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Essential Problem

The Abstract Problem
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Importance Sampling
» Simple identity: provided v < u:

Z:/'y(x)dx: /Zgiiu(x)dx

> So, if X1, Xa, ... ' p, then:

1 o= (X)
unbiasedness YN:E|= Yl =z
N ; u(Xi)
1 = (X))
. 1 ) a.s.
slin Jim Zl L) 2D (@)
N
. 1 ’Y(X,) d
ct lim VN N;u(x,-)“’(x’)_”(“’) =W

where W ~ N (0, Var [Z((ié))w(Xl)D
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Sequential Importance Sampling

> Write ;
'Y(Xl:n) = ’Y(Xl) H ’Y(Xp|Xl:p—1)y
p=2
» define, forp=1,..., n

p

Yo(xap) = 71(31) [ [ v(xqlx1:9-1).
q=2

> then

Y(xn) - mxa) ﬁ Yp(x1:p)
plxn) - palxa) 5 V-1 (xup-1)pp(XplXi:p-1)
——— S —

W (x1:n) wi(x1) Wp(x1:p)

» and we can sequentially approximate Z, = [ Yp(x1:p)dx1:p.
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Sequential Importance Resampling (SIR)

Given a sequence v1(x1), v2(x1:2), - -

Initialisation, n = 1:

[This is just (self-normalized) importance sampling.]

Sequential Mc




[teration, n < n+ 1:
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SIR: Theoretical Justification

Under regularity conditions we still have:
unbiasedness
E[ZN] = Z,

slin

im 7(0) % (o)
N—o0

clt For a normal random variable W,, of appropriate
variance:

lim VN[EY () — ()] £ W,

N—oo

although establishing this becomes a little harder (cf., e.g. Del
Moral (2004), Andrieu et al. 2010).
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Simple Particle Filters: One Family of SIR Algorithms

Unobserved Markov chain {X,} transition f.
Observed process {Y,} conditional density g.
The joint density is available:

p(x1n, yinl0) = £ (1) g (alxa) [ | FO(xilxiz1) g (il xi).

=2

v

vy

v

Natural SIR target distributions:
70 (x1:n) =P (X0 Vi, 0) o< P(X1:n, Yi:n]0) =2 Yo (X1:n)

z? :/p(xl:nvyl:n|6)dxlzn = p(y1:0|0)
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Bootstrap PFs and Similar

v

Choosing
70 (x1:n) 1 =p(X1:nly1:n, ) < P(X1.n, Y1:010) =2 Y8 (x1:0)

z? z/p(xl;n,yl;nG)dxl;n = p(y1:n/6)

> and qp(xp|x1.p—1) = FO(xp|xp—1) vields the bootstrap particle
filter of Gordon et al. (1993),

» whereas qp(Xp|X1:p—1) = P(Xp|Xp—1, Yp, 0) yields the “locally
optimal” particle filter.

» Note: Many alternative particle filters are SIR algorithms
with other targets. Cf. J. and Doucet (2008); Doucet and J.
(2011).
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Sequential Monte Carlo Samplers: Another SIR Class

Given a sequence of targets mq, ..., T, on arbitrary spaces, Del
Moral et al. (2006) extend the space:

1

Tn(X1:n) =Tn(Xn) H Lp(Xpt1, Xp)
p=n—1

1
¥n(x1:n) =Yn(Xn) H Lp(Xp+1.Xp)
p=n—1
ZNn —/;)"n(xlzn)dxlzn

1

_/’Yn(Xn) H Lp(Xpt1, Xp)dxi:n = /’Y”(Xn)dxn = Zn

p=n—1
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A Simple SMC Sampler

Given ¥1,...,Yn, on (E, &), fori=1,...
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Bayesian Inference
(Chopin, 2001;Del Moral et al., 2006)

In a Bayesian context
» Given a prior p(0) and likelihood /(6; y1:m)
» One could specify:
Data Tempering v,(6) = p(8)/(8; y1.m,) for
m=0<m<---<mr=m
Likelihood Tempering 7,(8) = p(8)/(6; y1.m)P> for
f1=0<Pfo<---<PBr=1
Something else?
» Here Z1 = [ p(6)/(6; y1:n)d6 and y7(6) o< p(6]y1:n).

» Specifying (my, ..., mt), (B1., ..., Br)or (vi,.-., Y7)is
hard.
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lllustrative Sequences of Targets
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One Adaptive Scheme (Zhou, J. & Aston, 2016)+Refs
N1
Resample When ESS(W} V) = (Z,’-\IZI(W,Q)2> is below a
threshold.
Likelihood Tempering At iteration n: Set G, such that:

(Z_] W, 1Wr(7j))
k
Ek 1 Wi 1(Wr(7 ))2
which controls x2-discrepancy between successive
distributions.

Proposals Follow (Jasra et al., 2010): adapt to keep
acceptance rate about right.

Are there better, practical approaches to specifying a sequence of
distributions?

= CESS.
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Divide-and-Conquer (Lindsten, J. et al., 2016)

Many models admit natural decompositions:

() () (%) () (2) () () () (%)

To which we can apply a divide-and-conquer strategy:

T
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A few formalities. . .

» Use a tree, T of models (with rootward variable inclusion):

"

Tt

e T

v

Let t € T denote a node; r € T is the root.
Let C(t) = {c1, ..., cc} denote the children of t.

Let )?t denote the space of variables included in t but not its
children.

v

v

» dc-smc can be viewed as a recursion over this tree.
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dc-smc(t) an extension of SIR
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Theoretical Properties |

Unbiasedness of Normalising Constant Estimates




Strong Law of Large Numbers

Adam



Some (Importance) Extensions

1. Mixture Resampling
2. Tempering (Del Moral et al, 2006)
3. Adaptation (Zhou, J. and Aston, 2016)
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An Ising Model

k indexes V € V C Z?
XKk € {—1, 1}

p(z) x e PEE@) B3>0
E(z) = - Z(k,/)eg X X|

vV v v Vv

We consider a grid of size 64 x 64 with 3 = 0.4407 (the critical
temperature).
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A sequence of decompositions
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Summaries over 50 independent runs of each algorithm.
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New York Schools Maths Test: data

» Data organised into a tree T.

» A root-to-leaf path is: NYC (the root, denoted by r € T),
borough, school district, school, year.

» Each leaf t € T comes with an observation of m; exam
successes out of M; trials.

» Total of 278 399 test instances

» five borough (Manhattan, The Bronx, Brooklyn, Queens,
Staten Island),

» 32 distinct districts,
» 710 distinct schools.
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New York Schools Maths Test: Bayesian Model

Number of successes m; at a leaf t is Bin(M¢, pt).
where p; = logistic(6:), where 0; is a latent parameter.
internal nodes of the tree also have a latent 9,

model the difference in 8¢ along e = (t — t’) as
91" - Qt + Aev

» where, Ae ~ N(0,02).
» We put an improper prior (uniform on (—o0, o)) on 6,.

» We also make the variance random, but shared across
siblings, 02 ~ Exp(1).
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New York Schools Maths Test: Implementation

» The basic SIR-implementation of dc-smc.

» Using the natural hierarchical structure provided by the
model.
» Given 07 and the 6; at the leaves, the other random variables
are multivariate normal.
» We instantiate values for 6; only at the leaves.
» At internal node t’, sample only af, and marginalize out 6.
» Each step of dc-smc therefore is either:
i. At leaves sample p; ~ Beta(l + m¢, 1 + My — m;) and set

6 = logit(pr).
ii. At internal nodes sample 02 ~ Exp(1).

» Java implementation:
https://github.com/alexandrebouchard/multilevelSMC
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New York Schools Maths Test: Results

NY NY-Bronx NY-Kings \Y-Manhattar NY-Queens \Y-Richmonc

012 o012 012 012 01 2 01 2
Posterior density approximation
» DC with 10000 particles.

Bronx County has the highest fraction (41%) of children
(under 18) living below poverty level.!

Queens has the second lowest (19.7%),
after Richmond (Staten Island, 16.7%).

Staten Island contains a single school district so the posterior
distribution is much flatter for this borough.

v

v

v

v

!Statistics from the New York State Poverty Report 2013,

http://ams.nyscommunityaction.org/Resources/Documents/News/NYSCAAs_2013_Poverty_Report.pdf
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Normalising Constant Estimates
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Distributed Implementation
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Xeon X5650 2.66GHz processors connected by a non-blocking
Infiniband 4X QDR network
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Conclusions

SMC =~ SIR

D& C-SMC =~ SIR + Coalescence

Distributed implementation is straightforward
D& C strategy can improve even serial performance

vV v vV v VY

Some questions remain unanswered:

» How can we construct (near) optimal tree-decompositions?
» How much standard SMC theory can be extended to this
setting?

v

Some application areas are appealing:

> Inference for phylogenetic trees in linguistics.
» Principled aggregration of “mass univariate” analyses from
neuroimaging.
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