The Iterated Auxiliary Particle Filter arxiv 1511.06286

P. Guarniero, A. M. Johansen and A. Lee

University of Warwick
a.m.johansen@warwick.ac.uk
www2.warwick.ac.uk/fac/sci/statistics/staff/academic/johansen/talks/
Bath, November 21st, 2016

Outline

- Background: SMC and PMCMC
- Iterative Lookahead Methods
- Motivation
- Methodology
- Applications: linear Gaussian and stochastic volatility
- Ongoing work: diffusion bridges
- Conclusions

Discrete Time Filtering

Online inference for Hidden Markov Models:

- Given transition $f_{\theta}\left(x_{n-1}, x_{n}\right)$,
- and likelihood $g_{\theta}\left(x_{n}, y_{n}\right)$,
- use $p_{\theta}\left(x_{n} \mid y_{1: n}\right)$ to characterize latent state, but,

$$
p_{\theta}\left(x_{n} \mid y_{1: n}\right)=\frac{\int p_{\theta}\left(x_{n-1} \mid y_{1: n-1}\right) f_{\theta}\left(x_{n-1}, x_{n}\right) d x_{n-1} g_{\theta}\left(x_{n}, y_{n}\right)}{\iint p_{\theta}\left(x_{n-1} \mid y_{1: n-1}\right) f_{\theta}\left(x_{n-1}, x_{n}^{\prime}\right) d x_{n-1} g_{\theta}\left(x_{n}^{\prime}, y_{n}\right) d x_{n}^{\prime}}
$$

isn't often tractable.

Particle Filtering

A (sequential) Monte Carlo (SMC) scheme to approximate the filtering distributions.

A Simple Particle Filter [4]

At $n=1$:

- Sample $X_{1}^{1}, \ldots, X_{1}^{N} \sim \mu_{\theta}$.

For $n>1$:

- Sample

$$
X_{n}^{1}, \ldots, X_{n}^{N} \sim \frac{\sum_{j=1}^{N} g_{\theta}\left(X_{n-1}^{j}, y_{n-1}\right) f_{\theta}\left(X_{n-1}^{j}, \cdot\right)}{\sum_{k=1}^{n} g_{\theta}\left(X_{n-1}^{k}, y_{n-1}\right)}
$$

- Approximate $p_{\theta}\left(d x_{n} \mid y_{1: n}\right), p_{\theta}\left(y_{1: n}\right)$ with

$$
\widehat{p_{\theta}}\left(\cdot \mid y_{1: n}\right)=\frac{\sum_{j=1}^{N} g_{\theta}\left(X_{n}^{j}, y_{n}\right) \delta_{X_{n}^{j}}}{\sum_{k=1}^{N} g_{\theta}\left(X_{n}^{k}, y_{n}\right)}, \frac{\widehat{p_{\theta}}\left(y_{1: n}\right)}{\widehat{p_{\theta}}\left(y_{1: n-1}\right)}=\frac{1}{n} \sum_{j=1}^{N} g_{\theta}\left(X_{n}^{k}, y_{n}\right)
$$

Online Particle Filters for Offline Parameter Estimation

Particle Markov chain Monte Carlo (PMCMC) [2]

- Embed SMC within MCMC,
- justified via explicit auxiliary variable construction,
- or in some cases by a pseudomarginal [1] argument.
- Very widely applicable,
- but prone to poor mixing when SMC performs poorly for some θ [7, Section 4.2.1].
- Is valid for very general SMC algorithms.

Twisting the HMM (a complement to [8])

Given (μ, f, g) and $y_{1: T}$, introducing
$\psi:=\left(\psi_{1}, \psi_{2}, \ldots, \psi_{T}\right), \psi_{t} \in \mathcal{C}_{b}(X,(0, \infty))$ and
$\tilde{\psi}_{0}:=\int_{X} \mu\left(x_{1}\right) \psi_{1}\left(x_{1}\right) d x_{1} \quad \tilde{\psi}_{t}\left(x_{t}\right):=\int_{X} f\left(x_{t}, x_{t+1}\right) \psi_{t+1}\left(x_{t+1}\right) d x_{t+1}$
we obtain $\left(\mu_{1}^{\psi},\left\{f_{t}^{\psi}\right\},\left\{g_{t}^{\psi}\right\}\right)$, with

$$
\mu_{1}^{\psi}\left(x_{1}\right):=\frac{\mu\left(x_{1}\right) \psi_{1}\left(x_{1}\right)}{\tilde{\psi}_{0}}, \quad f_{t}^{\psi}\left(x_{t-1}, x_{t}\right):=\frac{f\left(x_{t-1}, x_{t}\right) \psi_{t}\left(x_{t}\right)}{\tilde{\psi}_{t-1}\left(x_{t-1}\right)}
$$

and the sequence of non-negative functions $\left(\tilde{\psi}_{T} \equiv 1\right)$:

$$
g_{1}^{\psi}\left(x_{1}\right):=g\left(x_{1}, y_{1}\right) \frac{\tilde{\psi}_{1}\left(x_{1}\right)}{\psi_{1}\left(x_{1}\right)} \tilde{\psi}_{0}, \quad g_{t}^{\psi}\left(x_{t}\right):=g\left(x_{t}, y_{t}\right) \frac{\tilde{\psi}_{t}\left(x_{t}\right)}{\psi_{t}\left(x_{t}\right)} .
$$

Proposition

For any sequence of bounded, continuous and positive functions ψ, let

$$
Z_{\psi}:=\int_{X^{T}} \mu_{1}^{\psi}\left(x_{1}\right) g_{1}^{\psi}\left(x_{1}\right) \prod_{t=2}^{T} f_{t}^{\psi}\left(x_{t-1}, x_{t}\right) g_{t}^{\psi}\left(x_{t}\right) d x_{1: T}
$$

Then, $Z_{\psi}=p_{\theta}\left(y_{1: T}\right)$ for any such ψ.
The optimal choice is:

$$
\psi_{t}^{*}\left(x_{t}\right):=g\left(x_{t}, y_{t}\right) \mathbb{E}\left[\prod_{p=t+1}^{T} g\left(X_{p}, y_{p}\right) \mid\left\{X_{t}=x_{t}\right\}\right], \quad x_{t} \in \mathrm{X}
$$

for $t \in\{1, \ldots, T-1\}$. Then, $Z_{\boldsymbol{\psi}^{*}}^{N}=p\left(y_{1: T}\right)$ with probability 1 .

Towards Iterative Auxiliary Particle Filters [5]

ψ-Auxiliary Particle Filter

1. Sample $\xi_{1}^{i} \sim \mu^{\boldsymbol{\psi}}$ independently for $i \in\{1, \ldots, N\}$.
2. For $t=2, \ldots, T$, sample independently

$$
\xi_{t}^{i} \sim \frac{\sum_{j=1}^{N} g_{t-1}^{\psi}\left(\xi_{t-1}^{j}\right) f_{t}^{\psi}\left(\xi_{t-1}^{j} \cdot \cdot\right)}{\sum_{j=1}^{N} g_{t-1}^{\psi}\left(\xi_{t-1}^{j}\right)}, \quad i \in\{1, \ldots, N\} .
$$

Necessary features of ψ

1. It is possible to sample from f_{t}^{ψ}.
2. It is possible to evaluate g_{t}^{ψ}.
3. To be useful: $\mathbb{V}\left(\widehat{Z}_{\psi}^{N}\right)$ must be small.

A Recursive Approximtion

Proposition

The sequence ψ^{*} satisfies $\psi_{T}^{*}\left(x_{T}\right)=g\left(x_{T}, y_{T}\right), x_{T} \in X$ and

$$
\psi_{t}^{*}\left(x_{t}\right)=g\left(x_{t}, y_{t}\right) f\left(x_{t}, \psi_{t+1}^{*}\right), \quad x_{t} \in X, \quad t \in\{1, \ldots, T-1\}
$$

Algorithm 1 Recursive function approximations

For $t=T, \ldots, 1$:

1. Set $\psi_{t}^{i} \leftarrow g\left(\xi_{t}^{i}, y_{t}\right) f\left(\xi_{t}^{i}, \psi_{t+1}\right)$ for $i \in\{1, \ldots, N\}$.
2. Choose ψ_{t} as a member of ψ on the basis of $\xi_{t}^{1: N}$ and $\psi_{t}^{1: N}$.

Iterated Auxiliary Particle Filters

$\overline{\text { Algorithm } 2 \text { An iterated auxiliary particle filter with parameters }}$ $\left(N_{0}, k, \tau\right)$

1. Initialize: set $\psi_{t}{ }^{0}=\mathbf{1} . I \leftarrow 0$.
2. Repeat:
2.1 Run a $\boldsymbol{\psi}^{\prime}$-APF with N_{l} particles; set $\hat{Z}_{l} \leftarrow Z_{\psi^{\prime}}^{N_{l}}$.
2.2 If $I>k$ and $\operatorname{sd}\left(\hat{Z}_{I-k: I}\right) / \operatorname{mean}\left(\hat{Z}_{I-k: I}\right)<\tau$, go to 3 .
2.3 Compute ψ^{I+1} using Algorithm 1.
2.4 If $N_{l-k}=N_{l}$ and the sequence $\hat{Z}_{I-k: I}$ is not monotonically increasing, set $N_{l+1} \leftarrow 2 N_{l}$. Otherwise, set $N_{l+1} \leftarrow N_{l}$.
2.5 Set $I \leftarrow I+1$. Go to 2 a.
3. Run a ψ^{\prime}-APF. Return $\hat{Z}:=Z_{\psi}^{N_{1}}$.

An Elementary Implementation

Function Approximation

- Numerically obtain (a regularised solution to):

$$
\left(m_{t}^{*}, \Sigma_{t}^{*}, \lambda_{t}^{*}\right)=\arg \min _{(m, \Sigma, \lambda)} \sum_{i=1}^{N}\left(\mathcal{N}\left(\xi_{t}^{i}, m, \Sigma\right)-\lambda \psi_{t}^{i}\right)^{2}
$$

- Set:

$$
\psi_{t}\left(x_{t}\right):=\mathcal{N}\left(x_{t} ; m_{t}^{*}, \Sigma_{t}^{*}\right)+c\left(N, m_{t}^{*}, \Sigma_{t}^{*}\right)
$$

Stopping Rule

- $k=3$ or $k=5$ in the following examples
- $\tau=0.5$

Resampling

- Multinomial when ESS $<N / 2$.

A Linear Gaussian Model: Behaviour with Dimension

$$
\begin{aligned}
\mu & =\mathcal{N}\left(\cdot ; \mathbf{0}, I_{d}\right) & f(x, \cdot) & =\mathcal{N}\left(\cdot ; A x, I_{d}\right) \\
\text { and } g(x, \cdot) & =\mathcal{N}\left(\cdot ; x, I_{d}\right) & \text { where } A_{i j} & =0.42^{|i-j|+1},
\end{aligned}
$$

Box plots of \hat{Z} / Z for different $|\mathrm{X}|$ (1000 replicates; $T=100$).

Linear Gaussian Model: Sensitivity to Parameters

Fixing $d=10$: Bootstrap $(N=50,000) / \operatorname{iAPF}\left(N_{0}=1,000\right)$

Box plots of $\frac{\hat{Z}}{Z}$ for different values of the parameter α using 1000 replicates.

Linear Gaussian Model: PMMH Empirical Autocorrelations

A_{11}

A_{41}

In this case:

d	$=5$
μ	$=\mathcal{N}\left(\cdot ; \mathbf{0}, I_{d}\right) \quad A=\left(\begin{array}{ccccc}0.9 & 0 & 0 & 0 & 0 \\ 0.3 & 0.7 & 0 & 0 & 0 \\ 0.1 & 0.2 & 0.6 & 0 & 0 \\ 0.4 & 0.1 & 0.1 & 0.3 & 0 \\ 0.1 & 0.2 & 0.5 & 0.2 & 0\end{array}\right), ~$

(unknown lower triangular matrix)

Stochastic Volatility

- A simple stochastic volatility model is defined by:

$$
\begin{aligned}
\mu(\cdot) & =\mathcal{N}\left(\cdot ; 0, \sigma^{2} /(1-a)^{2}\right) \\
f(x, \cdot) & =\mathcal{N}\left(\cdot ; a x, \sigma^{2}\right) \\
\text { and } g(x, \cdot) & =\mathcal{N}\left(\cdot ; 0, \beta^{2} \exp (x)\right),
\end{aligned}
$$

where $a \in(0,1), \beta>0$ and $\sigma^{2}>0$ are unknown.

- Considered $T=945$ observations $y_{1: T}$ corresponding to the mean-corrected daily returns for the GBP/USD exchange rate from $1 / 10 / 81$ to $28 / 6 / 85$.

Estimated PMCMC Autocorrelation

Boostrap $N=1,000$.
iAPF $N_{0}=100$.
Comparable cost.
150,000 PMCMC iterations.

Bootstrap : $N=1,000 / N=10,000 / i A P F, N_{0}=100$

Bootstrap : $N=1,000 / N=10,000 / i A P F, N_{0}=100$

Bootstrap: $N=1,000 / N=10,000 / i A P F, N_{0}=100$

A More Challenging Stochastic volatility example

- The model is a multivariate stochastic volatility model motivated by Chib et al. [3], with

$$
\mu(\cdot)=\mathcal{N}(\cdot ; m, U), \quad f(x, \cdot)=\mathcal{N}(\cdot ; m+\Phi(x-m), U)
$$

and $g(x, \cdot)=\mathcal{N}(\cdot ; 0, \exp (\operatorname{diag}(x)))$.

- We set $\Phi=\operatorname{diag}(\phi)$, and U is band-diagonal.
- The dataset is 20 international currencies, in the periods 3/2000-8/2008 (pre-crisis) and 9/2008-2/2016 (post-crisis).
- There are 79 parameters in (m, ϕ, U), and $T=\{102,90\}$.
- We conducted parameter estimation using particle MCMC.

Stochastic volatility: P-MCMC

- The bootstrap particle filter systematically fails to provide reasonable marginal likelihood estimates in a feasible computational time.
- iAPF autocorrelation times sample size adjusted for autocorrelation

	$m_{£}$	$\phi_{£}$	$U_{£}$	$U_{£, €}$
pre-crisis	408	112	218	116
post-crisis	175	129	197	120

- Average number of particles at final iteration was about 1000.

Stochastic volatility: P-MCMC

Figure: Multivariate SV model: density estimates. Pre-crisis chain (solid), post-crisis chain (dashed) and prior density (dotted).

Ongoing work

- We consider

$$
d \bar{X}_{s}=a\left(\bar{X}_{s}\right) d s+b\left(\bar{X}_{s}\right) d W_{s}, \quad 0 \leq s \leq 1
$$

with standard Brownian motion W and the condition $\bar{X}_{0}=\bar{x}_{0}$.

- We are interested in (approximately)

1. Simulating diffusion bridges, conditioning on the event $\left\{\bar{X}_{0}=\bar{x}_{0}, \bar{X}_{1}=\bar{x}_{1}\right\}$.
2. Evaluation of transition densities, e.g. $p\left(\bar{x}_{0}, \bar{x}_{1}\right)$.

- We employ an Euler-Maruyama approximation defined by $X_{1}=\bar{X}_{0}$ and

$$
X_{t} \sim \mathcal{N}\left(X_{t-1}+a\left(X_{t-1}\right) h, b^{2}\left(X_{t-1}\right) h\right)
$$

for $t \in\{2, \ldots, T\}$, with $T=1 / h$ so $X_{T} \approx \bar{X}_{1-h}$.

Model for a particle filter

- Euler-Maruyama approximation: $X_{1}=\bar{X}_{0}$ and

$$
X_{t} \sim \mathcal{N}\left(X_{t-1}+a\left(X_{t-1}\right) h, b^{2}\left(X_{t-1}\right) h\right)
$$

for $t \in\{2, \ldots, T\}$, and $T=1 / h$ so $X_{T} \approx \bar{X}_{1-h}$.

- If we want

$$
p\left(\bar{x}_{0}, \bar{x}_{1}\right) \approx Z=\int_{X^{T}} \mu_{1}\left(x_{1}\right) g_{1}\left(x_{1}\right) \prod_{t=2}^{T} f\left(x_{t-1}, x_{t}\right) g_{t}\left(x_{t}\right) d x_{1: T}
$$

we take $g_{1} \equiv \cdots \equiv g_{T-1} \equiv 1$ and

$$
g_{T}(\cdot)=\mathcal{N}\left(\bar{x}_{1} ; x_{T}+a\left(x_{T}\right) h, b^{2}\left(x_{T}\right) h\right) .
$$

- All the information comes at the end, if we run a standard particle filter.

Example

- We take

$$
d \bar{X}_{s}=50 s \cdot \sin \left(\bar{X}_{s}\right) d s+2 d W_{s}
$$

$$
\bar{x}_{0}=0 \text { and } \bar{x}_{1}=2 \pi .[\mathrm{iAPF}(\mathrm{red}), \mathrm{BPF}(\text { black }), h=1 / 100]
$$

- \sin is negative on $(\pi, 2 \pi) \Rightarrow$ more likely for the diffusion to approach 2π from above than below.

Conclusions

- To fully realise the potential of PMCMC we should exploit its flexibility.
- Even very simple variants on the standard particle filter can significantly improve performance.
- The iAPF can improve performance substantially in some settings.
- Extending the extent of its applicability / characterising it theoretically is ongoing work.
- In principle any function approximation scheme can be employed: provided that f_{t}^{ψ} can be sampled from, and g_{t}^{ψ} evaluated pointwise.
- Other [standard and less standard] ideas including blocking and tempering can also be readily employed (cf. [6]).

References

[1] C. Andrieu and G. O. Roberts. The pseudo-marginal approach for efficient Monte Carlo computations. Annals of Statistics, 37(2):697-725, 2009.
[2] C. Andrieu, A. Doucet, and R. Holenstein. Particle Markov chain Monte Carlo. Journal of the Royal Statistical Society B, 72(3):269-342, 2010.
[3] S. Chib, Y. Omori, and M. Asai. Multivariate stochastic volatility. In T. G. Andersen, R. A. Davis, J.-P. Kreiss, and T. V. Mikosch, editors, Handbook of Financial Time Series, pages 365-400. Springer, 2009.
[4] N. J. Gordon, S. J. Salmond, and A. F. M. Smith. Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proceedings-F, 140(2): 107-113, April 1993.
[5] P. Guarniero, A. M. Johansen, and A. Lee. The iterated auxiliary particle filter. Journal of the American Statistical Association, 2016. In press.
[6] A. M. Johansen. On blocks, tempering and particle MCMC for systems identification. In Y. Zhao, editor, Proceedings of 17th IFAC Symposium on System Identification, pages 969-974, Beijing, China., 2015. IFAC.
[7] J. Owen, D. J. Wilkinson, and C. S. Gillespie. Likelihood free inference for markov processes: a comparison. Statistical Applications in Genetics and Molecular Biology, 2016. In press.
[8] N. Whiteley and A. Lee. Twisted particle filters. Annals of Statistics, 42(1): 115-141, 2014.

