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Filtering

Online inference for State Space Models:

» Given transition fo(xn|Tn—1),
» and likelihood gg(yn|xn),

» use pg(Zn|y1.n) to characterize latent state, but,

Po(Enlyton) = J po(zn—1|y1:m—1) fo(@n|zn—1)dzn—190(Yn|zn)
M po(@n—t|yrin—1) fo(@h | @n—1)dzn—190 (yn|x}, ) da,

isn’t often tractable.



Particle Filtering

A (sequential) Monte Carlo (SMC) scheme to approximate the
filtering distributions.

A Simple Particle Filter

Atn=1:
» Sample Xi, ..., XN ~ puy.
For n > 1:
> Sample
X}L,...,XNNZ] 199(yn 1| 1)f6’( |X )

" Zk:1 Qe(yn71|an1)

» Approximate pg(dzn|y1:n), Po(y1:n) With

. ZN—l 90(yn|erL)5xf Do(Y1:n)
Po(-lyrn) = =55 90 (Yn| XF)
Y i1 90l XE) 7 Do (Yrin—1) Z




Online Particle Filters for Offline Systems Identification

Particle Markov chain Monte Carlo (PMCMC) [ADH10]
» Embed SMC within MCMC,

> justified via explicit auxiliary variable construction,

» and in some simple cases by a pseudomarginal [AR09]
argument.

» Very widely applicable,

» but prone to poor mixing when SMC performs poorly for
some 0 [OWGI15, Section 4.2.1].

> Is valid for very general SMC algorithms.



Block-Sampling and Tempering in Particle Filters

Tempered Transitions [GCO1]
» Introduce each likelihood term gradually, targetting:

7Tn,m(rxlzn) X p(l'l:n|y1:n71)p(yn|$n)6m

between p($1:n71|y1:n71) and p(xlzn|y1:n)-

» Can improve performance — but to a limited extent.

Block Sampling [DBS06]

> Essentially uses y,.,+r1 in proposing .

» Can dramatically improve performance,

» but requires good analytic approximation of
p(xnﬂH—L |xn—1; yn:n—l—L)'



Block-Tempering

v

We could combine blocking and tempering strategies.
» Run a simple SMC sampler [DDJ06] targetting:

(4 sl AL
7-"t,r(wlzt/\T) :Me(.’ﬂl) (t”")gg(yllwl) (tr).
TNt

[T fotwslas—1)*en go(yslas)en, (1)
s=2
where {Bft r)} and {7(515 T)} are [0, 1]-valued
for s € [1,T],r € [1,R] and t € [1,T], with T" =T + L
for some R, L € N.
Can be validly embedded within PMCMC:

» Terminal likelihood estimate is unbiased.
» Explicit auxiliary variable construction is possible.
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Two Simple Block-Tempering Strategies

Tempering both likelihood and transition probabilities

s s R(t—s)+r
Blery = Vi) = (1 A T) Vo (2)

Tempering only the observation density

s s R(t—s)+r
B(t,r) :]I{S S t} ’y(t,r) = (1 VAN T) V 0, (3)



Tempering Only the Observation Density
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[llustrative Example

v

Univariate Linear Gaussian SSM:

transition  f(2'|x) =N (2';2,1)
likelihood  g(y|z) =N (y;z,1)

Artificial jump in observation
seqeuence at time 75.

Cartoon of model misspecification
— a key difficulty with PMCMC.
Temper only likelihood.

Use single-site Metropolis-Within
Gibbs (standard normal
proposal) MCMC moves.
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True Filtering and Smoothing Distributions
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Estimating the Normalizing Constant, Z
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Relative Error in Z Against Computational Effort
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Performance:
(R=1,L=1)
<(R>1,L=1)

<(R>1,L>1)



Conclusions

» PMCMC is perhaps even more powerful than has yet been
recognised.

» Exploiting the offline nature of the PMCMC setting allows
more flexibility than the filtering framework.

» The particular block-tempered approach developed here
warrants further investigation.

» Another approach to similar problems is provided by: the
iAPF [GJL15, preprint on ArXiv RSN]



Conclusions

» PMCMC is perhaps even more powerful than has yet been
widely recognised.

» Exploiting the offline nature of the PMCMC setting allows
more flexibility than the filtering framework.

» The particular block-tempered approach developed here
warrants further investigation.

» Another approach to similar problems is provided by: the
iAPF [GJL15, preprint on ArXiv RSN]

Thanks for listening. . . Any Questions?
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