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Context

I Given a probability space (Ω,F ,P),

I and a random element X : (Ω,F)→ (E , E),

I what is P(X ∈ A) = P ◦ X−1(A) = P({ω ∈ Ω : X (ω) ∈ A}),

I for some A ∈ E such that P(A)� 1?

X(Ω)

Ω

X(ω)ω

X

X

AX−1(A)
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Some Simple Examples: Normal Probabilities

1. A really simple problem.
I Let

f (x) =
1√
2π

exp

(
−x2

2

)
.

I What is P(X ∈ A) if A = [a,∞) for a� 1?
I Simple semi-analytic solution 1− Φ(a).

2. A somewhat harder problem:
I let

f (x) =
1√
|2πΣ|

exp

(
−1

2
xTΣ−1x

)
.

I What is P(X ∈ A) if A = ⊗d
i=1[ai , bi ]?

I What can we say about Law(X )|A
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The Monte Carlo Method

I To approximate
I (ϕ) = E[ϕ(X )]

with X ∼ π.

I Sample X1, . . . ,Xn
iid∼ π and

I use

În(ϕ) =
1

n

n∑
i=1

ϕ(Xi ).

I SLLN:
lim
n→∞

În(ϕ)
a.s.
= E[ϕ(X )]

I CLT:
lim
n→∞

√
n(În(ϕ)− I (ϕ))

D
= Z ,

Z ∼ N (0,Var(ϕ(X ))) provided Var(ϕ(X )) <∞.
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The Monte Carlo Method and Rare Events

I Use P(X ∈ A) ≡ E[IA(X )] = I (IA).

I Then, directly:

P(X ∈ A) ≈ În(IA) =
|A ∩ {X1, . . . ,Xn}|

n
.
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Simple Monte Carlo and the Toy Problem

a log(Î10k (I[a,∞))) log
k 1 2 3 4 5 6 7 (1− Φ(a))

1 -2.30 -1.66 -1.80 -1.82 -1.83 -1.84 -1.84 -1.84
2 -3.91 -3.73 -3.76 -3.78 -3.79 -3.79 -3.78
3 -6.91 -6.81 -6.59 -6.60 -6.61 -6.61
4 -10.12 -10.26 -10.42 -10.36
5 -14.73 -15.06
6 -20.74

Simple calculations reveal:

I E[̂In(I[a,∞))] = P(X ∈ [a,∞))

I Var[̂In(I[a,∞))] = 1
nP(X ∈ [a,∞))(1− P(X ∈ [a,∞)))

I So the relative standard deviation is ∼ (nP(X ∈ [a,∞)))−1.
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a log(Î10k (I[a,∞))) log
k 1 2 3 4 5 6 7 (1− Φ(a))

1 -2.30 -1.66 -1.80 -1.82 -1.83 -1.84 -1.84 -1.84
2 -3.91 -3.73 -3.76 -3.78 -3.79 -3.79 -3.78
3 -6.91 -6.81 -6.59 -6.60 -6.61 -6.61
4 -10.12 -10.26 -10.42 -10.36
5 -14.73 -15.06
6 -20.74

Simple calculations reveal:

I E[̂In(I[a,∞))] = P(X ∈ [a,∞))

I Var[̂In(I[a,∞))] = 1
nP(X ∈ [a,∞))(1− P(X ∈ [a,∞)))

I So the relative standard deviation is ∼ (nP(X ∈ [a,∞)))−1.

7/51



Variance Reduction

I Want p̂n such that p̂n ≈ P(X ∈ A) =: p:
I Ideally, with E[p̂n] = p.
I Such that Var(p̂n)� p2.
I For modest n.

I Controlling variance is the key issue.
I Importance Sampling.
I Splitting.
I Interacting Particle Systems.
I Sequential Monte Carlo.
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Importance Sampling — A Change of Measure View

I If:
I X ∼ f
I Y ∼ g
I f � g
I w(x) := df

dg (x)

I Then:
I E[ϕ(X )] ≡ E[w(Y )ϕ(Y )]

I So, if Y1, . . .
iid∼ g , then:

lim
n→∞

1

n

n∑
i=1

w(Yi )ϕ(Yi )
a.s.
= E[ϕ(X )]

and this is an unbiased estimator for any n.
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Importance Sampling Variance

The variance of this estimator is:

Var

[
1

n

n∑
i=1

w(Yi )ϕ(Yi )

]

=
1

n
Var [w(Y1)ϕ(Y1)]

=
1

n

{
E
[
(w(Y1)ϕ(Y1))2

]
− E [w(Y1)ϕ(Y1)]2

}
=

1

n

{∫
(w(y)ϕ(y))2 g(dy)−

(∫
w(y)ϕ(y)g(dy)

)2
}

=
1

n

{∫
w(y)ϕ2(y)f (dx)− E[ϕ(X )]2

}
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Optimal Importance Sampling

Proposition

Let X ∼ f , where f (dx) = f (x)dx, with values in (E , E) and let
φ : R→ (0,∞) a function of interest. The proposal which
minimizes the variance of the importance sampling estimator of
E[ϕ(X )] is g(x)dx, where:

g(x) =
f (x)ϕ(x)∫
f (y)ϕ(y)dy

Note: if E ⊃ A ⊃ supp ϕ(x), it suffices for f |A � g |A.
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Importance Sampling and the Toy Problem

a k log(Î10k (I[a,∞))) log
1 2 3 4 5 6 7 (1− Φ(a))

1 -1.72 -1.84 -1.83 -1.84 -1.84 -1.84 -1.84 -1.84
2 -3.63 -3.78 -3.79 -3.78 -3.78 -3.78 -3.78 -3.78
3 -6.43 -6.59 -6.63 -6.60 -6.61 -6.61 -6.61 -6.61
4 -10.16 -10.34 -10.40 -10.35 -10.36 -10.36 -10.36 -10.36
5 -14.85 -15.04 -15.12 -15.06 -15.07 -15.06 -15.06 -15.06
6 -20.51 -20.72 -20.81 -20.73 -20.73 -20.74 -20.74 -20.74
7 -27.16 -27.37 -27.46 -27.38 -27.39 -27.38 -27.38 -27.38
8 -34.79 -35.01 -35.10 -35.02 -35.01 -35.01 -35.01 -35.01
9 -43.41 -43.64 -43.73 -43.63 -43.63 -43.63 -43.62 -43.63

Using g(x) = exp(−(x − a))I[a,∞)(x).
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So far

I Rare events probabilities are important,

I but not often available analytically.

I Monte Carlo appears to offer a solution;

I näıve approaches fail due to their high variance.

I Importance sampling can help dramatically;

I but can be very difficult (i.e. impossible) to implement
effectively.

Next

I Two classes of problems;

I potential solutions in these settings.
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Problem Formulation

Here we consider algorithms which are applicable to two types of
rare event, both of which are defined in terms of the canonical
Markov chain:(

Ω =
∞∏
n=0

En,F =
∞∏
n=0

Fn, (Xn)n∈N,Pη0

)
,

where the law Pη0 is defined by its finite dimensional distributions:

Pη0 ◦ X−10:N(dx0:N) = η0(dx0)
N∏
i=1

Mi (xi−1, dxi ).
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Static Rare Events

We term the first type of rare events which we consider static rare
events:

I They are defined as the probability that the first P + 1
elements of the canonical Markov chain lie in a rare set, T .

I That is, we are interested in

Pη0 (x0:P ∈ T )

and the associated conditional distribution:

Pη0 (x0:P ∈ dx0:P |x0:P ∈ T )

I We assume that the rare event is characterised as a level set
of a suitable potential function:

V : T → [V̂ ,∞), and V : E0:P \ T → (−∞, V̂ ).
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A Simple Example: Normal Random Walks

I A toy example:
I η0(x0) = N (x0; 0, 1).
I Mn(xn−1, xn) = N (xn; xn−1, 1).
I V (x0:P) =

∑P
i=0 xi .

I T = [V̂ ,∞).

I So:
I XP ∼ N (0,P + 1)
I P(X0:P ∈ T ) = P(XP ≥ V̂ ) = 1− Φ(V̂ /

√
P + 1)
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A Slightly Harder Problem

I η0(x0) = N (x0; 0, 1).

I Mn(xn−1, xn) = N (xn; xn−1, 1).

I V (x0:P) = max0≤i≤P xi .

I T = [V̂ ,∞).
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A Real Problem: Polarization Mode Dispersion

This examples was considered by (3, 8). We have a sequence of
polarization vectors, rn which evolve according to the equation:

rn = R(θn, φn)rn−1 +
1

2
S(θn)

where:

I φn ∼ U [−π, π]

I cos(θn) ∼ U [−1, 1], sn = sgn(θn) ∼ U{−1,+1},
I S(θ) = (cos(θ), sin(θ), 0) and R(θ, φ) is the matrix which

describes a rotation of φ about axis S(θ).

The rare events of interest are system trajectories for which
|rP | > D where D is some threshold.
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Feynman-Kac Formulæ and Interacting Particle
Systems. . . or SMC [Cf. Anthony Lee’s Talk]

I Want a black box method.
I Using only:

I Samples from η0 and Mn(xn−1, cdot)
I Pointwise evaluation of V

I Assume spatial homogeneity and that V : x0:P 7→ V (xp).
I Recall the core of an SMC algorithm, iteratively, sample:

X 1
n , . . . ,X

N
n

iid∼
∑N

i=1 Gn−1(X i
n−1)Mn(X i

n−1, ·)∑N
j=1 Gn−1(X j

n−1)
.

I Provides unbiased, consistent estimates of:

Eη0

P−1∏
p=0

G (Xp)

 Eη0

P−1∏
p=0

G (Xp)ϕ(XP)


Cf. (4) for more details.
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The Approach of Del Moral and Garnier

One SMC approach to th static problem makes use of:

I η0 and Mn(xn−1, dxn) from the original model

I Gn(xn) = exp(βV (xn))

Or the more flexible path space formulation, Ẽn = ⊗N
p=0Ep:

I η̃0 = η0 as before and

M̃n(xn−1,0:n−1, dxn,0:n) = δxn−1,0:n−1(dxn,0:n−1)Mn(xn−1,n−1dxn,n)

I and either

Gn(x0:n) = exp(βV (xn))

or Gn(x0:n) = exp (α(V (xn)− V (xn−1))) .

I A black box but with parameters.
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I Underlying Identity:

P(XP ∈ V−1([V̂ ,∞)) =P(V (XP) ≥ V̂ )

=E
[
I[V̂ ,∞)(V (XP))

]
=E

[
p−1∏
n=0

G (Xn) · I[V̂ ,∞)(V (XP))

p−1∏
n=0

1

G (Xn)

]
·

I Basic Algorithm:
I Sample X 1

0 , . . . ,X
N
0

iid∼ η0. Y 1
0 , . . . ,Y

N
0 = 1.

I For p = 1 to P, for i = 1 to N:
I Compute zp−1 =

1
N

∑N
j=1 Gp−1(X

j
p−1).

I Sample Ai
p ∼ 1

Nzp−1

∑N
j=1 Gp−1(X

j
p−1)δj(·).

I Sample X i
p ∼ Mp

(
X

Ai
p

p−1, ·
)
.

I Set Y i
p = Y

Ai
p

p−1/Gp−1

(
X

Ai
p−1

p−1

)
.

I Report:

p̂ =
P−1∏
p=0

zp ·
1

N

n∑
i=1

I[V̂ ,∞)(X
i
p)Y i

p .
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SMC Samplers

Actually, SMC techniques can be used to sample from any
sequence of distributions...

I Given a sequence of target distributions, {πn}, on measurable
spaces (En, En)

I Construct a synthetic sequence {π̃n} on the product spaces
n⊗

p=0
(Ep, Ep) by introducing arbitrary auxiliary Markov kernels,

Lp : Ep+1 ⊗ Ep → [0, 1]:

π̃n(dx1:n) = πn(dxn)
n−1∏
p=0

Lp (xp+1, dxp) ,

which each admit one of the target distributions as their final
time marginal.
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SMC Outline — One Iteration

I Given a sample {X (i)
1:n−1}Ni=1 targeting π̃n−1, for i = 1 to N:

I sample X
(i)
n ∼ Kn(X

(i)
n−1, ·),

I calculate

Wn(X
(i)
1:n) =

π̃n(X
(i)
1:n)

π̃n−1(X1:n−1)Kn(X
(i)
n−1,X

(i)
n )

=

πn(X
(i)
n )

n−1∏
p=1

Lp(X
(i)
p+1,X

(i)
p )

πn−1(X
(i)
n−1)

n−2∏
p=1

Lp(X
(i)
p+1,X

(i)
p )Kn(X

(i)
n−1,X

(i)
n )

=
πn(X

(i)
n )Ln−1(X

(i)
n ,X

(i)
n−1)

πn−1(X
(i)
n−1)Kn(X

(i)
n−1,X

(i)
n )

.

I Resample, yielding: {X (i)
1:n}Ni=1 targeting π̃n.
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Alternative SMC Summary

At each iteration, given a set of weighted samples

{X (i)
n−1,W

(i)
n−1}Ni=1 targeting πn−1:

I Sample X
(i)
n ∼ Kn(X

(i)
n−1, ·).

I
{

(X
(i)
n−1,X

(i)
n ),W

(i)
n−1

}N

i=1
∼ πn−1(Xn−1)Kn(Xn−1,Xn).

I Set weights W
(i)
n = W

(i)
n−1

πn(Xn)Ln−1(Xn,Xn−1)
πn−1(Xn−1)Kn(Xn−1,Xn)

.

I
{

(Xn−1,Xn),W
(i)
n

}N

i=1
∼ πn(Xn)Ln−1(Xn,Xn−1) and,

marginally,
{
X

(i)
n ,W

(i)
n

}(i)

i=1
∼ πn.

I Resample to obtain an unweighted particle set.

I Hints that we’d like Ln−1(xn, xn−1) = πn−1(xn−1)Kn(xn−1,xn)∫
πn−1(x ′n−1)Kn(x ′n−1,xn)

.
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Key Points of SMC

I An iterative technique for sampling from a sequence of similar
distributions.

I By use of intermediate distributions, we can obtain well
behaved weighted samples from intractable distributions,

I and estimate associated normalising constants.

I Can be interpreted as a mean field approximation of a
Feynman-Kac flow (2).
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Static Rare Events: Path-space Approach

I Begin by sampling a set of paths from the law of the Markov
chain.

I Iteratively obtain samples from a sequence of distributions
which moves “smoothly” towards one which places the
majority of its mass on the rare set.

I We construct our sequence of distributions via a potential
function and a sequence of inverse temperatures parameters:

πt(dx0:P) ∝ Pη0(dx0:P)gt/T (x0:P)

gθ(x0:p) =
(

1 + exp
(
−α(θ)

(
V (x0:P)− V̂

)))−1
I Estimate the normalising constant of the final distribution and

correct via importance sampling.
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Path Sampling — An Alternative Approach to Estimating
Normalizing Constants

I An integral expression for the log normalising constant of
sufficiently regular distributions.

I Given a sequence of densities p(x |θ) = q(x |θ)/z(θ):

d

dθ
log z(θ) = Eθ

[
d

dθ
log q(·|θ)

]
(?)

where the expectation is taken with respect to p(·|θ).

I Consequently, we obtain:

log

(
z(1)

z(0)

)
=

∫ 1

0
Eθ
[
d

dθ
log q(·|θ)

]
I See ?? or (5) for details. Also (8, 12) in SMC context. In our

case, we use our particle system to approximate both integrals.
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Static Rare Events: Framework

Initialization proceeds via importance sampling:

At t = 0.
for i = 1 to N do

Sample X
(i)
0 ∼ ν for some importance distribution ν.

Set W
(i)
0 ∝ π0(X

(i)
0 )

ν(X
(i)
1 )

such that
N∑
j=1

W
(j)
0 = 1.

end for
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Samples are obtained from our sequence of distributions using SMC
techniques.

for t = 1 to T do

if ESS < threshold then resample
{
W

(i)
t−1,X

(i)
t−1

}N

i=1
.

If desired, apply a Markov kernel, K̃t−1 of invariant
distribution πt−1 to improve sample diversity.
for i = 1 to N do

Sample X
(i)
t ∼ Kt(X

(i)
t−1, ·).

Weight W
(i)
t ∝ Ŵ

(i)
t−1w

(i)
t where the incremental

importance weight, w
(i)
t is defined through

w
(i)
t =

πt(X
(i)
t )Lt−1(X

(i)
t ,X

(i)
t−1)

πt−1(X
(i)
t−1)Kt(X

(i)
t−1,X

(i)
t )

, and
N∑
j=1

W
(j)
t = 1.

end for
end for
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Finally, an estimate can be obtained:

Approximate the path sampling identity to estimate the
normalising constant:

Ẑ1 =
1

2
exp

[
T∑
t=1

(α(t/T )− α((t − 1)/T ))
Êt−1 + Êt

2

]

Êt =

N∑
j=1

W
(j)
t

V
(
X

(j)
t

)
−V̂

1+exp
(
αt

(
V
(
X

(j)
t

)
−V̂

))
N∑
j=1

W
(j)
t

Estimate the rare event probability using importance sampling:

p? = Ẑ1

N∑
j=1

W
(j)
T

(
1 + exp(α(1)(V

(
X

(j)
T

)
− V̂ ))

)
I(V̂ ,∞]

(
V
(
X

(j)
T

))
N∑
j=1

W
(j)
T

.
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Example: Gaussian Random Walk

I A toy example: Mn(Rn−1,Rn) = N (Rn|Rn−1, 1).

I T = [V̂ ,∞).

I Proposal kernel:

Kn(Xn−1, dxn) =
S∑

j=−S
wn+1(Xn−1,Xn)

P∏
i=1

δXn−1,i+ijδ(dxn,i ),

where the weight of individual moves is given by

wn(Xn−1,Xn) ∝ πn(Xn).

I Linear annealing schedule.

I Number of distributions T ∝ V̂ 3/2 (T=2500 when V̂ = 25).
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Example: Polarization Mode Dispersion

This examples was considered by (3). We have a sequence of
polarization vectors, rn which evolve according to the equation:

rn = R(θn, φn)rn−1 +
1

2
Ω(θn)

where:

I φn ∼ U [−π, π]

I cos(θn) ∼ U [−1, 1], sn = sgn(θn) ∼ U{−1,+1},
I Ω(θ) = (cos(θ), sin(θ), 0) and R(θ, φ) is the matrix which

describes a rotation of φ about axis Ω(θ).

The rare events of interest are system trajectories for which
|rP | > D where D is some threshold.
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I We use a πn-invariant MCMC proposal for Kn and the
associated time-reversal kernel for Ln−1.

I This leads to:

Wn(Xn−1,Xn) =
πn(Xn−1)

πn−1(Xn−1)

allowing sampling and resampling to be exchanged (cf. (7)).

I (Precisely, we employed a Metropolis-Hastings kernel with a
proposal which randomly selects two indices uniformly
between 1 and n and proposes replacing the φ and c values
between those two indices with values drawn from the uniform
distribution over [−π, π]× [−1, 1]. This proposal is then
accepted with the usual Metropolis acceptance probability.)
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Example: Polarization Mode Dispersion - The PDF
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Dynamic Rare Events

The other class of rare events in which we are interested are
termed dynamic rare events:

I They correspond to the probability that a Markov process hits
some rare set, T , before its first entrance to some recurrent
set R.

I That is, given the stopping time τ = inf {p : Xp ∈ T ∪R},
we seek

Pη0 (Xτ ∈ T )

and the associated conditional distribution:

Pη0 (τ = t,X0:t ∈ dx0:t |Xτ ∈ T )
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Dynamic Rare Events: Illustration

T

R

39/51



Importance Sampling

I Use a second Markov process on the same space:(
Ω =

∞∏
n=0

En,F =
∞∏
n=0

Fn, (Xn)n∈N, P̃η̃0

)
,

where the law P̃η̃0 is defined by its finite dimensional
distributions:

P̃η̃0 ◦ X−10:N(dx0:N) = η̃0(dx0)
N∏
i=1

M̃i (xi−1, dxi ).

I So that:

dPη0 ◦ X0:N

d P̃η̃0 ◦ X0:N

(x0:N) =
dη0
d η̃0

(x0)
N∏

p=1

dMn(xn−1, ·)
dM̃n(xn−1, ·)

(xn)
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Importance Sampling

I Then:

Pη0(Xτ ∈ T ) =Eη0 [IT (Xτ )] =
∞∑
t=0

Eη0
[
I{t}(τ)IT (Xt)

]
=
∞∑
t=0

Ẽη0
[
I{t}(τ)IT (Xt)

dP
d P̃

(X0:∞)

]

=
∞∑
t=0

Ẽη0
[
Ẽη0

[
I{t}(τ)IT (Xt)

dP
d P̃

(X0:∞)

∣∣∣∣Ft

]]

=
∞∑
t=0

Ẽη0

[
I{t}(τ)IT (Xt)

dP ◦ X−10:t

d P̃ ◦ X−10:t

(X0:t)

]

=Ẽη0

[
IT (Xτ )

dP ◦ X−10:τ

d P̃ ◦ X−10:τ

(X0:τ )

]
I But how do you choose η̃0 and M̃n?
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Splitting

I If V increases towards T , could consider:

T1 = V−1([V1,∞)) ⊃ T2 = V−1([V2,∞)) ⊃ · · · ⊃ TL = T

I and the non-decreasing first hitting times:

τi = inf{t : Xt ∈ R ∪ Ti}

I which yield the decomposition:

P(Xτ ∈ T ) = P(Xτ1 ∈ T1)
L∏

l=2

P(Xτl ∈ Tl |{Xτl−1
∈ Tl−1})

I and the multilevel splitting method [dating back to (9)].
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Multilevel Splitting

V(Xt)

V0

V1

V2

V̂

t
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A Simple Splitting Algorithm

I Sample X 1
1:τ11

, . . . ,XN1

1:τ11
iid from P.

I Compute G (X i
1:τ i1

) = IT1(X i
τ i1

). Let S1 =
∑N1

i=1 G (X i
1:τ i1

).

I For l = 2 to L:
I Set Nl = rSl−1.
I Let (X̂ i

τ̂l−1
)i=1:Nl

comprise r copies of each Xτ i
l−1
∈ Tl−1.

I For i = 1, . . . ,Nl : Sample X i
τ̂ i
l−1:τ

i
l
∼ P(·|{X i

τl−1
= X̂τ̂ i

l−1
}).

I Compute G (X i
τ̂ i
l−1:τ

i
l
) = ITl (X i

τ i
l
). Let Sl =

∑N1

i=1 G (X i
1:τ i

l
).

I Compute

̂P(Xτ ∈ T ) =
L∏

l=1

Sl
Nl
.
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Adaptive Multilevel Splitting 1 — Choosing rl

I Describes a Branching Process.
I If E[rSl ] 6= Nl essentially:

I Particle system dies eventually.
I Nl grows exponentially fast.

I See (6, 10) for some preliminary analysis.

I See (11) for two-stage schemes in which a preliminary run
specifies rL.
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Adaptive Multilevel Splitting 2 — Choosing the Levels
I Let τ i1 = inf{t : Xt ∈ R}.
I Sample X 1

1:τ i1
, . . . ,XN1

1:τ i1
iid from P.

I Compute X̌ i
1 = max{X i

1, . . . ,Xτ i1
}. Set V1 = X̌

(bαN1c)
1 .

I While Vl < V̂ . l ← l + 1.
I Set Nl = N1.
I Let (X̂ i

τ̂l−1
)i=1:Nl

comprise r copies of each Xτ i
l−1

which reached

Vl−1 up to the time when it reached it.
I For i = 1, . . . ,Nl : Sample X i

τ̂ i
l−1:τ

i
l
∼ P(·|{X i

τl−1
= X̂τ̂ i

l−1
}).

With τ il = inf{t : Xt ∈ R}.
I Compute X̌ i

l = max{X i
τ̂ i
l−1
, . . . ,Xτ i

l
}. Set Vl = X̌

(bαNlc)
l .

I Compute

̂P(Xτ ∈ T ) = (1− α)l−1 · 1

N

N

i=1
I(τ iT < τ il )

where τ iT = inf{t ∈ {τ̂ il−1, . . . , τ il } : X i
t ∈ T }

Related adaptive methods can be unbiased (1).
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Sequential Monte Carlo: Interacting Particle Systems

I Sample X 1
1:τ11

, . . . ,XN
1:τ11

iid from P.

I Compute G1(X i
τ i1

) = IT1(X i
τ i1

). Let S1 =
∑N

i=1 G1(X i
τ i1

).

I For l = 2 to L:
I Sample (X̂ i

τ̂l−1
)i=1:Nl

iid from 1
Sl−1

∑N
j=1 Gl−1(X j

τl−1
)δX

τ
j
l−1

I For i = 1, . . . ,N: Sample X i
τ̂ i
l−1:τ

i
l
∼ P(·|{X i

τl−1
= X̂τ̂ i

l−1
}).

I Compute Gl(X
i
τ i
l
) = ITl (X i

τ i
l
). Let Sl =

∑N1

i=1 Gl(X
i
τ i
l
).

I Compute

̂P(Xτ ∈ T ) =
L∏

l=1

Sl
Nl
.
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Path Sampling Identity

Given a probability density, p(x |θ) = q(x |θ)/z(θ):

∂

∂θ
log z(θ) =

1

z(θ)

∂

∂θ
z(θ)

=
1

z(θ)

∂

∂θ

∫
q(x |θ)dx

=

∫
1

z(θ)

∂

∂θ
q(x |θ)dx (??)

=

∫
p(x |θ)

q(x |θ)

∂

∂θ
q(x |θ)dx

=

∫
p(x |θ)

∂

∂θ
log q(x |θ)dx = Ep(·|θ)

[
∂

∂θ
log q(·|θ)

]
wherever ?? is permissible. Back to ?.
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