Rare Event Simulation and (Interacting) Particle Systems

Adam M. Johansen

a.m.johansen@warwick.ac.uk
http://go.warwick.ac.uk/amjohansen/talks/

MASDOC Statistical Frontiers Seminar 4th February 2016

 Centre for Doctoral Training

Context

- Given a probability space $(\Omega, \mathcal{F}, \mathbb{P})$,
- and a random element $X:(\Omega, \mathcal{F}) \rightarrow(E, \mathcal{E})$,
- what is $\mathbb{P}(X \in A)=\mathbb{P} \circ X^{-1}(A)=\mathbb{P}(\{\omega \in \Omega: X(\omega) \in A\})$,
- for some $A \in \mathcal{E}$ such that $\mathbb{P}(A) \ll 1$?

Some Simple Examples: Normal Probabilities

1. A really simple problem.

- Let

$$
f(x)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{x^{2}}{2}\right) .
$$

- What is $\mathbb{P}(X \in A)$ if $A=[a, \infty)$ for $a \gg 1$?
- Simple semi-analytic solution $1-\Phi(a)$.

2. A somewhat harder problem:

- let

$$
f(\mathbf{x})=\frac{1}{\sqrt{|2 \pi \Sigma|}} \exp \left(-\frac{1}{2} \mathbf{x}^{T} \Sigma^{-1} \mathbf{x}\right) .
$$

- What is $\mathbb{P}(X \in A)$ if $A=\otimes_{i=1}^{d}\left[a_{i}, b_{i}\right]$?
- What can we say about $\left.\operatorname{Law}(X)\right|_{A}$

The Monte Carlo Method

- To approximate

$$
I(\varphi)=\mathbb{E}[\varphi(X)]
$$

with $X \sim \pi$.

- Sample $X_{1}, \ldots, X_{n} \stackrel{\text { iid }}{\sim} \pi$ and
- use

$$
\hat{I}_{n}(\varphi)=\frac{1}{n} \sum_{i=1}^{n} \varphi\left(X_{i}\right) .
$$

- SLLN:

$$
\lim _{n \rightarrow \infty} \hat{I}_{n}(\varphi) \stackrel{\text { a.s. }}{=} \mathbb{E}[\varphi(X)]
$$

- CLT:

$$
\lim _{n \rightarrow \infty} \sqrt{n}\left(\hat{l}_{n}(\varphi)-I(\varphi)\right) \stackrel{D}{=} Z
$$

$Z \sim \mathcal{N}(0, \operatorname{Var}(\varphi(X)))$ provided $\operatorname{Var}(\varphi(X))<\infty$.

The Monte Carlo Method and Rare Events

- Use $\mathbb{P}(X \in A) \equiv \mathbb{E}\left[\mathbb{I}_{A}(X)\right]=I\left(\mathbb{I}_{A}\right)$.
- Then, directly:

$$
\mathbb{P}(X \in A) \approx \hat{I}_{n}\left(\mathbb{I}_{A}\right)=\frac{\left|A \cap\left\{X_{1}, \ldots, X_{n}\right\}\right|}{n}
$$

Simple Monte Carlo and the Toy Problem

a	$\log \left(\hat{l}_{10^{k}}\left(\mathbb{I}_{[a, \infty)}\right)\right)$							\log	
	k	1	2	3	4	5	6	7	$(1-\Phi(a))$
1	-2.30	-1.66	-1.80	-1.82	-1.83	-1.84	-1.84	-1.84	
2		-3.91	-3.73	-3.76	-3.78	-3.79	-3.79	-3.78	
3			-6.91	-6.81	-6.59	-6.60	-6.61	-6.61	
4					-10.12	-10.26	-10.42	-10.36	
5							-14.73	-15.06	
6								-20.74	

Simple calculations reveal:

- $\mathbb{E}\left[\hat{I}_{n}\left(\mathbb{I}_{[a, \infty)}\right)\right]=\mathbb{P}(X \in[a, \infty))$
- $\operatorname{Var}\left[\hat{I}_{n}\left(\mathbb{I}_{[a, \infty)}\right)\right]=\frac{1}{n} \mathbb{P}(X \in[a, \infty))(1-\mathbb{P}(X \in[a, \infty)))$
- So the relative standard deviation is $\sim(n \mathbb{P}(X \in[a, \infty)))^{-1}$.

Simple Monte Carlo and the Toy Problem

a	$\log \left(\hat{l}_{10^{k}}\left(\mathbb{I}_{[a, \infty)}\right)\right)$							\log	
	k	1	2	3	4	5	6	7	$(1-\Phi(a))$
1	-2.30	-1.66	-1.80	-1.82	-1.83	-1.84	-1.84	-1.84	
2		-3.91	-3.73	-3.76	-3.78	-3.79	-3.79	-3.78	
3			-6.91	-6.81	-6.59	-6.60	-6.61	-6.61	
4					-10.12	-10.26	-10.42	-10.36	
5							-14.73	-15.06	
6								-20.74	

Simple calculations reveal:

- $\mathbb{E}\left[\hat{I}_{n}\left(\mathbb{I}_{[a, \infty)}\right)\right]=\mathbb{P}(X \in[a, \infty))$
- $\operatorname{Var}\left[\hat{I}_{n}\left(\mathbb{I}_{[a, \infty)}\right)\right]=\frac{1}{n} \mathbb{P}(X \in[a, \infty))(1-\mathbb{P}(X \in[a, \infty)))$
- So the relative standard deviation is $\sim(n \mathbb{P}(X \in[a, \infty)))^{-1}$.

Variance Reduction

- Want \hat{p}_{n} such that $\hat{p}_{n} \approx \mathbb{P}(X \in A)=: p$:
- Ideally, with $\mathbb{E}\left[\hat{p}_{n}\right]=p$.
- Such that $\operatorname{Var}\left(\hat{p}_{n}\right) \ll p^{2}$.
- For modest n.
- Controlling variance is the key issue.
- Importance Sampling.
- Splitting.
- Interacting Particle Systems.
- Sequential Monte Carlo.

Importance Sampling - A Change of Measure View

- If:
- $X \sim f$
- $Y \sim g$
- $f \ll g$
- $w(x):=\frac{d f}{d g}(x)$
- Then:
- $\mathbb{E}[\varphi(X)] \equiv \mathbb{E}[w(Y) \varphi(Y)]$
- So, if $Y_{1}, \ldots \stackrel{\text { iid }}{\sim} g$, then:

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} w\left(Y_{i}\right) \varphi\left(Y_{i}\right) \stackrel{\text { a.s. }}{=} \mathbb{E}[\varphi(X)]
$$

and this is an unbiased estimator for any n.

Importance Sampling Variance

The variance of this estimator is:

$$
\begin{aligned}
& \operatorname{Var}\left[\frac{1}{n} \sum_{i=1}^{n} w\left(Y_{i}\right) \varphi\left(Y_{i}\right)\right] \\
= & \frac{1}{n} \operatorname{Var}\left[w\left(Y_{1}\right) \varphi\left(Y_{1}\right)\right] \\
= & \frac{1}{n}\left\{\mathbb{E}\left[\left(w\left(Y_{1}\right) \varphi\left(Y_{1}\right)\right)^{2}\right]-\mathbb{E}\left[w\left(Y_{1}\right) \varphi\left(Y_{1}\right)\right]^{2}\right\} \\
= & \frac{1}{n}\left\{\int(w(y) \varphi(y))^{2} g(d y)-\left(\int w(y) \varphi(y) g(d y)\right)^{2}\right\} \\
= & \frac{1}{n}\left\{\int w(y) \varphi^{2}(y) f(d x)-\mathbb{E}[\varphi(X)]^{2}\right\}
\end{aligned}
$$

Optimal Importance Sampling

Proposition

Let $X \sim f$, where $f(d x)=f(x) d x$, with values in (E, \mathcal{E}) and let $\phi: \mathbb{R} \rightarrow(0, \infty)$ a function of interest. The proposal which minimizes the variance of the importance sampling estimator of $\mathbb{E}[\varphi(X)]$ is $g(x) d x$, where:

$$
g(x)=\frac{f(x) \varphi(x)}{\int f(y) \varphi(y) d y}
$$

Note: if $E \supset A \supset \operatorname{supp} \varphi(x)$, it suffices for $\left.\left.f\right|_{A} \ll g\right|_{A}$.

Importance Sampling and the Toy Problem

a	$k \quad \log \left(\hat{l}_{10^{k}}\left(\mathbb{I}_{\text {a, }}{ }^{\text {a }}\right.\right.$) $)$							\log
	1	2	3	[a,)	6	7	(1-Ф(a))
1	-1.72	-1.84	-1.83	-1.84	-1.84	-1.84	-1.84	-1.84
2	-3.63	-3.78	-3.79	-3.78	-3.78	-3.78	-3.78	-3.78
3	-6.43	-6.59	-6.63	-6.60	-6.61	-6.61	-6.61	-6.61
4	-10.16	-10.34	-10.40	-10.35	-10.36	-10.36	-10.36	-10.36
5	-14.85	-15.04	-15.12	-15.06	-15.07	-15.06	-15.06	-15.06
6	-20.51	-20.72	-20.81	-20.73	-20.73	-20.74	-20.74	-20.74
7	-27.16	-27.37	-27.46	-27.38	-27.39	-27.38	-27.38	-27.38
8	-34.79	-35.01	-35.10	-35.02	-35.01	-35.01	-35.01	-35.01
9	-43.41	-43.64	-43.73	-43.63	-43.63	-43.63	-43.62	-43.63

Using $g(x)=\exp (-(x-a)) \mathbb{I}_{[a, \infty)}(x)$.

So far

- Rare events probabilities are important,
- but not often available analytically.
- Monte Carlo appears to offer a solution;
- naïve approaches fail due to their high variance.
- Importance sampling can help dramatically;
- but can be very difficult (i.e. impossible) to implement effectively.

Next

- Two classes of problems;
- potential solutions in these settings.

Problem Formulation

Here we consider algorithms which are applicable to two types of rare event, both of which are defined in terms of the canonical Markov chain:

$$
\left(\Omega=\prod_{n=0}^{\infty} E_{n}, \mathcal{F}=\prod_{n=0}^{\infty} \mathcal{F}_{n},\left(X_{n}\right)_{n \in \mathbb{N}}, \mathbb{P}_{\eta_{0}}\right)
$$

where the law $\mathbb{P}_{\eta_{0}}$ is defined by its finite dimensional distributions:

$$
\mathbb{P}_{\eta_{0}} \circ X_{0: N}^{-1}\left(d x_{0: N}\right)=\eta_{0}\left(d x_{0}\right) \prod_{i=1}^{N} M_{i}\left(x_{i-1}, d x_{i}\right)
$$

Static Rare Events

We term the first type of rare events which we consider static rare events:

- They are defined as the probability that the first $P+1$ elements of the canonical Markov chain lie in a rare set, \mathcal{T}.
- That is, we are interested in

$$
\mathbb{P}_{\eta_{0}}\left(x_{0: P} \in \mathcal{T}\right)
$$

and the associated conditional distribution:

$$
\mathbb{P}_{\eta_{0}}\left(x_{0: P} \in d x_{0: P} \mid x_{0: P} \in \mathcal{T}\right)
$$

- We assume that the rare event is characterised as a level set of a suitable potential function:

$$
V: \mathcal{T} \rightarrow[\hat{V}, \infty), \text { and } V: E_{0: P} \backslash \mathcal{T} \rightarrow(-\infty, \hat{V})
$$

A Simple Example: Normal Random Walks

- A toy example:
- $\eta_{0}\left(x_{0}\right)=\mathcal{N}\left(x_{0} ; 0,1\right)$.
- $M_{n}\left(x_{n-1}, x_{n}\right)=\mathcal{N}\left(x_{n} ; x_{n-1}, 1\right)$.
- $V\left(x_{0}: P\right)=\sum_{i=0}^{P} x_{i}$.
- $\mathcal{T}=[\hat{V}, \infty)$.
- So:
- $X_{P} \sim \mathcal{N}(0, P+1)$
- $\mathbb{P}\left(X_{0: P} \in \mathcal{T}\right)=\mathbb{P}\left(X_{P} \geq \hat{V}\right)=1-\Phi(\hat{V} / \sqrt{P+1})$

A Slightly Harder Problem

- $\eta_{0}\left(x_{0}\right)=\mathcal{N}\left(x_{0} ; 0,1\right)$.
- $M_{n}\left(x_{n-1}, x_{n}\right)=\mathcal{N}\left(x_{n} ; x_{n-1}, 1\right)$.
- $V\left(x_{0: P}\right)=\max _{0 \leq i \leq P} x_{i}$.
- $\mathcal{T}=[\hat{V}, \infty)$.

A Real Problem: Polarization Mode Dispersion

This examples was considered by $(3,8)$. We have a sequence of polarization vectors, r_{n} which evolve according to the equation:

$$
r_{n}=R\left(\theta_{n}, \phi_{n}\right) r_{n-1}+\frac{1}{2} S\left(\theta_{n}\right)
$$

where:

- $\phi_{n} \sim \mathcal{U}[-\pi, \pi]$
- $\cos \left(\theta_{n}\right) \sim \mathcal{U}[-1,1], s_{n}=\operatorname{sgn}\left(\theta_{n}\right) \sim \mathcal{U}\{-1,+1\}$,
- $S(\theta)=(\cos (\theta), \sin (\theta), 0)$ and $R(\theta, \phi)$ is the matrix which describes a rotation of ϕ about axis $S(\theta)$.
The rare events of interest are system trajectories for which $\left|r_{P}\right|>D$ where D is some threshold.

Feynman-Kac Formulæ and Interacting Particle

 Systems. . . or SMC [Cf. Anthony Lee's Talk]- Want a black box method.
- Using only:
- Samples from η_{0} and $M_{n}\left(x_{n-1}, c d o t\right)$
- Pointwise evaluation of V
- Assume spatial homogeneity and that $V: x_{0: P} \mapsto V\left(x_{p}\right)$.
- Recall the core of an SMC algorithm, iteratively, sample:

$$
X_{n}^{1}, \ldots, X_{n}^{N} \stackrel{\text { iid }}{\sim} \frac{\sum_{i=1}^{N} G_{n-1}\left(X_{n-1}^{i}\right) M_{n}\left(X_{n-1}^{i}, \cdot\right)}{\sum_{j=1}^{N} G_{n-1}\left(X_{n-1}^{j}\right)}
$$

- Provides unbiased, consistent estimates of:

$$
\mathbb{E}_{\eta_{0}}\left[\prod_{p=0}^{P-1} G\left(X_{p}\right)\right] \quad \mathbb{E}_{\eta_{0}}\left[\prod_{p=0}^{P-1} G\left(X_{p}\right) \varphi\left(X_{P}\right)\right]
$$

Cf. (4) for more details.

The Approach of Del Moral and Garnier

One SMC approach to th static problem makes use of:

- η_{0} and $M_{n}\left(x_{n-1}, d x_{n}\right)$ from the original model
- $G_{n}\left(x_{n}\right)=\exp \left(\beta V\left(x_{n}\right)\right)$

Or the more flexible path space formulation, $\widetilde{E}_{n}=\otimes_{p=0}^{N} E_{p}$:

- $\widetilde{\eta}_{0}=\eta_{0}$ as before and

$$
\tilde{M}_{n}\left(x_{n-1,0: n-1}, d x_{n, 0: n}\right)=\delta_{x_{n-1,0: n-1}}\left(d x_{n, 0: n-1}\right) M_{n}\left(x_{n-1, n-1} d x_{n, n}\right)
$$

- and either

$$
\begin{aligned}
G_{n}\left(x_{0: n}\right) & =\exp \left(\beta V\left(x_{n}\right)\right) \\
\text { or } G_{n}\left(x_{0: n}\right) & =\exp \left(\alpha\left(V\left(x_{n}\right)-V\left(x_{n-1}\right)\right)\right) .
\end{aligned}
$$

- A black box but with parameters.
- Underlying Identity:

$$
\begin{aligned}
\mathbb{P}\left(X_{P} \in V^{-1}([\hat{V}, \infty))\right. & =\mathbb{P}\left(V\left(X_{P}\right) \geq \hat{V}\right) \\
& =\mathbb{E}\left[\mathbb{I}_{[\hat{V}, \infty)}\left(V\left(X_{P}\right)\right)\right] \\
& =\mathbb{E}\left[\prod_{n=0}^{p-1} G\left(X_{n}\right) \cdot \mathbb{I}_{[\hat{V}, \infty)}\left(V\left(X_{P}\right)\right) \prod_{n=0}^{p-1} \frac{1}{G\left(X_{n}\right)}\right]
\end{aligned}
$$

- Basic Algorithm:
- Sample $X_{0}^{1}, \ldots, X_{0}^{N} \stackrel{\text { iid }}{\sim} \eta_{0} . Y_{0}^{1}, \ldots, Y_{0}^{N}=1$.
- For $p=1$ to P, for $i=1$ to N :
- Compute $z_{p-1}=\frac{1}{N} \sum_{j=1}^{N} G_{p-1}\left(X_{p-1}^{j}\right)$.
- Sample $A_{p}^{i} \sim \frac{1}{N z_{p-1}} \sum_{j=1}^{N} G_{p-1}\left(X_{p-1}^{j}\right) \delta_{j}(\cdot)$.
- Sample $X_{p}^{i} \sim M_{p}\left(X_{p-1}^{A_{\rho}^{i}}, \cdot\right)$.
- Set $Y_{\rho}^{i}=Y_{p-1}^{A_{\rho}^{i}} / G_{p-1}\left(X_{p-1}^{A_{p-1}^{i}}\right)$.
- Report:

$$
\hat{p}=\prod_{p=0}^{P-1} z_{p} \cdot \frac{1}{N} \sum_{i=1}^{n} \mathbb{I}_{[\hat{V}, \infty)}\left(X_{p}^{i}\right) Y_{p}^{i}
$$

SMC Samplers

Actually, SMC techniques can be used to sample from any sequence of distributions...

- Given a sequence of target distributions, $\left\{\pi_{n}\right\}$, on measurable spaces $\left(E_{n}, \mathcal{E}_{n}\right)$
- Construct a synthetic sequence $\left\{\tilde{\pi}_{n}\right\}$ on the product spaces $\bigotimes_{p=0}^{n}\left(E_{p}, \mathcal{E}_{p}\right)$ by introducing arbitrary auxiliary Markov kernels, $L_{p}: E_{p+1} \otimes \mathcal{E}_{p} \rightarrow[0,1]:$

$$
\tilde{\pi}_{n}\left(d x_{1: n}\right)=\pi_{n}\left(d x_{n}\right) \prod_{p=0}^{n-1} L_{p}\left(x_{p+1}, d x_{p}\right)
$$

which each admit one of the target distributions as their final time marginal.

SMC Outline - One Iteration

- Given a sample $\left\{X_{1: n-1}^{(i)}\right\}_{i=1}^{N}$ targeting $\tilde{\pi}_{n-1}$, for $i=1$ to N :
- sample $X_{n}^{(i)} \sim K_{n}\left(X_{n-1}^{(i)}, \cdot\right)$,
- calculate

$$
\begin{aligned}
W_{n}\left(X_{1: n}^{(i)}\right) & =\frac{\tilde{\pi}_{n}\left(X_{1: n}^{(i)}\right)}{\tilde{\pi}_{n-1}\left(X_{1: n-1}\right) K_{n}\left(X_{n-1}^{(i)}, X_{n}^{(i)}\right)} \\
& =\frac{\pi_{n}\left(X_{n}^{(i)}\right) \prod_{p=1}^{n-1} L_{p}\left(X_{p+1}^{(i)}, X_{p}^{(i)}\right)}{\pi_{n-1}\left(X_{n-1}^{(i)}\right) \prod_{p=1}^{n-2} L_{p}\left(X_{p+1}^{(i)}, X_{p}^{(i)}\right) K_{n}\left(X_{n-1}^{(i)}, X_{n}^{(i)}\right)} \\
& =\frac{\pi_{n}\left(X_{n}^{(i)}\right) L_{n-1}\left(X_{n}^{(i)}, X_{n-1}^{(i)}\right)}{\pi_{n-1}\left(X_{n-1}^{(i)}\right) K_{n}\left(X_{n-1}^{(i)}, X_{n}^{(i)}\right)} .
\end{aligned}
$$

- Resample, yielding: $\left\{X_{1: n}^{(i)}\right\}_{i=1}^{N}$ targeting $\tilde{\pi}_{n}$.

Alternative SMC Summary

At each iteration, given a set of weighted samples
$\left\{X_{n-1}^{(i)}, W_{n-1}^{(i)}\right\}_{i=1}^{N}$ targeting π_{n-1} :

- Sample $X_{n}^{(i)} \sim K_{n}\left(X_{n-1}^{(i)}, \cdot\right)$.
- $\left\{\left(X_{n-1}^{(i)}, X_{n}^{(i)}\right), W_{n-1}^{(i)}\right\}_{i=1}^{N} \sim \pi_{n-1}\left(X_{n-1}\right) K_{n}\left(X_{n-1}, X_{n}\right)$.
- Set weights $W_{n}^{(i)}=W_{n-1}^{(i)} \frac{\pi_{n}\left(X_{n}\right) L_{n-1}\left(X_{n}, X_{n-1}\right)}{\pi_{n-1}\left(X_{n-1}\right) K_{n}\left(X_{n-1}, X_{n}\right)}$.
- $\left\{\left(X_{n-1}, X_{n}\right), W_{n}^{(i)}\right\}_{i=1}^{N} \sim \pi_{n}\left(X_{n}\right) L_{n-1}\left(X_{n}, X_{n-1}\right)$ and,
marginally, $\left\{X_{n}^{(i)}, W_{n}^{(i)}\right\}_{i=1}^{(i)} \sim \pi_{n}$.
- Resample to obtain an unweighted particle set.
- Hints that we'd like $L_{n-1}\left(x_{n}, x_{n-1}\right)=\frac{\pi_{n-1}\left(x_{n-1}\right) K_{n}\left(x_{n-1}, x_{n}\right)}{\int \pi_{n-1}\left(x_{n-1}^{\prime}\right) K_{n}\left(x_{n-1}^{\prime}, x_{n}\right)}$.

Key Points of SMC

- An iterative technique for sampling from a sequence of similar distributions.
- By use of intermediate distributions, we can obtain well behaved weighted samples from intractable distributions,
- and estimate associated normalising constants.
- Can be interpreted as a mean field approximation of a Feynman-Kac flow (2).

Static Rare Events: Path-space Approach

- Begin by sampling a set of paths from the law of the Markov chain.
- Iteratively obtain samples from a sequence of distributions which moves "smoothly" towards one which places the majority of its mass on the rare set.
- We construct our sequence of distributions via a potential function and a sequence of inverse temperatures parameters:

$$
\begin{aligned}
\pi_{t}\left(d x_{0: P}\right) & \propto \mathbb{P}_{\eta_{0}}\left(d x_{0: P}\right) g_{t / T}\left(x_{0: P}\right) \\
g_{\theta}\left(x_{0: p}\right) & =\left(1+\exp \left(-\alpha(\theta)\left(V\left(x_{0: P}\right)-\hat{V}\right)\right)\right)^{-1}
\end{aligned}
$$

- Estimate the normalising constant of the final distribution and correct via importance sampling.

Path Sampling - An Alternative Approach to Estimating Normalizing Constants

- An integral expression for the log normalising constant of sufficiently regular distributions.
- Given a sequence of densities $p(x \mid \theta)=q(x \mid \theta) / z(\theta)$:

$$
\frac{\mathrm{d}}{\mathrm{~d} \theta} \log z(\theta)=\mathbb{E}_{\theta}\left[\frac{\mathrm{d}}{\mathrm{~d} \theta} \log q(\cdot \mid \theta)\right]
$$

where the expectation is taken with respect to $p(\cdot \mid \theta)$.

- Consequently, we obtain:

$$
\log \left(\frac{z(1)}{z(0)}\right)=\int_{0}^{1} \mathbb{E}_{\theta}\left[\frac{\mathrm{d}}{\mathrm{~d} \theta} \log q(\cdot \mid \theta)\right]
$$

- See $\star \star$ or (5) for details. Also $(8,12)$ in SMC context. In our case, we use our particle system to approximate both integrals.

Static Rare Events: Framework

Initialization proceeds via importance sampling:

At $t=0$.
for $i=1$ to N do
Sample $X_{0}^{(i)} \sim \nu$ for some importance distribution ν.
Set $W_{0}^{(i)} \propto \frac{\pi_{0}\left(X_{0}^{(i)}\right)}{\nu\left(X_{1}^{(i)}\right)}$ such that $\sum_{j=1}^{N} W_{0}^{(j)}=1$.
end for

Samples are obtained from our sequence of distributions using SMC techniques.

for $t=1$ to T do

if ESS $<$ threshold then resample $\left\{W_{t-1}^{(i)}, X_{t-1}^{(i)}\right\}_{i=1}^{N}$.
If desired, apply a Markov kernel, \tilde{K}_{t-1} of invariant distribution π_{t-1} to improve sample diversity.
for $i=1$ to N do
Sample $X_{t}^{(i)} \sim K_{t}\left(X_{t-1}^{(i)}, \cdot\right)$.
Weight $W_{t}^{(i)} \propto \hat{W}_{t-1}^{(i)} w_{t}^{(i)}$ where the incremental importance weight, $w_{t}^{(i)}$ is defined through

$$
w_{t}^{(i)}=\frac{\pi_{t}\left(X_{t}^{(i)}\right) L_{t-1}\left(X_{t}^{(i)}, X_{t-1}^{(i)}\right)}{\pi_{t-1}\left(X_{t-1}^{(i)}\right) K_{t}\left(X_{t-1}^{(i)}, X_{t}^{(i)}\right)}, \text { and } \sum_{j=1}^{N} W_{t}^{(j)}=1
$$

end for
end for

Finally, an estimate can be obtained:

Approximate the path sampling identity to estimate the normalising constant:

$$
\begin{aligned}
& \hat{Z}_{1}=\frac{1}{2} \exp \left[\sum_{t=1}^{T}(\alpha(t / T)-\alpha((t-1) / T)) \frac{\hat{E}_{t-1}+\hat{E}_{t}}{2}\right] \\
& \hat{E}_{t}=\frac{\sum_{j=1}^{N} W_{t}^{(j)} \frac{v\left(x_{t}^{(j)}\right)-\hat{V}}{1+\exp \left(\alpha_{t}\left(v\left(x_{t}^{(j)}\right)-\hat{V}\right)\right)}}{\sum_{j=1}^{N} W_{t}^{(j)}}
\end{aligned}
$$

Estimate the rare event probability using importance sampling:

$$
p^{\star}=\hat{Z}_{1} \frac{\sum_{j=1}^{N} W_{T}^{(j)}\left(1+\exp \left(\alpha(1)\left(V\left(X_{T}^{(j)}\right)-\hat{V}\right)\right)\right) \mathbb{I}_{(\hat{V}, \infty]}\left(V\left(X_{T}^{(j)}\right)\right)}{\sum_{j=1}^{N} W_{T}^{(j)}}
$$

Example: Gaussian Random Walk

- A toy example: $M_{n}\left(R_{n-1}, R_{n}\right)=\mathcal{N}\left(R_{n} \mid R_{n-1}, 1\right)$.
- $\mathcal{T}=[\hat{V}, \infty)$.
- Proposal kernel:

$$
K_{n}\left(X_{n-1}, d x_{n}\right)=\sum_{j=-S}^{S} w_{n+1}\left(X_{n-1}, X_{n}\right) \prod_{i=1}^{P} \delta_{X_{n-1, i}+i j \delta}\left(d x_{n, i}\right)
$$

where the weight of individual moves is given by

$$
w_{n}\left(X_{n-1}, X_{n}\right) \propto \pi_{n}\left(X_{n}\right)
$$

- Linear annealing schedule.
- Number of distributions $T \propto \hat{V}^{3 / 2}(T=2500$ when $\hat{V}=25)$.

Gaussian Random Walk Example Results

Typical SMC Run -- All Particles

Typical IPS Run -- Particles Which Hit The Rare Set

Example: Polarization Mode Dispersion

This examples was considered by (3). We have a sequence of polarization vectors, r_{n} which evolve according to the equation:

$$
r_{n}=R\left(\theta_{n}, \phi_{n}\right) r_{n-1}+\frac{1}{2} \Omega\left(\theta_{n}\right)
$$

where:

- $\phi_{n} \sim \mathcal{U}[-\pi, \pi]$
- $\cos \left(\theta_{n}\right) \sim \mathcal{U}[-1,1], s_{n}=\operatorname{sgn}\left(\theta_{n}\right) \sim \mathcal{U}\{-1,+1\}$,
- $\Omega(\theta)=(\cos (\theta), \sin (\theta), 0)$ and $R(\theta, \phi)$ is the matrix which describes a rotation of ϕ about axis $\Omega(\theta)$.
The rare events of interest are system trajectories for which $\left|r_{P}\right|>D$ where D is some threshold.
- We use a π_{n}-invariant MCMC proposal for K_{n} and the associated time-reversal kernel for L_{n-1}.
- This leads to:

$$
W_{n}\left(X_{n-1}, X_{n}\right)=\frac{\pi_{n}\left(X_{n-1}\right)}{\pi_{n-1}\left(X_{n-1}\right)}
$$

allowing sampling and resampling to be exchanged (cf. (7)).

- (Precisely, we employed a Metropolis-Hastings kernel with a proposal which randomly selects two indices uniformly between 1 and n and proposes replacing the ϕ and c values between those two indices with values drawn from the uniform distribution over $[-\pi, \pi] \times[-1,1]$. This proposal is then accepted with the usual Metropolis acceptance probability.)

Example: Polarization Mode Dispersion - The PDF

PDF Estimates for PMD

Dynamic Rare Events

The other class of rare events in which we are interested are termed dynamic rare events:

- They correspond to the probability that a Markov process hits some rare set, \mathcal{T}, before its first entrance to some recurrent set \mathcal{R}.
- That is, given the stopping time $\tau=\inf \left\{p: X_{p} \in \mathcal{T} \cup \mathcal{R}\right\}$, we seek

$$
\mathbb{P}_{\eta_{0}}\left(X_{\tau} \in \mathcal{T}\right)
$$

and the associated conditional distribution:

$$
\mathbb{P}_{\eta_{0}}\left(\tau=t, X_{0: t} \in d x_{0: t} \mid X_{\tau} \in \mathcal{T}\right)
$$

Dynamic Rare Events: Illustration

Importance Sampling

- Use a second Markov process on the same space:

$$
\left(\Omega=\prod_{n=0}^{\infty} E_{n}, \mathcal{F}=\prod_{n=0}^{\infty} \mathcal{F}_{n},\left(X_{n}\right)_{n \in \mathbb{N}}, \widetilde{\mathbb{P}}_{\tilde{\eta}_{0}}\right),
$$

where the law $\widetilde{\mathbb{P}}_{\widetilde{\eta}_{0}}$ is defined by its finite dimensional distributions:

$$
\widetilde{\mathbb{P}}_{\widetilde{\eta}_{0}} \circ X_{0: N}^{-1}\left(d x_{0: N}\right)=\widetilde{\eta}_{0}\left(d x_{0}\right) \prod_{i=1}^{N} \widetilde{M}_{i}\left(x_{i-1}, d x_{i}\right)
$$

- So that:

$$
\frac{d \mathbb{P}_{\eta_{0}} \circ X_{0: N}}{d \widetilde{\mathbb{P}}_{\widetilde{\eta}_{0}} \circ X_{0: N}}\left(x_{0: N}\right)=\frac{d \eta_{0}}{d \widetilde{\eta}_{0}}\left(x_{0}\right) \prod_{p=1}^{N} \frac{d M_{n}\left(x_{n-1}, \cdot\right)}{d \widetilde{M}_{n}\left(x_{n-1}, \cdot\right)}\left(x_{n}\right)
$$

Importance Sampling

- Then:

$$
\begin{aligned}
\mathbb{P}_{\eta_{0}}\left(X_{\tau} \in \mathcal{T}\right) & =\mathbb{E}_{\eta_{0}}\left[\mathbb{I}_{\mathcal{T}}\left(X_{\tau}\right)\right]=\sum_{t=0}^{\infty} \mathbb{E}_{\eta_{0}}\left[\mathbb{I}_{\{t\}}(\tau) \mathbb{I}_{\mathcal{T}}\left(X_{t}\right)\right] \\
& =\sum_{t=0}^{\infty} \widetilde{\mathbb{E}}_{\eta_{0}}\left[\mathbb{I}_{\{t\}}(\tau) \mathbb{I}_{\mathcal{T}}\left(X_{t}\right) \frac{d \mathbb{P}}{d \widetilde{\mathbb{P}}^{\prime}}\left(X_{0: \infty}\right)\right] \\
& =\sum_{t=0}^{\infty} \widetilde{\mathbb{E}}_{\eta_{0}}\left[\widetilde{\mathbb{E}}_{\eta_{0}}\left[\left.\mathbb{I}_{\{t\}}(\tau) \mathbb{I}_{\mathcal{T}}\left(X_{t}\right) \frac{d \mathbb{P}}{d \widetilde{\mathbb{P}}}\left(X_{0: \infty}\right) \right\rvert\, \mathcal{F}_{t}\right]\right] \\
& =\sum_{t=0}^{\infty} \widetilde{\mathbb{E}}_{\eta_{0}}\left[\mathbb{I}_{\{t\}}(\tau) \mathbb{I}_{\mathcal{T}}\left(X_{t}\right) \frac{d \mathbb{P} \circ X_{0: t}^{-1}}{\left.d{\widetilde{\mathbb{P}} \circ X_{0: t}^{-1}}^{-1}\left(X_{0: t}\right)\right]}\right. \\
& =\widetilde{\mathbb{E}}_{\eta_{0}}\left[\mathbb{I}_{\mathcal{T}}\left(X_{\tau}\right) \frac{d \mathbb{P} \circ X_{0: \tau}^{-1}}{d \widetilde{\mathbb{P}} \circ X_{0: \tau}^{-1}}\left(X_{0: \tau}\right)\right]
\end{aligned}
$$

- But how do you choose $\widetilde{\eta}_{0}$ and \widetilde{M}_{n} ?

Splitting

- If V increases towards \mathcal{T}, could consider:

$$
\mathcal{T}_{1}=V^{-1}\left(\left[V_{1}, \infty\right)\right) \supset \mathcal{T}_{2}=V^{-1}\left(\left[V_{2}, \infty\right)\right) \supset \cdots \supset \mathcal{T}_{L}=\mathcal{T}
$$

- and the non-decreasing first hitting times:

$$
\tau_{i}=\inf \left\{t: X_{t} \in \mathcal{R} \cup \mathcal{T}_{i}\right\}
$$

- which yield the decomposition:

$$
\mathbb{P}\left(X_{\tau} \in \mathcal{T}\right)=\mathbb{P}\left(X_{\tau_{1}} \in \mathcal{T}_{1}\right) \prod_{l=2}^{L} \mathbb{P}\left(X_{\tau_{l}} \in \mathcal{T}_{l} \mid\left\{X_{\tau_{l-1}} \in \mathcal{T}_{l-1}\right\}\right)
$$

- and the multilevel splitting method [dating back to (9)].

Multilevel Splitting

A Simple Splitting Algorithm

- Sample $X_{1: \tau_{1}^{1}}^{1}, \ldots, X_{1: \tau_{1}^{1}}^{N_{1}}$ iid from \mathbb{P}.
- Compute $G\left(X_{1: \tau_{1}^{i}}^{i}\right)=\mathbb{I}_{\mathcal{T}_{1}}\left(X_{\tau_{1}^{j}}^{i}\right)$. Let $S_{1}=\sum_{i=1}^{N_{1}} G\left(X_{1: \tau_{1}^{i}}^{i}\right)$.
- For $I=2$ to L :
- Set $N_{I}=r S_{I-1}$.
- Let $\left(\hat{X}_{\hat{\tau}_{l-1}}^{i}\right)_{i=1: N_{l}}$ comprise r copies of each $X_{\tau_{l-1}^{i}} \in \mathcal{T}_{I-1}$.
- For $i=1, \ldots, N_{l}$: Sample $X_{\hat{\tau}_{-1}: \tau}^{i}: \tau_{l}^{i} \sim \mathbb{P}\left(\cdot \mid\left\{X_{\tau_{I-1}}^{i}=\hat{X}_{\hat{\tau}_{I-1}^{i}}\right\}\right)$.
- Compute $G\left(X_{\hat{\tau}_{i-1}^{i}: \tau_{l}^{i}}^{i}\right)=\mathbb{I}_{\mathcal{T}_{l}}\left(X_{\tau_{i}^{j}}^{i}\right)$. Let $S_{l}=\sum_{i=1}^{N_{1}} G\left(X_{1: \tau \tau_{l}^{j}}^{i}\right)$.
- Compute

$$
\mathbb{P}\left(\widehat{X_{\tau} \in \mathcal{T}}\right)=\prod_{l=1}^{L} \frac{S_{l}}{N_{l}}
$$

Adaptive Multilevel Splitting 1 - Choosing r_{l}

- Describes a Branching Process.
- If $\mathbb{E}\left[r S_{l}\right] \neq N_{l}$ essentially:
- Particle system dies eventually.
- $N_{/}$grows exponentially fast.
- See $(6,10)$ for some preliminary analysis.
- See (11) for two-stage schemes in which a preliminary run specifies r_{L}.

Adaptive Multilevel Splitting 2 - Choosing the Levels

- Let $\tau_{1}^{i}=\inf \left\{t: X_{t} \in \mathcal{R}\right\}$.
- Sample $X_{1: \tau_{1}^{i}}^{1}, \ldots, X_{1: \tau_{1}^{i}}^{N_{1}}$ iid from \mathbb{P}.
- Compute $\check{X}_{1}^{i}=\max \left\{X_{1}^{i}, \ldots, X_{\tau_{1}^{i}}\right\}$. Set $V_{1}=\check{X}_{1}^{\left(\left\lfloor\alpha N_{1}\right\rfloor\right)}$.
- While $V_{I}<\hat{V} . I \leftarrow I+1$.
- Set $N_{l}=N_{1}$.
- Let $\left(\hat{X}_{\hat{\tau}_{l-1}}^{i}\right)_{i=1: N_{l}}$ comprise r copies of each $X_{\tau_{I-1}^{i}}$ which reached V_{l-1} up to the time when it reached it.
- For $i=1, \ldots, N_{l}$: Sample $X_{\hat{\tau}_{l-1}: \tau}^{i}: \tau_{l}^{i} \sim \mathbb{P}\left(\cdot \mid\left\{X_{\tau_{I-1}}^{i}=\hat{X}_{\hat{\tau}_{l-1}^{i}}\right\}\right)$. With $\tau_{l}^{i}=\inf \left\{t: X_{t} \in \mathcal{R}\right\}$.
- Compute $\check{X}_{l}^{i}=\max \left\{X_{\hat{\tau}_{I-1}^{i}}^{i}, \ldots, X_{\tau_{l}}\right\}$. Set $V_{I}=\check{X}_{l}^{\left(\left\lfloor\alpha N_{l}\right\rfloor\right)}$.
- Compute

$$
\mathbb{P}\left(\widehat{X_{\tau} \in \mathcal{T}}\right)=(1-\alpha)^{I-1} \cdot \frac{1}{N}_{i=1}^{N} \mathbb{I}\left(\tau_{\mathcal{T}}^{i}<\tau_{l}^{i}\right)
$$

where $\tau_{\mathcal{T}}^{i}=\inf \left\{t \in\left\{\hat{\tau}_{I-1}^{i}, \ldots, \tau_{l}^{i}\right\}: X_{t}^{i} \in \mathcal{T}\right\}$
Related adaptive methods can be unbiased (1).

Sequential Monte Carlo: Interacting Particle Systems

- Sample $X_{1: \tau_{1}^{1}}^{1}, \ldots, X_{1: \tau_{1}^{1}}^{N}$ iid from \mathbb{P}.
- Compute $G_{1}\left(X_{\tau_{1}^{i}}^{i}\right)=\mathbb{I}_{\mathcal{T}_{1}}\left(X_{\tau_{1}^{j}}^{i}\right)$. Let $S_{1}=\sum_{i=1}^{N} G_{1}\left(X_{\tau_{1}^{j}}^{i}\right)$.
- For $I=2$ to L :
- Sample $\left(\hat{X}_{\hat{\tau}_{l-1}}^{i}\right)_{i=1: N_{l}}$ iid from $\frac{1}{S_{l-1}} \sum_{j=1}^{N} G_{l-1}\left(X_{\tau_{I-1}}^{j}\right) \delta_{X_{\tau_{l-1}}}$
- For $i=1, \ldots, N$: Sample $X_{\hat{\tau}_{l-1}^{i}: \tau_{i}^{i}}^{i} \sim \mathbb{P}\left(\cdot \mid\left\{X_{\tau_{1-1}}^{i}=\hat{X}_{\hat{\tau}_{-1}^{i}}\right\}\right)$.
- Compute $G_{l}\left(X_{\tau_{j}}^{i}\right)=\mathbb{I}_{\mathcal{T}_{l}}\left(X_{\tau_{j}}^{i}\right)$. Let $S_{l}=\sum_{i=1}^{N_{1}} G_{l}\left(X_{\tau_{i}}^{i}\right)$.
- Compute

$$
\mathbb{P}\left(\widehat{X_{\tau} \in \mathcal{T}}\right)=\prod_{l=1}^{L} \frac{S_{l}}{N_{l}}
$$

[1] C.-E. Bréhier, M. Gazeau, L. Goudenège, T. Lelièvre, and M. Rousset. Unbiasedness of some generalized adaptive multilevel splitting schemes. Technical Report 1505.02674, ArXiv, 2015.
[2] P. Del Moral. Feynman-Kac formulae: genealogical and interacting particle systems with applications. Probability and Its Applications. Springer Verlag, New York, 2004.
[3] P. Del Moral and J. Garnier. Genealogical particle analysis of rare events. Annals of Applied Probability, 15(4):2496-2534, November 2005.
[4] A. Doucet and A. M. Johansen. A tutorial on particle filtering and smoothing: Fiteen years later. In D. Crisan and B. Rozovsky, editors, The Oxford Handbook of Nonlinear Filtering, pages 656-704. Oxford University Press, 2011.
[5] A. Gelman and X.-L. Meng. Simulating normalizing constants: From importance sampling to bridge sampling to path sampling. Statistical Science, 13(2):163-185, 1998.
[6] P. Glasserman, P. Heidelberger, P.Shahabuddin, and T. Zajic. Multilevel splitting for estimating rare event probabilities. Operations Research, 47(4):585-600, 1999.
[7] A. M. Johansen and A. Doucet. Auxiliary variable sequential Monte Carlo methods. Research Report 07:09, University of Bristol, Department of Mathematics - Statistics Group, University Walk, Bristol, BS8 1TW, UK, July 2007. A substantially shorter version focusing on particle filtering appeared in Statistics and Probability Letters.
[8] A. M. Johansen, P. Del Moral, and A. Doucet. Sequential Monte Carlo samplers for rare events. In Proceedings of the 6th International Workshop on Rare Event Simulation, pages 256-267, Bamberg, Germany, October 2006.
[9] H. Kahn and T. E. Harris. Estimation of particle transmission by random sampling. National Bureau of Standards Applied Mathematics Series, 12:27-30, 1951.
[10] A. Lagnoux. Rare event simulation. Probability in the Engineering and Informational Sciences, 20(1):43-66, 2006.
[11] A. Lagnoux. A two-step branching splitting model under cost constraint. Journal of Applied Probability, 46(2):429-452, 2009.
[12] Y. Zhou, A. M. Johansen, and J. A. D. Aston. Towards automatic model comparison: An adaptive sequential Monte Carlo approach. Journal of Computational and Graphical Statistics, 2015. In press.

Path Sampling Identity

Given a probability density, $p(x \mid \theta)=q(x \mid \theta) / z(\theta)$:

$$
\begin{align*}
\frac{\partial}{\partial \theta} \log z(\theta) & =\frac{1}{z(\theta)} \frac{\partial}{\partial \theta} z(\theta) \\
& =\frac{1}{z(\theta)} \frac{\partial}{\partial \theta} \int q(x \mid \theta) d x \\
& =\int \frac{1}{z(\theta)} \frac{\partial}{\partial \theta} q(x \mid \theta) d x \\
& =\int \frac{p(x \mid \theta)}{q(x \mid \theta)} \frac{\partial}{\partial \theta} q(x \mid \theta) d x \\
& =\int p(x \mid \theta) \frac{\partial}{\partial \theta} \log q(x \mid \theta) d x=\mathbb{E}_{p(\cdot \mid \theta)}\left[\frac{\partial}{\partial \theta} \log q(\cdot \mid \theta)\right]
\end{align*}
$$

wherever $\star \star$ is permissible. Back to \star.

