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Goals

Automatic Bayesian Model Comparison

I Robust approximation of marginal likelihood (evidence);

I or Bayes factors;

I with minimal application-specific tuning.

Caveats: Towards Automatic Bayesian Model Comparison

I We don’t consider philosophical issues or prior specification.

I Performance is undoubtedly improved by customization.

I Sufficiently difficult problems will require customization.
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Bayesian Model Comparison

I Here we consider a finite collection of candidates, K
I Prior over models: π(k) = P(M = k)

I Model k prior: π(θk |M = k)

I Model k likelihood: p(y|θk ,M = k)

I Evidence:

p(y|M = k) =

∫
p(y|θk ,M = k)π(θk |M = k)π(k)dθk

I Posterior probabilities:

P(M = k |y) =
π(k)p(y|M = k)∑
k ′∈K π(k

′)p(y|M = k ′)

I Bayes Factors:

Bk,k ′ = P(M = k |y)/P(M = k ′|y)
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Sequential Monte Carlo Samplers [2]

I Very general sampling framework.

I We focus on a special case:
I Given π0, . . . , πT where πt = γt/Zt and Zt is unknown,
I iteratively, weight, resample and move a population of

samples, to obtain
I an unbiased estimate of ZT/Z0 and a “properly weighted”

sample targetting πT .
I Example: π0 = prior and πT = posterior.

I Now reasonably well characterized theoretically, e.g.:
I SLLN;
I
√
N-CLT.

I Potentially more robust than standard MCMC approaches.

I Amenable to adaptation.
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Simple Illustration of SMC I
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Simple Illustration of SMC II
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Simple Illustration of SMC III
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Simple Illustration of SMC IV
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Simple Illustration of SMC V
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Simple Illustration of SMC VI

−30 −20 −10 0 10 20 30

0.
00

0.
01

0.
02

0.
03

0.
04

D
en

si
ty

 / 
W

ei
gh

t

●●● ●●●● ●● ●●● ●● ●●● ●● ● ●● ●● ●●●● ●● ●●● ●● ● ●● ●●● ●●● ●● ●● ●● ●● ●● ● ●● ● ●● ●●●●● ●●●●● ●●●● ●● ●● ●●●●● ●● ●●●● ●● ●● ●●● ●●●●

12



Simple Illustration of SMC VII
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Simple Illustration of SMC VIII
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Simple Illustration of SMC IX
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Simple Illustration of SMC X

−30 −20 −10 0 10 20 30

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

D
en

si
ty

 / 
W

ei
gh

t

●● ●●●● ●● ●●●●● ●●● ● ●●●●● ●●●● ● ● ●●●● ●●● ● ●●●● ●● ●● ●● ●● ●●● ●●● ●●● ●● ●●● ● ●●● ●●●● ●● ● ●● ●● ●●● ●● ●● ●●●●● ●● ●● ● ●●●●●●

16



Simple Illustration of SMC XI
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Simple Illustration of SMC XII
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Simple Illustration of SMC XIII
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Simple Illustration of SMC XIV
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Simple Illustration of SMC XV
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Simple Illustration of SMC XVI
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The Basic Algorithm [SMC2-DS] — For each model, k ∈ K

Initialisation: Set t ← 0.

Sample θ
(k,i)
0 ∼ π(·|Mk).

Set W
(k,i)
0 = 1/N.

Iteration: Set t ← t + 1.

Weight W
(k,i)
t ∝W (k,i)

t−1 p(y|θ
(k,i)
t−1 ,Mk)

α(t/Tk )−α([t−1]/Tk ).

Apply resampling if necessary.

Sample θ
(k,i)
t ∼ Kt(·|θ(k,i)t−1 ), a π

(k)
t -invariant kernel.

Repeat the Iteration step until t = Tk .

Where:

I α : [0, 1] 7→ [0, 1] is an increasing bijection

I π
(k)
t (θ) ∝ π(θ|Mk) · p(y|θ,Mk)α(t/Tk )

I An unbiased estimate of

p(y|Mk) =
∫
p(y|θk ,Mk)p(θk |Mk)dθk is a byproduct.
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Some Related Alternatives

Many other approaches are possible:

I Mimic reversible jump using one (or more) SMC samplers.

I Approximate Bayes factors directly.

I Use path sampling / thermodynamic integration as an

alternative estimator of the normalizing constant.

and there are some competing strategies, particularly:

I Reversible Jump MCMC [3]

I Annealed Importance Sampling [6]

I Population MCMC (parallel tempering), e.g., [1]
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Adaptation: MCMC Kernels

I Like MCMC we can adapt the proposal kernels used.

I Unlike MCMC:
I We have historical information.
I We do not depend upon ergodicity.

I Strategy employed here, roughly speaking:
I Estimate variance and each target distribution; rescale

appropriately to obtain proposal for next iteration.
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Adaptation: Sequence of Distributions

I But, what should T or π1, . . . , πT−1 be?

I Weights at time t depend on samples at t − 1 and πt

I so, we can choose πt based on (W it−1, θ
i
t−1)

N
i=1.

I Heuristically, want ||πt − πt−1|| to be similar for all t.

I The χ2-divergence is a natural criterion for importance

sampling:

dχ2(πt−1, πt) =

∫ (
πt(θ)

πt−1(θ)

)2

πt−1(θ)dθ − 1

I and can be approximate using an N-sample from πt−1

d̂χ2(πt−1, πt) =
1

N

N∑
i=1

(
πt(θ

i)

πt−1(θi)

)2

− 1.
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Conditional Effective Sample Size (CESS)

I “Exact ESS” of an N-sample from πt−1 targetting πt is [4]:

Exact ESS =
N

1 + varπt−1(
dπt
dπt−1

)
(1)

I approximated by replacing 1 + varπt−1(
dπt
dπt−1

) with the

empirical mean squared normalised importance weights:

ESS = N
/(∑N

i=1(w
i
t)

2

(
∑N
j=1 w

i
t)

2

)
=

N∑N
i=1(W

i
t )

2

I the CESS is closely related:

N∑N
i=1W

i
t−1(

dπt
dπt−1

(X it−1))
2
≈

N∑N
i=1W

i
t−1(

w it∑N
j=1W

j
t−1w

j
t

)2
=: CESS .
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CESS/ESS in Specifying Distribution Seqeunces
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Example: Gaussian Mixture Model

I Data y = (y1, . . . , yn) are iid

yi |θr ∼
r∑
j=1

ωjN (µj , λ
−1
j )

I Parameters θr = (µ1:r , λ1:r , ω1:r ) and r is the number of

components. The priors are taken to be the same for all

components: µj ∼ N (ξ, κ−1), λj ∼ G(ν, χ) and ω1:r ∼ D(ρ)
I Kernel: composition of MH kernels:

µ1:r using a Normal random walk proposal.

log(λ1:r ) using a Normal random walk.

ω1:r using a Normal random walk on logit scale.

Scales tuned to yield approximately constant acceptance

rates.
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GMM Results

Simulating 100 observations from a four components model with

µ1:4 = (−3, 0, 3, 6), and λj = 2, ωj = 0.25, j = 1, . . . , 4.

Basic Algorithms

Algorithms

Quantity SMC2-

DS

SMC2-

PS

SMC3-

DS

SMC3-

PS

AIS-

DS

AIS-

PS

PMCMC

logB4,5 2.15 2.15 2.16 2.21 2.16 2.17 2.63

sd 0.25 0.22 0.61 0.62 1.12 1.10 0.41

Adaptive proposals: SMC2 achieves essentially identical

performance without tuning.

Adaptive distributions: using CESS SMC2 sd fell by around 20%

relative to the best manual tuning.
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Example: Positron Emission Tomography

An m-compartmental model has generative form:

yj = CT (tj ;φ1:m, θ1:m) +

√
CT (tj ;φ1:m, θ1:m)

tj − tj−1
εj (2)

CT (tj ;φ1:m, θ1:m) =

m∑
i=1

φi

∫ tj
0

CP(s)e
−θi (tj−s)ds (3)

where tj is the measurement time of yj , εj
iid∼ N (0, σ2) is additive

measurement error and input function CP is (treated as) known;

parameters φ1, θ1, . . . , φm, θm characterize the model dynamics.
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Proposal scales Manual Adaptive
Annealing scheme Prior (5) Posterior (5) Adaptive
T N Algorithm Marginal likelihood estimates (log p(y|Mk )± sd)
500 30 PMCMC −39.1± 0.56 −926.8± 376.99
500 192 SMC2-DS −39 .2 ± 0 .25 −39 .7 ± 1 .06 −39 .2 ± 0 .18 −39.1± 0.12

SMC2-PS −39 .2 ± 0 .25 −91.3± 21.69 −39 .2 ± 0 .18 −39.1± 0.13
100 960 SMC2-DS −39.3± 0.36 −40.6± 1.41 −39.2± 0.31 −39.2± 0.19

SMC2-PS −39.3± 0.35 302.1± 46.29 −39.3± 0.31 −39.2± 0.18

5000 30 PMCMC −39.3± 0.21 −917.6± 129.54
5000 192 SMC2-DS −39.2± 0.09 −39 .2 ± 0 .20 −39.2± 0.08 −39.1± 0.04

SMC2-PS −39.2± 0.09 −43.8± 2.13 −39.2± 0.08 −39.1± 0.04
1000 960 SMC2-DS −39 .2 ± 0 .08 −39.2± 0.31 −39 .2 ± 0 .07 −39.2± 0.03

SMC2-PS −39 .2 ± 0 .08 −65.7± 5.54 −39 .2 ± 0 .07 −39.2± 0.03

Proposal scales Manual Adaptive
Annealing scheme Prior (5) Posterior (5) Adaptive
T N Algorithm Bayes factor estimates (logB2,1 ± sd)
500 30 PMCMC 1.7± 0.62 −70.9± 525.79
500 192 SMC2-DS 1 .6 ± 0 .27 1 .3 ± 1 .13 1 .6 ± 0 .20 1.6± 0.15

SMC2-PS 1 .6 ± 0 .27 −3.9± 30.02 1 .6 ± 0 .20 1.6± 0.15
100 960 SMC2-DS 1.6± 0.37 0.5± 1.55 1.6± 0.34 1.6± 0.21

SMC2-PS 1.6± 0.37 −13.1± 66.30 1.6± 0.33 1.6± 0.21

5000 30 PMCMC 1.6± 0.24 −60.3± 198.10
5000 192 SMC2-DS 1.6± 0.10 1 .6 ± 0 .23 1.6± 0.09 1.6± 0.05

SMC2-PS 1.6± 0.10 1.3± 2.98 1.6± 0.09 1.6± 0.05
1000 960 SMC2-DS 1 .6 ± 0 .09 1.6± 0.33 1 .6 ± 0 .08 1.6± 0.04

SMC2-PS 1 .6 ± 0 .09 −0.2± 6.63 1 .6 ± 0 .08 1.6± 0.04
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Real data from an opioid receptor study
Turning > 200, 000 measured time series into estimates in 2

hours:
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Conclusions

I SMC provides a flexible and powerful framework for

estimating (ratios of) normalising constants.

I Adaptation of proposals, distribution sequences is easy and

effective.

I Empirically it outperforms the state of the art for comparison

of finite collections of models in the examples considered.

I Allows application to very large numbers of data sets without

fine-tuning.

I Flexible library facilitates fast C++ implementation [7].

I We can go much further. . . e.g. [5].
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