(X

(i)
t )/πt−1(X

(i)
t ).
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Algorithm setting for Bayesian modeling

Sequence of distributions,

πt(ϕ) ∝ π0(ϕ)[L(ϕ|y1:n)]α(t/T )

where ϕ is the parameter vector, π0 is the prior and L is the
likelihood function.
Markov kernels,

I Update φ1:r with Normal random walks.

I Update θ1:r with Normal random walks.

I Update λ, the scale parameter of the t distributed error, with
a Normal random walk on log λ.

I Update ν, the degree of freedoms of the t distributed error,
with a Normal random walk on log ν.
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Computational challenge

I Accuracy of estimator

I Heterogeneous structure

I Computational cost
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Improve the accuracy of estimators [Zhou et al., 2013b]

I Increase the number of particles.

I Increase the number of intermediate distributions.
I Fast mixing Markov kernels.

I Multiple MCMC passes each iteration.
I Adaptive proposal scales for random walks.

I Better specification of intermediate distributions.
I Place more distributions where πt changes fast when α(t/T )

increases.
I Adaptive specification such that the discrepancy between πt

and πt−1 remain almost constant.
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Improve the accuracy of estimators —
adaptive specification of the sequence of distributions

.

.

.

.

.

. . . . .
𝛼𝑡

𝛼 𝑡
−
𝛼 𝑡
−1

Threshold

.



Method

CESS

ESS

Figure : Variation of the distribution specification parameter α(t/T )
when using adaptive algorithms.
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Heterogeneous structure and algorithm tuning
We cannot tune the algorithm for each of 250,000 time series.
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Figure : Estimates of VD using selected model

I SMC is more robust compared than (our) MCMC.

I Adaptive strategies.
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Computational cost and parallel computing

I SMC can be parallelized naturally in contrast to MCMC.
I SMC can be parallelized more efficient compared to other

algorithms, such as population MCMC.
I We can increase the number of particles freely.
I Increase the number of distributions in population MCMC

come with a cost – global mixing speed.

I Well suited for SIMD architectures, such as GPUs:
I They perform best when each thread does exactly the same

thing.
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Results

I Bayesian model selection for simulated data performance
considerably better than methods such as AIC and BIC.

I Higher frequency of selecting the true model.
I More accurate parameter estimates.
I Biological informative priors improve the results further

(but results are fairly insensitive to the prior).

I Bayesian model selection for real data shows more plausible
structures than existing techniques.

I Voxels with higher volume of distributions (VD) are expected
to have higher order models associated with them.
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Results

Model.Order
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Model selection results using AIC (above) / Bayes factor (below).
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Conclusions

SMC is not “too computationally demanding” for neuroscience.

I Monte Carlo methods are feasible for large data problems.

I SMC can outperform MCMC even in time-limited settings
such as this one.

I Many problems in neuroscience are amenable to similar
solutions [Sorrentino et al., 2013, Nam et al., 2012]

Ongoing work on this problem seeks to replace the “mass
univariate analysis” approach.
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