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Filtering

Online inference for State Space Models:

x1 x2 x3 x4 x5 x6

y1 y2 y3 y4 y5 y6

I Given transition fθ(xn|xn−1),

I and likelihood gθ(yn|xn),

I use pθ(xn|y1:n) to characterize latent state, but,

pθ(xn|y1:n) =

∫
pθ(xn−1|y1:n−1)fθ(xn|xn−1)dxn−1gθ(yn|xn)∫ ∫
pθ(xn−1|y1:n−1)fθ(x′n|xn−1)dxn−1gθ(yn|x′n)dx′n

isn’t often tractable.



Particle Filtering
A (sequential) Monte Carlo (SMC) scheme to approximate the
filtering distributions.

A Simple Particle Filter

At n = 1:

I Sample X1
1 , . . . , X

N
1 ∼ µθ.

For n > 1:

I Sample

X1
n, . . . , X

N
n ∼

∑N
j=1 gθ(yn−1|Xj

n−1)fθ(·|Xj
n−1)∑n

k=1 gθ(yn−1|Xk
n−1)

I Approximate pθ(dxn|y1:n), pθ(y1:n) with

p̂θ(·|y1:n) =

∑N
j=1 gθ(yn|Xj

n)δXj
n∑n

k=1 gθ(yn|Xk
n)

,
p̂θ(y1:n)

p̂θ(y1:n−1)
=

1

n

N∑
j=1

gθ(yn|Xk
n)



Online Particle Filters for Offline Systems Identification

Particle Markov chain Monte Carlo (PMCMC) [ADH10]

I Embed SMC within MCMC,

I justified via explicit auxiliary variable construction,

I and in some simple cases by a pseudomarginal [AR09]
argument.

I Very widely applicable,

I but prone to poor mixing when SMC performs poorly for
some θ [OWG15, Section 4.2.1].

I Is valid for very general SMC algorithms.



Block-Sampling and Tempering in Particle Filters

Tempered Transitions [GC01]

I Introduce each likelihood term gradually, targetting:

πn,m(x1:n) ∝ p(x1:n|y1:n−1)p(yn|xn)βm

between p(x1:n−1|y1:n−1) and p(x1:n|y1:n).

I Can improve performance — but to a limited extent.

Block Sampling [DBS06]

I Essentially uses yn:n+L in proposing xn.

I Can dramatically improve performance,

I but requires good analytic approximation of
p(xn:n+L|xn−1, yn:n+L).



Block-Tempering

I We could combine blocking and tempering strategies.

I Run a simple SMC sampler [DDJ06] targetting:

πθt,r(x1:t∧T ) =µθ(x1)
β1
(t,r)gθ(y1|x1)

γ1
(t,r) ·

T∧t∏
s=2

fθ(xs|xs−1)
βs
(t,r)gθ(ys|xs)γ

s
(t,r) , (1)

where {βs(t,r)} and {γs(t,r)} are [0, 1]-valued

I for s ∈ [[1, T ]], r ∈ [[1, R]] and t ∈ [[1, T ′]], with T ′ = T + L

I for some R,L ∈ N.

I Can be validly embedded within PMCMC:
I Terminal likelihood estimate is unbiased.
I Explicit auxiliary variable construction is possible.



Two Simple Block-Tempering Strategies

Tempering both likelihood and transition probabilities

βs(t,r) = γs(t,r) =

(
1 ∧ R(t− s) + r

RL

)
∨ 0 (2)

Tempering only the observation density

βs(t,r) =I{s ≤ t} γs(t,r) =

(
1 ∧ R(t− s) + r

RL

)
∨ 0, (3)



Tempering Only the Observation Density

0

0

1

1

t

t

t− L + 1 s

s

βs
(t,R) = βs

(t,0)

γs
(t,R)

γs
(t,0)

1
L



Illustrative Example

I Univariate Linear Gaussian SSM:

transition f(x′|x) =N (x′;x, 1)

likelihood g(y|x) =N (y;x, 1)

I Artificial jump in observation
seqeuence at time 75.

I Cartoon of model misspecification

I — a key difficulty with PMCMC.

I Temper only likelihood.

I Use single-site Metropolis-Within
Gibbs (standard normal
proposal) MCMC moves.

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

−15

−10

−5

0

5

0 25 50 75 100
Time, t

O
bs

er
va

tio
ns

,  
y[

t]



True Filtering and Smoothing Distributions
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Estimating the Normalizing Constant, Ẑ
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Relative Error in Ẑ Against Computational Effort
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Conclusions

I PMCMC is perhaps even more powerful than has yet been
recognised.

I Exploiting the offline nature of the PMCMC setting allows
more flexibility than the filtering framework.

I The particular block-tempered approach developed here
warrants further investigation.

I Another approach to similar problems is provided by: the
iAPF [GJL15, preprint on ArXiv RSN]



Conclusions

I PMCMC is perhaps even more powerful than has yet been
widely recognised.

I Exploiting the offline nature of the PMCMC setting allows
more flexibility than the filtering framework.

I The particular block-tempered approach developed here
warrants further investigation.

I Another approach to similar problems is provided by: the
iAPF [GJL15, preprint on ArXiv RSN]

Thanks for listening. . . Any Questions?
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