Introduction to Markov chain Monte Carlo

Adam M. Johansen¹

February 12, 2018

¹Based closely on slides produced by Anthony Lee in previous years.

Outline

Motivation

What is a Markov chain?

First stability properties

Constructing π -invariant Markov chains

Central limit theorems

Geometric ergodicity

Final remarks

Outline

Motivation

What is a Markov chain?

First stability properties

Constructing π -invariant Markov chains

Central limit theorems

Geometric ergodicity

Final remarks

Introduction

- This is a module on stochastic simulation.
- Monte Carlo methods are certainly stochastic simulation techniques.
- They are also very important in many modern statistical analyses.
- I will cover "fundamental" theory and methodology for Markov chain Monte Carlo.
 - fundamental here means I cannot even cover 1% of what is interesting.
- ► There are other methods of stochastic simulation, and also deterministic counterparts to Monte Carlo.
- ▶ I hope that after the lectures you will understand why we can use MCMC, and how to construct your own Monte Carlo Markov chains.

Approximating expectations

Let (X, \mathcal{X}) be a measurable space. We have a target probability measure $\pi: \mathcal{X} \to [0,1]$ and we would like to approximate the quantity

$$\pi(f) := \int_{\mathsf{X}} f(x) \pi(\mathrm{d}x),$$

where $f \in L_1(X, \pi) = \{f : \pi(|f|) < \infty\}$, i.e., expectations w.r.t. π .

- ▶ We will assume that one can calculate π 's associated density $\pi: X \to \mathbb{R}_+$ w.r.t. some dominating measure (e.g., Lebesgue or counting).
- A major motivation for this in statistics is to compute posterior expectations in Bayesian inference.

Posterior expectations

- We have
 - ▶ a prior probability distribution for an unknown X-valued parameter with probability density function $p: X \to \mathbb{R}_+$, and
 - ▶ a collection of probability distributions with probability density functions $\{g_x; x \in X\}$ for some observed data $y \in Y$.
- We can use Bayes' rule to obtain that the conditional distribution of the unknown X-valued parameter is defined by the probability density function

$$\pi(x) = \frac{p(x)g_x(y)}{\int_X p(z)g_z(y)dz}.$$

▶ Posterior expectations $\pi(f)$ cannot generally be calculated analytically, and so numerical methods are needed to approximate them.

The Strong Law of Large Numbers

Theorem (Strong Law of Large Numbers)

Assume $(X_n)_{n\geq 1}$ is a sequence of i.i.d. random variables distributed according to μ . Define

$$S_n(f) := \sum_{i=1}^n f(X_i),$$

for $f \in L_1(X, \mu)$. Then

$$\lim_{n\to\infty}\frac{1}{n}S_n(f)=\mu(f)$$

almost surely.

Monte Carlo Integration

- We can apply the SLLN with $\mu = \pi$ to use $n^{-1}S_n(f)$ as an estimate of $\pi(f)$, if we can sample according to π .
- ► There are some ways of doing this in special cases, e.g.,
 - inverse transform,
 - composition,
 - special representations in terms of random variables we can simulate easily.
 - ▶ other methods in, e.g., Devroye [1986]
- Most of the time in practical applications, we cannot easily sample according to π .

Radon-Nikodym derivative

▶ If μ and ν are densities w.r.t. the Lebesgue measure and $\nu(x)>0 \Rightarrow \mu(x)>0$ then

$$\int_{A} \frac{\nu(x)}{\mu(x)} \mu(x) dx = \int_{A} \nu(x) dx = \nu(A),$$

for an arbitrary measurable A.

▶ If μ and ν are σ -finite measures on (X, \mathcal{X}) and μ dominates ν $(\nu \ll \mu)$ then there is a function f such that

$$\int_A f(x)\mu(\mathrm{d}x) = \nu(A), \qquad A \in \mathcal{X},$$

and we call it the Radon–Nikodym derivative $\frac{\mathrm{d}\nu}{\mathrm{d}\mu}$.

Rejection sampling

Rejection sampling

- 1. Sample $X \sim \mu$.
- 2. With prob. $\frac{1}{M} \frac{\pi(X)}{\mu(X)}$ output X, otherwise go back to step 1.
- \blacktriangleright A general purpose method for sampling from π when we can sample from μ and

$$\sup_{x} \frac{\pi(x)}{\mu(x)} \le M < \infty.$$

▶ Letting $Y = \mathbb{I}\left(U < \frac{1}{M}\frac{\pi(X)}{\mu(X)}\right)$ where U is uniformly distributed on [0,1] we obtain

$$\Pr(X \in A \mid Y = 1) = \frac{\Pr(X \in A, Y = 1)}{\Pr(Y = 1)}$$
$$= \frac{\int_{A} \frac{1}{M} \frac{\pi(x)}{\mu(x)} \mu(x) dx}{\int_{X} \frac{1}{M} \frac{\pi(x)}{\mu(x)} \mu(x) dx} = \pi(A).$$

Cost of rejection sampling

We have

$$\Pr(Y=1) = \int_{X} \frac{1}{M} \frac{\pi(x)}{\mu(x)} \mu(x) dx = \frac{1}{M}.$$

- ▶ It follows that the time until acceptance is a geometric random variable with success probability M^{-1} .
- ▶ The expected time to obtain a single sample is *M*.
- ▶ In many practical applications *M* is prohibitively large.
 - ► Toy example: consider what happens as d increases when $\pi(x) = \prod_{i=1}^d p(x_i)$, $\mu(x) = \prod_{i=1}^d g(x_i)$ and $\sup_x \frac{p(x)}{g(x)} > 1$.
- ▶ Practical intuition: for complicated π we do not usually know how to find a "good" μ .

Importance sampling

- ▶ Recall that $(X_n)_{n\geq 1}$ is a sequence of i.i.d. μ -distributed random variables.
- \blacktriangleright We again appeal to the SLLN, but now assume only that $\pi \ll \mu$ and we define

$$\tilde{f}(x) := f(x)w(x), \quad x \in X,$$

where $f \in L_1(X, \pi)$ is the function defining the expectation of interest and

$$w(x) := \frac{\pi(x)}{\mu(x)}, \quad x \in X,$$

is the "importance weight" function.

▶ It follows that

$$\mu(\tilde{f}) = \int_{\mathsf{X}} f(x) \frac{\pi(x)}{\mu(x)} \mu(x) \mathrm{d}x = \int_{\mathsf{X}} f(x) \pi(x) \mathrm{d}x = \pi(f).$$

Cost of importance sampling

Consider

$$\tilde{f}(x) := f(x)w(x).$$

▶ Then if $\tilde{f} \in L_2(X, \mu)$ we have

$$\operatorname{var}(\tilde{f}(X)) = \int_{\mathsf{X}} \tilde{f}(x)^{2} \mu(\mathrm{d}x) - \mu(\tilde{f})^{2} = \mu(\tilde{f}^{2}) - \mu(\tilde{f})^{2}.$$

One can then obtain

$$\operatorname{var}(n^{-1}S_n(\tilde{f})) = \frac{\mu(\tilde{f}^2) - \mu(\tilde{f})^2}{n}.$$

- ▶ Note: it is possible that $f \in L_2(X, \pi)$ but $\tilde{f} \notin L_2(X, \mu)$.
 - ▶ in practice, one can avoid this by having $\sup_x \pi(x)/\mu(x) < \infty$.
- ► In many practical situations, the numerator of this expression is prohibitively large.

Self-normalized importance sampling

- In many situations, one can only compute π up to an unknown normalizing constant.
- ▶ We define the self-normalized estimate via

$$I_n(f,\pi,\mu) := \frac{S_n(\tilde{f})}{S_n(w)} = \frac{\sum_{i=1}^n f(X_i)w(X_i)}{\sum_{i=1}^n w(X_i)},$$

and it is clear that one only needs to know π up to an unknown normalizing constant.

► Then

$$\lim_{n\to\infty}I_n(f,\pi,\mu)=\pi(f)$$

almost surely.

▶ If $\int_X \left[1+f(x)^2\right] \frac{\pi(x)}{\mu(x)} \pi(x) \mathrm{d}x < \infty$ then asymptotically the variance of $I_n(f)$ is

$$\frac{1}{n}\int_{\mathsf{X}}\left[f(x)-\pi(f)\right]^2\frac{\pi(x)}{\mu(x)}\pi(x)\mathrm{d}x.$$

▶ Note: this expression can be smaller than $var(n^{-1}S_n(\tilde{f}))$.

Outline

Motivation

What is a Markov chain?

First stability properties

Constructing π -invariant Markov chains

Central limit theorems

Geometric ergodicity

Final remarks

Markov chains and stochastic stability

- ▶ If unspecified, the source of a definition or theorem is

 Meyn, S. and Tweedie, R. L. (2009) Markov chains and stochastic stability, 2nd ed.
- This is a great single and reasonably accessible source for a lot of what you might want to know about Markov chains on a general state space.
- There is a free version online at http://probability.ca/MT/

Time homogeneous, discrete time Markov chains

- ▶ We will assume now that \mathcal{X} is countably generated, e.g. the Borel σ -algebra on \mathbb{R}^d .
- Let $\mathbf{X} := (X_n)_{n \ge 0}$ be a discrete time Markov chain evolving on X with some initial distribution for X_0 .
- ▶ This means that for $A \in \mathcal{X}$

$$\Pr(X_n \in A \mid X_0 = x_0, \dots, X_{n-1} = x_{n-1}) = \Pr(X_n \in A \mid X_{n-1} = x_{n-1}),$$

i.e. X possesses the Markov property.

► We will restrict our attention to the time-homogeneous case:

$$\Pr(X_n \in A \mid X_{n-1} = x) = \Pr(X_1 \in A \mid X_0 = x),$$

for any $n \in \mathbb{N}$.

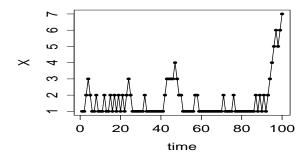
▶ Then **X** is described by a single Markov transition kernel $P: X \times \mathcal{X} \rightarrow [0,1]$ with

$$Pr(X_1 \in A \mid X_0 = x) = P(x, A).$$

▶ Let $p, q \in (0, 1]$ and $r \in [0, 1)$ such that p + q + r = 1, and

$$P(i,j) := egin{cases} p & j=i-1, \ q & j=i+1, \ r & j=i, \ 0 & ext{otherwise}, \end{cases} \quad i \geq 2$$

with P(1,1) = p + r and P(1,2) = q.



- How can we characterize the behaviour of X?
- Does it "escape to infinity"?
- Will it visit every point at least once?
- Will it visit each point infinitely many times?
- Does it have a "stationary distribution"?
- Does it look the same forwards and backwards in time?
- How do the partial sums

$$S_n(f) := \sum_{i=1}^n f(X_i)$$

behave?

When q < p:

- It is recurrent it almost surely visits every state infinitely often.
- It is therefore not transient.
- ▶ It has an invariant probability measure $\mu(x) = \text{Geo}(x; q/p)$.
- ▶ It is (time)-reversible if $X_0 \sim \mu$ then

$$\mathcal{L}(X_0,X_1,\ldots,X_n)=\mathcal{L}(X_n,X_{n-1},\ldots,X_0).$$

- It is irreducible.
- ▶ The proportion of time it spends at each point x converges almost surely to $\mu(x)$.
- ▶ It is aperiodic and for each $i \in \mathbb{N}$ (irrespective of x_0),

$$\lim_{n\to\infty} \Pr(X_n = i \mid X_0 = x_0) = \mu(i).$$

► The list could go on...

When q > p:

- It is transient the expected number of visits to each state is finite.
- ▶ It does not have an invariant probability measure.
- ▶ It is not time-reversible (depending on the definition!).
- It is aperiodic and irreducible.

When q = p:

- It is recurrent.
- ▶ It does not have an invariant probability measure.
- It is not time-reversible (again, depending on the definition).
- It is aperiodic and irreducible.

Our interest is in Markov chains that behave as in the case q < p.

Stability properties of Markov chains

- Many of the properties discussed above can be verified in this specific case in a number of different ways.
- ▶ We are interested, however, in more general classifications.
- ▶ Consider a simple random walk on \mathbb{R}_+ with $X_0 = 0$ and

$$X_n = \max\left\{X_{n-1} + W_n, 0\right\},\,$$

where $(W_n)_{n\geq 1}$ is a sequence of i.i.d. random variables with mean β .

- ▶ Is X recurrent or transient? Does it have an invariant (probability) measure?
- ightharpoonup Clearly this chain has some differences to the simple random walk on \mathbb{N} .
 - e.g., it does not visit an arbitrary $x \in \mathbb{R}_+ \setminus \{0\}$ with positive probability.
- ▶ Since most statistical applications involve $X \subseteq \mathbb{R}^d$ we need to discuss properties of Markov chains on general state spaces.

Why do we care?

Theorem (An Ergodic Theorem (an LLN for Markov chains))

Suppose that $\mathbf{X} = (X_n)_{n \geq 0}$ is a positive Harris Markov chain with invariant probability measure π . Then for any $f \in L_1(X, \pi) = \{f : \pi(|f|) < \infty\}$,

$$\lim_{n\to\infty}\frac{1}{n}S_n(f)=\pi(f),$$

almost surely for any initial distribution for X_0 .

▶ We need to understand some of these definitions.

Outline

Motivation

What is a Markov chain?

First stability properties

Constructing π -invariant Markov chains

Central limit theorems

Geometric ergodicity

Final remarks

General state spaces

- ▶ When considering a Markov chain **X** on a general state space, we must start to think about sets $A \in \mathcal{X}$ rather than points $x \in X$.
- ▶ When statements about the chain **X** are made in probability P or expectation E, we can use a subscript x or μ to denote the "initial" or marginal distribution of X_0 .
- ▶ We define P^n to be the *n*-step transition kernel by $P^1(x,A) := P(x,A)$ and

$$P^n(x,A) := \int_X P(z,A)P^{n-1}(x,dz), \quad n \ge 2.$$

► We will use *P* to denote the linear operator associated with this Markov transition kernel, which acts to the left on measures:

$$\mu P(A) := \int_{\mathsf{X}} \mu(\mathrm{d}x) P(x, A).$$

φ -irreducibility

Definition

X is φ -irreducible if φ is a measure on \mathcal{X} such that whenever $\varphi(A) > 0$ and $x \in X$, there exists some n possibly depending on both x and A such that $P^n(x,A) > 0$.

- ▶ It is important to note that this holds for every *x* ∈ X and is therefore rather strong.
- ▶ One can think of **X** having a maximal irreducibility probability measure ψ whenever it is φ -irreducible, such that (MT Proposition 4.2.2)
 - 1. **X** is ψ -irreducible;
 - 2. **X** is φ' -irreducible if and only if $\varphi' \ll \psi$.

Recurrent and transient sets

▶ We define the occupation time of a set $A \subseteq X$ to be

$$\eta_A := \sum_{n=1}^{\infty} \mathbb{I}\{X_n \in A\}.$$

Definition

The set A is recurrent if $E_x[\eta_A] = \infty$ for all $x \in A$.

Definition

The set A is uniformly transient if there exists $M < \infty$ such that $\mathsf{E}_x[\eta_A] \leq M$ for all $x \in A$.

Recurrence/transience dichotomy

▶ When X is ψ -irreducible, a dichotomy theorem describes whether the chain X is recurrent or transient.

Theorem (MT Theorem 8.0.1)

Suppose that X is ψ -irreducible. Then either

- 1. every set $A \in \mathcal{X}$ with $\psi(A) > 0$ is recurrent, and we call **X** recurrent, or
- 2. there is a countable cover of X with uniformly transient sets, and we call **X** transient.
- ► You can find alternative definitions of recurrence and transience in MT Appendix A, e.g., **X** is recurrent iff

$$\sum_{n\geq 0}P^n(x,A)=\infty,\quad x\in \mathsf{X},\quad \psi(A)>0,$$

or statements about $P_x(X \text{ visits } A \text{ i.o.}) = 1$.

Harris recurrence

► In order to make statements about **X** regardless of the value of X₀ one requires a stronger definition of recurrence.

Definition

A set A is Harris recurrent if $P_x(\eta_A = \infty) = 1$ for all $x \in A$.

Definition

X is Harris (recurrent) if it is ψ -irreducible and every set $A \in \mathcal{X}$ such that $\psi(A) > 0$ is Harris recurrent.

► The difference between recurrence and Harris recurrence is the difference between

$$\mathsf{E}_{\mathsf{x}}[\eta_{\mathsf{A}}] = \infty$$
 and $\mathsf{P}_{\mathsf{x}}(\eta_{\mathsf{A}} = \infty) = 1$.

Example of non-Harris recurrence

► The difference between recurrence and Harris recurrence is the difference between

$$\mathsf{E}_{\mathsf{x}}[\eta_{\mathsf{A}}] = \infty$$
 and $\mathsf{P}_{\mathsf{x}}(\eta_{\mathsf{A}} = \infty) = 1$.

▶ When $X = \mathbb{N}$, consider Charlie Geyer's example:

$$P(1,1) = 1$$
, $P(x,x+1) = 1 - x^{-2}$, $P(x,1) = x^{-2}$.

Then $\psi(\{x\}) > 0 \iff x = 1$, and for all x, $\mathsf{E}_x[\eta_{\{1\}}] = \infty$ since $\mathsf{P}_x(X_1 = 1) > 0$. However,

$$P_x(X_n = x + n \text{ for all } n) = \prod_{j=x}^{\infty} \left(1 - \frac{1}{j^2}\right) = \frac{x - 1}{x} > 0,$$

so
$$P_x(\eta_{\{1\}} = \infty) < 1$$
.

Invariant measures

Definition

A sigma-finite measure μ is an invariant measure for ${\bf X}$ if

$$\mu P = \mu$$
.

- Our interest in invariant measures is related to viewing a special version of X as a stationary process.
- ▶ Indeed, assume that μ is a probability measure and that $\Pr(X_0 \in A) = \mu(A)$ for all $A \in \mathcal{X}$.
- ▶ Then it is not too difficult to see that X is a stationary process, i.e. the marginal distribution of (X_n, \ldots, X_{n+k}) does not change as n varies.
- ▶ In general, invariant measures are not necessarily finite.
- When **X** is recurrent, the unique (up to constant multiples) invariant measure for **X** is equivalent (as a measure) to ψ (MT Theorem 10.4.9)

Positive and null chains

Definition

If **X** is ψ -irreducible and admits an invariant probability measure then it is positive. If **X** does not admit such a measure then it is null.

Example

Consider **X** being a simple random walk on \mathbb{N} as before. If p>q, **X** is positive (recurrent). If p=q then **X** is null (but) recurrent. If q>p then **X** is (null and) transient.

The LLN again

Theorem (An Ergodic Theorem for Harris Chains)

Suppose that $\mathbf{X} = (X_n)_{n \geq 0}$ is a positive Harris Markov chain with invariant probability measure π . Then for any $f \in L_1(X, \pi) = \{f : \pi(|f|) < \infty\}$,

$$\lim_{n\to\infty}\frac{1}{n}S_n(f)=\pi(f),$$

almost surely for any initial distribution for X_0 .

- ▶ One can replace Harris recurrence with φ -irreducibility and positivity but then the statement holds only for π -almost all X_0 . This is eventually a consequence of Birkhoff's Pointwise Ergodic Theorem.
- ▶ Being positive Harris implies that if an LLN holds for *f* and some initial distribution then it must hold for every initial distribution (MT Proposition 17.1.6).

Null recurrent vs transient: simplified classic example

- Let $(X_n^{(i)})_{n\geq 1}$ be independent, simple random walks on \mathbb{Z} : $p=q=\frac{1}{2}$, for each $i\in\{1,\ldots,d\}$.
- We have $P_0(X_n^{(i)}=0)=0$ for odd n, and

$$P_0(X_{2n}^{(i)}=0) = Pr(B_{2n}=n) \sim \frac{1}{\sqrt{\pi n}}$$

where B_{2n} is a Binomial $(2n, \frac{1}{2})$ r.v.

► Consider the Markov chain $(X_n^{(1)}, \dots, X_n^{(d)})$ started at **0**. Then

$$E_{0} \left[\eta_{\{0\}} \right] = E_{0} \left[\sum_{n=1}^{\infty} \mathbb{I} \left(X_{n}^{(1)} = \dots = X_{n}^{(d)} = 0 \right) \right]$$

$$= \sum_{n=1}^{\infty} P_{0} \left(X_{2n}^{(1)} = \dots = X_{2n}^{(d)} = 0 \right)$$

$$\sim \sum_{n=1}^{\infty} (\pi n)^{-d/2},$$

which is infinite only for $d \in \{1, 2\}$.

Outline

Motivation

What is a Markov chain?

First stability properties

Constructing π -invariant Markov chains

Central limit theorems

Geometric ergodicity

Final remarks

Motivation

► The LLN motivates the following question:

Can we construct a Harris recurrent or at least φ -irreducible Markov chain with invariant distribution π where all we compute is the density $\pi(x)$ (up to an unknown normalizing constant) for any $x \in X$?

▶ If so, then we can produce a realization **X** and estimate $\pi(f)$ via $n^{-1}S_n(f)$ where

$$S_n(f) := \sum_{i=1}^n f(X_i).$$

► A positive, constructive answer to this question was a pivotal moment in Bayesian statistics, and many other sciences.

Metropolis-Hastings

- There are a large number of ways of constructing such Markov chains, but we will focus on the essentials.
- By far the most commonly used Markov chains in practice are constructed using Metropolis—Hastings Markov transition kernels.
- ► These owe their development to the seminal papers Metropolis et al. [1953] and Hastings [1970].
- Assume π has a density w.r.t. μ .
- ▶ In order to define the Metropolis–Hastings kernel for a particular target π we require only to specify a proposal Markov kernel Q admitting a density q w.r.t. μ , i.e.

$$Q(x, dz) = q(x, z)\mu(dz).$$

Metropolis-Hastings

To simulate according to $P_{\mathrm{MH}}(x,\cdot)$:

- 1. Simulate $Z \sim Q(x, \cdot)$.
- 2. With prob. $\alpha_{MH}(x, Z)$ output Z; otherwise, output x, where

$$\alpha_{\mathrm{MH}}(x,z) := 1 \wedge \frac{\pi(z)q(z,x)}{\pi(x)q(x,z)}$$

Equivalently,

$$P_{\mathrm{MH}}(x,A) := \int_A \alpha_{\mathrm{MH}}(x,z) Q(x,\mathrm{d}z) + r_{\mathrm{MH}}(x) \mathbf{1}_A(x),$$

where

$$r_{\mathrm{MH}}(x) := 1 - \int_{\mathsf{X}} \alpha_{\mathrm{MH}}(x,z) Q(x,\mathrm{d}z).$$

• We need only know the density π up to a normalizing constant.

Metropolis-Hastings validity

▶ In order to show that P leaves π invariant, we need to check

$$\pi P = \pi$$

i.e., that

$$\int_{\mathsf{X}} \pi(\mathrm{d} x) P(x, A) = \pi(A), \qquad \forall A \in \mathcal{X}.$$

- Verifying $\pi P = \pi$ is extremely difficult in general.
- ▶ Determining the invariant measure of a given Markov kernel is also v. difficult.
- ► The π -invariance of the Metropolis–Hastings Markov chain is a special case of the π -invariance of π -reversible Markov chains.

Reversible Markov chains

Definition

A π -reversible Markov chain is a stationary Markov chain with invariant probability measure π satisfying

$$P_{\pi}(X_0 \in A_0, \dots, X_n \in A_n) = P_{\pi}(X_0 \in A_n, \dots, X_n \in A_0).$$

It suffices to check that

$$P_{\pi}(X_0 \in A, X_1 \in B) = P_{\pi}(X_0 \in B, X_1 \in A),$$

i.e.

$$\int_A \pi(\mathrm{d}x) P(x,B) = \int_B \pi(\mathrm{d}x) P(x,A).$$

▶ Moreover, π -invariance is obvious by considering A = X:

$$\int_{\mathsf{X}} \pi(\mathrm{d}x) P(x,B) = \int_{B} \pi(\mathrm{d}x) P(x,\mathsf{X}) = \pi(B).$$

Reversible Markov chains

- ► That $\int_A \pi(\mathrm{d}x) P(x,B) = \int_B \pi(\mathrm{d}x) P(x,A)$ implies reversibility is slightly laborious in the general state space context.
- For intuition, consider a discrete state space where the property becomes

$$P_{\pi}(X_0 = x_0, \dots, X_n = x_n) = P_{\pi}(X_0 = x_n, \dots, X_n = x_0),$$

which is indeed implied by $\pi(x)P(x,z) = \pi(z)P(z,x)$ since

$$P_{\pi}(X_{0} = x_{0}, ..., X_{n} = x_{n})$$

$$= \pi(x_{0})P(x_{0}, x_{1}) \cdots P(x_{n-1}, x_{n})$$

$$= P(x_{1}, x_{0})\pi(x_{1})P(x_{1}, x_{2}) \cdots P(x_{n-1}, x_{n})$$

$$= P(x_{1}, x_{0})P(x_{2}, x_{1}) \cdots P(x_{n}, x_{n-1})\pi(x_{n})$$

$$= P_{\pi}(X_{0} = x_{n}, ..., X_{n} = x_{0}).$$

Verifying π -reversibility

▶ When $P(x,A) = \int_A p(x,z)\mu(\mathrm{d}z) + r(x)\mathbf{1}_A(x)$, we can verify reversibility by considering the densities $\pi(x)$ and p(x,z) each w.r.t μ . Indeed if the detailed balance condition

$$\pi(x)p(x,z) = \pi(z)p(z,x), \quad x,z \in X$$

holds then

$$\int_{A} \pi(\mathrm{d}x) P(x, B)
= \int_{A} \pi(x) \left[\int_{B} p(x, z) \mu(\mathrm{d}z) + r(x) \mathbf{1}_{B}(x) \right] \mu(\mathrm{d}x)
= \int_{B} \pi(z) \left[\int_{A} p(z, x) \mu(\mathrm{d}x) \right] \mu(\mathrm{d}z) + \int_{A \cap B} \pi(x) r(x) \mu(\mathrm{d}x)
= \int_{B} \pi(z) \left[\int_{A} p(z, x) \mu(\mathrm{d}x) + r(z) \mathbf{1}_{A}(x) \right] \mu(\mathrm{d}z)
= \int_{B} \pi(\mathrm{d}x) P(x, A).$$

Verifying π -reversibility for Metropolis–Hastings

- ► The key utility of detailed balance is it need only be checked pointwise — no integrals necessary!
- ► We now verify for *P*_{MH}:

$$\pi(x)p_{\mathrm{MH}}(x,z) = \pi(x)q(x,z)\left[1 \wedge \frac{\pi(z)q(z,x)}{\pi(x)q(x,z)}\right]$$

$$= \left[\pi(x)q(x,z) \wedge \pi(z)q(z,x)\right]$$

$$= \pi(z)q(z,x)\left[\frac{\pi(x)q(x,z)}{\pi(z)q(z,x)} \wedge 1\right]$$

$$= \pi(z)p_{\mathrm{MH}}(z,x).$$

► This is extremely versatile and most Markov chains used in statistics are constructed using reversible Markov transition kernels.

What about Harris recurrence?

- ▶ That $P_{\rm MH}$ is π -reversible implies that if it is also π -irreducible then it is positive and has the right invariant probability measure.
- Verifying φ -irreducibility is *typically* very easy.
 - e.g., $\pi(A) > 0$, $A \in \mathcal{X}$ and q(x, A) > 0, $x \in X$, $A \in \mathcal{X}$.

Theorem (Tierney [1994, Corollary 2], Roberts and Rosenthal [2006, Theorem 8])

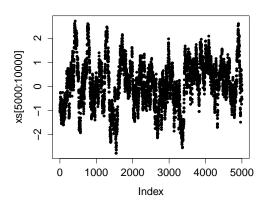
Every π -irreducible, full-dimensional Metropolis-Hastings Markov chain is Harris recurrent.

► That's all you need to know to construct some sophisticated Markov chains!

Random walk Metropolis-Hastings

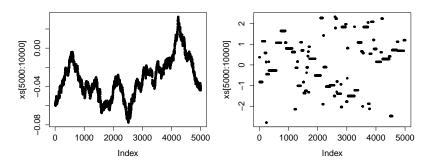
▶ Let π be given and let Q satisfy $q(x, z) = q(\|z - x\|)$. Then the Metropolis–Hastings acceptance probability is

$$\alpha_{\mathrm{MH}}(x,z) = 1 \wedge \frac{\pi(z)}{\pi(x)}.$$



Random walk Metropolis-Hastings

Choice of the proposal is important, even though the Markov chain is "valid".



▶ On the left, the variance of $Q(x, \cdot)$ is too small and on the right it is too large.

Independent Metropolis-Hastings

- ▶ One can even choose $Q(x, \cdot) = q(\cdot)$ to be independent of x.
- ► Then we have

$$\alpha_{\mathrm{MH}}(x,z) = 1 \wedge \frac{\pi(z)q(x)}{\pi(x)q(z)}.$$

- ▶ It can be difficult to find a good *q* in practice, but we will return to this example later.
- ► As before, it is helpful if

$$\sup_{x}\frac{\pi(x)}{q(x)}<\infty.$$

Hybrid Markov chains

- We can easily construct π -invariant Markov chains out of different π -invariant Markov transition kernels.
- In practice, such hybrid chains are commonplace.
 - the Gibbs sampler is an example.
- ▶ Generally speaking, we will have $(P_s)_{s \in S}$ and we will try to make a mixture or cycle or combination of the two out of them.

Mixtures of Markov kernels

Definition

A Markov kernel P is a mixture of the Markov kernels $(P_s)_{s \in S}$ if

$$P(x,A) = \sum_{s \in S} w(s) P_s(x,A),$$

where w is a p.m.f. (independent of x). Alternatively, $P = \sum_{s \in S} w(s) P_s$.

Fact

A mixture of π -invariant Markov kernels is π -invariant.

Proof.

$$\pi P(A) = \sum_{s \in S} w(s) \pi P_s(A) = \sum_{s \in S} w(s) \pi(A) = \pi(A).$$

Cycles of Markov kernels

Definition

A Markov kernel P is a cycle of Markov kernels P_1 and P_2 if

$$P(x,A) = \int_{X} P_1(x,dz) P_2(z,A),$$

i.e., $P = P_1 P_2$.

Fact

A cycle of π -invariant Markov kernels is π -invariant.

Proof.

$$\pi P(A) = \pi P_1 P_2(A) = \pi P_2(A) = \pi(A).$$

Remarks on hybrid chains

- ▶ If P is φ -irreducible then so is a mixture including P with positive probability.
- The same is not necessarily true for cycles, but it is often true in practice.
- ▶ A mixture of π -reversible Markov kernels is π -reversible.
- A cycle of π -reversible Markov kernels is generally not π -reversible.
- We will now see a special kind of hybrid Markov chain called the Gibbs sampler.

The Gibbs sampler

- ▶ Let $X = X_1 \times \cdots \times X_d$.
- Let -i denote the sequence $(1, \ldots, i-1, i+1, \ldots, d)$ with the convention that (1,0)=(d+1,d)=() is the empty sequence.
- ▶ If $s = (s_1, ..., s_j)$ then let $x_s := (x_{s_1}, x_{s_2}, ..., x_{s_j})$.
- Assume we can sample from each "full" conditional distribution defined by

$$\pi_{i,x_{-i}}(A) = \Pr(X_i \in A \mid X_{-i} = x_{-i}),$$

which has a density $\pi_i(\cdot|x_{-i})$ w.r.t. some dominating μ .

Now define

$$P_i(x, A_1 \times \cdots \times A_d) := \pi_{i,x_{-i}}(A_i) \prod_{j \neq i} \mathbb{I}(x_j \in A_j).$$

▶ It follows that *P_i* is in fact a Metropolis—Hastings kernel with acceptance probability 1 since

$$\alpha_{\mathrm{MH}}(x,z) = 1 \wedge \frac{\pi(z_1,\ldots,z_d)\pi_i(x_i|z_{-i})}{\pi(x_1,\ldots,x_d)\pi_i(z_i|x_{-i})} = \frac{\pi(z_{-i})}{\pi(x_{-i})} = 1.$$

The Gibbs sampler

- ► Gibbs samplers are commonly used to sample from Bayesian hierarchical models.
- Example:

$$Y_i \mid \theta_i \sim F_{\theta_i}, \quad i \in \{1, \dots, n\}$$

 $\theta_i \mid \theta_0 \sim G_{\theta_0}, \quad i \in \{1, \dots, n\}$
 $\theta_0 \sim H.$

- ▶ By fixing, e.g., $(\theta_1, \ldots, \theta_n)$ one may know the distribution of θ_0 conditional upon $\theta_1, \ldots, \theta_n$ and by fixing θ_0 one may know the distribution of $\theta_1, \ldots, \theta_n$ conditional upon θ_0 and Y_1, \ldots, Y_n .
- Originally introduced in statistical physics, then to statistics in Geman and Geman [1984] and popularized in Gelfand and Smith [1990]

Random scan and deterministic scan

- There are two major approaches to constructing a Gibbs sampler.
- Random scan:

$$P(x,A) = \sum_{s \in S} w(s) P_s(x,A),$$

with $S = \{1, \dots, d\}$ and usually $w(s) = d^{-1}$ for each $s \in S$.

Deterministic scan:

$$P = P_{\sigma(1)} \dots P_{\sigma(d)}$$

where σ is some permutation of $(1, \ldots, d)$.

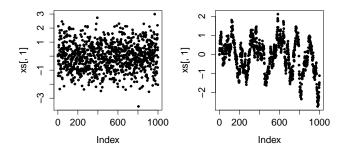
▶ These are just mixtures or cycles of the constituent kernels.

Gibbs sampler: toy example

▶ Consider the case $X = \mathbb{R} \times \mathbb{R}$ and $\pi(x) = \mathcal{N}(x, 0, \Sigma)$, where

$$\Sigma = egin{pmatrix} 1 &
ho \
ho & 1 \end{pmatrix}, \quad
ho \in (-1,1).$$

- ► Then we have $\pi(x_1|x_2) = \mathcal{N}(x_1; \rho x_2, 1 \rho^2)$ and $\pi(x_2|x_1) = \mathcal{N}(x_2; \rho x_1, 1 \rho^2)$.
- ▶ Below we have a plot of the first coordinate of **X** when $\rho = .1$ (left) and $\rho = .99$ (right).



50 / 87

Gibbs sampler: blocking

- Imagine that $X = \mathbb{R}^3$ and the correlation between the first two coordinates is large whilst the third is not very correlated.
- ▶ Then it makes sense to treat (x_1, x_2) and x_3 as two components in a Gibbs sampler.
- ➤ This is called "blocking", as one updates several variables together from their "joint" conditional.

Metropolis-within-Gibbs samplers

- ▶ In some cases, only some of the conditional distributions can be sampled from.
- ▶ So for any i such that we can't sample from $\pi_{i,x_{-i}}$ we can instead perform a Metropolis–Hastings update that updates only the ith coordinate of x.

Auxiliary variables

- ▶ Let (Y, \mathcal{Y}) be a measurable space.
- Let $\tilde{\pi}$ be a probability measure on $\mathcal{X} \otimes \mathcal{Y}$ such that $\tilde{\pi}(A, Y) = \pi(A)$.
- ► Then it is clear that if we can construct a positive Harris $\tilde{\pi}$ -invariant Markov chain $(X_n, Y_n)_{n \ge 1}$, we can use

$$\frac{1}{n}\sum_{i=1}^n f(X_i)$$

to estimate $\pi(f)$ — we "discard" the auxiliary variables $(Y_n)_{n\geq 1}$.

- There are a huge number of auxiliary variable methods now.
- I will cover two interesting examples.

Latent variable model

Consider a target density where

$$\pi(x) \propto p(x) \int_{Y} g(y) f(x, y) dy.$$

- ▶ For example, y represents a latent variable whose conditional density given x is $f(x, \cdot)$ and g(y) is the conditional density of some observed data given y.
- Assume further that we cannot evaluate the function $x \mapsto \int_Y g(y)f(x,y)dy$ pointwise.
- We can instead define an extended target density

$$\tilde{\pi}(x,y) \propto p(x)g(y)f(x,y),$$

and construct a Markov chain with invariant distribution $\tilde{\pi}$.

► More complicated alternatives: pseudo-marginal methods.

Pseudo-marginal methods

- ▶ For each $x \in X$ let $W \sim Q_x$ be a non-negative random variable with $\mathbb{E}_x[W] = \pi(x)$.
- Define

$$ilde{\pi}(x,w) = \pi(x) \left[Q_x(w) \frac{w}{\pi(x)} \right].$$

and observe that $\tilde{\pi}(x) = \int_{\mathbb{R}_{\perp}} \tilde{\pi}(x, w) dw = \pi(x)$.

Metropolis–Hastings for $\tilde{\pi}$: at (x, w) simulate $Z \sim q(x, \cdot)$ and $U \sim Q_Z$ and "accept" with probability

$$\alpha(x, w; Z, U) = 1 \wedge \frac{\tilde{\pi}(Z, U)q(Z, x)Q_x(w)}{\tilde{\pi}(x, w)q(x, Z)Q_Z(U)}$$
$$= 1 \wedge \frac{U}{w} \cdot \frac{q(Z, x)}{q(x, Z)}.$$

▶ No need to evaluate π exactly!

Hamiltonian Markov chain Monte Carlo (v. briefly)

- ► This Markov chain is motivated by Hamiltonian dynamics in physics.
- Assume $X = \mathbb{R}^d$ and π is differentiable.
- ▶ We imagine a particle in X evolving in continuous time according to fictitious dynamics according to π and an auxiliary momentum variable p.
- Hamiltonian dynamics are time reversible and measure-preserving:
 - if x is distributed according to $\tilde{\pi}$ and follows these dynamics to produce Z then $Z \sim \tilde{\pi}$.
- ▶ The formulation is to use H = U + V, where U is the potential energy and V the kinetic energy.
 - \blacktriangleright *U* is related to π and *V* describes the momentum variables.
 - ▶ We have $\tilde{\pi}(x,p) \propto \exp(-H(x,p)) = \exp(-U(x) V(p))$.
- ▶ In practice, we cannot simulate the system in continuous time so discretization is required.

Simple Hamiltonian Markov chain Monte Carlo

- ▶ Define $\tilde{\pi}(x,p) := \pi(x)\mathcal{N}(p;0,1)$ and set parameters $h = \frac{1}{L}$, $L \in \mathbb{N}$ and $T \in \mathbb{N}$.
- ► The following "leapfrog" scheme is an approximation of Hamiltonian dynamics in one dimension.
- ▶ At (x, p), sample $P_0 \sim \mathcal{N}(\cdot; 0, 1)$ and set $Z_0 = x$.
- ▶ For I = 0, ..., LT 1:
 - Set $P_{(I+\frac{1}{2})h} = P_{Ih} + \frac{h}{2} \frac{d}{dx} \log \pi(Z_{Ih})$.
 - ► Set $Z_{(l+1)h} = Z_{lh} + hP_{(l+\frac{1}{2})h}$.
 - ► Set $P_{(l+1)h} = P_{(l+\frac{1}{2})h} + \frac{h}{2} \frac{d}{dx} \log \pi(Z_{(l+1)h}).$
- ▶ Accept $(z, q) := (Z_T, P_T)$ with probability

$$\alpha_{\mathrm{MH}}(x,p;z,q) = 1 \wedge \frac{\tilde{\pi}(z,q)}{\tilde{\pi}(x,p)}.$$

HMC: brief explanation

▶ We have $U(x) = -\log \pi(x)$ and $V(p) = C(M) + \frac{1}{2}p^{T}M^{-1}p$:

$$\tilde{\pi}(x,p) = \exp(-U(x) - V(p)) = \pi(x)\mathcal{N}(p;0,M).$$

The Hamiltonian dynamics are given by

$$\frac{\mathrm{d}p}{\mathrm{d}t} = -\frac{\partial U}{\partial x} = \frac{1}{2}\nabla\log\pi(x), \qquad \frac{\mathrm{d}x}{\mathrm{d}t} = \frac{\partial V}{\partial p} = M^{-1}p.$$

- ▶ The *h* in the algorithm is a discretization step size.
- ► The deterministic part is "volume preserving" and reversible, the proposal is "symmetric".
- The acceptance probability corrects the time discretization: by discretizing, energy is not preserved.

Multivariate Hamiltonian Markov chain Monte Carlo

- ▶ Define $\tilde{\pi}(x,p) := \pi(x)\mathcal{N}(p;0,M)$ and set parameters $h = \frac{1}{L}$, $L \in \mathbb{N}$ and $T \in \mathbb{N}$.
- ▶ At (x, p), sample $P_0 \sim \mathcal{N}(\cdot; 0, M)$ and set $Z_0 = x$.
- ▶ For I = 0, ..., LT 1:
 - ► Set $P_{(I+\frac{1}{2})h} = P_{Ih} + \frac{h}{2}\nabla \log \pi(Z_{Ih})$.
 - ► Set $Z_{(l+1)h} = Z_{lh} + hM^{-1}P_{(l+\frac{1}{2})h}$.
 - ► Set $P_{(l+1)h} = P_{(l+\frac{1}{2})h} + \frac{h}{2}\nabla \log \pi(Z_{(l+1)h}).$
- ▶ Accept $(z, q) := (Z_T, P_T)$ with probability

$$\alpha_{\mathrm{MH}}(x,p;z,q) = 1 \wedge \frac{\tilde{\pi}(z,q)}{\tilde{\pi}(x,p)}.$$

▶ *M* is a "mass matrix". The choice of *M*, *L* and *T* is important.

Outline

Motivation

What is a Markov chain?

First stability properties

Constructing π -invariant Markov chains

Central limit theorems

Geometric ergodicity

Final remarks

Central limit theorems

▶ Recall that $S_n(f) := \sum_{i=1}^n f(X_i)$, for some $f \in L_1(X, \pi)$.

Definition

A central limit theorem holds for f if there exists a constant $\sigma^2(f) < \infty$ such that

$$\frac{1}{\sqrt{n}}S_n(\bar{f})\stackrel{d}{\to} \mathcal{N}(0,\sigma^2(f))$$

as $n \to \infty$, where $\bar{f} = f - \pi(f)$.

- ▶ When a CLT holds for *f* and a particular chain **X** then it is an indication that results can be reliable.
- ▶ Perhaps more obvious that if a CLT does not hold, then it is unusual for $n^{-1}S_n(f)$ to be close to $\pi(f)$.

Central limit theorems

- ▶ A huge amount of research has gone into characterizations of when a CLT holds.
- ▶ In some situations one can verify that it holds!
- We cannot cover even a small fraction of this research.
- Instead, we will look at important classifications of Markov chains for which we can be assured that a CLT holds for all or nearly all reasonable functions f.

Some central limit theorems

Theorem ([Cogburn et al., 1972])

Assume that **X** is positive Harris and uniformly ergodic and that $\pi(f^2) < \infty$. Then a CLT holds for f and

$$\sigma^2(f) = \mathsf{E}_{\pi}\left[\bar{f}(X_0)^2\right] + 2\sum_{k=1}^{\infty} \mathsf{E}_{\pi}\left[\bar{f}(X_0)\bar{f}(X_k)\right] < \infty.$$

Some central limit theorems

Theorem ([Ibragimov and Linnik, 1971, Chan and Geyer, 1994])

Assume that **X** is positive Harris and geometrically ergodic with invariant probability measure π , and that $\pi(|f|^{2+\delta}) < \infty$ for some $\delta > 0$. Then a CLT holds for f and

$$\sigma^2(f) = \mathsf{E}_{\pi} \left[\bar{f}(X_0)^2 \right] + 2 \sum_{k=1}^{\infty} \mathsf{E}_{\pi} \left[\bar{f}(X_0) \bar{f}(X_k) \right] < \infty.$$

Some central limit theorems

Theorem ([Roberts and Rosenthal, 1997])

Assume that **X** is positive Harris, π -reversible and geometrically ergodic, and that $\pi(f^2) < \infty$. Then a CLT holds for f and

$$\sigma^2(f) = \mathsf{E}_{\pi}\left[\bar{f}(X_0)^2\right] + 2\sum_{k=1}^{\infty} \mathsf{E}_{\pi}\left[\bar{f}(X_0)\bar{f}(X_k)\right] < \infty.$$

Remarks

- ► There are a number of different CLTs, with different conditions.
- ▶ There are also different proof techniques and different expressions for $\sigma^2(f)$.
- It appears from the above that uniform and geometric ergodicity are beneficial properties.
- ▶ While true, they are not essential nor necessarily better than non-geometrically ergodic counterparts in specific settings.

Asymptotic variance

- ▶ The expression for $\sigma^2(f)$ we have seen is not unusual.
- ▶ Imagine **X** with initial distribution π and $f \in L_2(X, \pi)$. Then

$$\operatorname{var}(S_n(f)) = \operatorname{var}(S_n(f) - \pi(f)) = \operatorname{var}(S_n(\bar{f}))
= \operatorname{E}_{\pi}[\{\sum_{i=1}^n \bar{f}(X_i)\}^2] - n\pi(\bar{f})^2
= \operatorname{E}_{\pi}\left[\sum_{i=1}^n \bar{f}(X_i)^2 + 2\sum_{i=1}^n \sum_{j=i+1}^n \bar{f}(X_i)\bar{f}(X_j)\right]
= n\pi(\bar{f}^2) + 2\sum_{i=1}^{n-1} (n-k)\operatorname{E}_{\pi}\left[\bar{f}(X_0)\bar{f}(X_j)\right].$$

So the variance of $\frac{1}{\sqrt{n}}S_n(f)$ is

$$\mathsf{E}_{\pi}\left[\bar{f}(X_0)^2\right] + 2\sum_{k=1}^{n-1} \frac{n-k}{n} \mathsf{E}_{\pi}\left[\bar{f}(X_0)\bar{f}(X_k)\right]$$

whose limit (if it exists) is $\sigma^2(f)$.

Optimality of Metropolis–Hastings

Theorem (Peskun [1973], Tierney [1998])

Let Q be fixed. Amongst reversible Markov kernels P of the form

$$P(x,A) = \int_A Q(x,dz)\alpha(x,z) + r(x)\mathbf{1}_A(x),$$

where $r(x) = 1 - \int_X \alpha(x, z) Q(x, dz)$, the one minimizing $\sigma^2(f)$ for all $f \in L_2(X, \pi)$ is the Metropolis–Hastings kernel.

- ▶ This is a statement about the form of $\alpha_{MH}(x, z)$.
- ▶ There are many valid "acceptance probability" functions but they are dominated by $\alpha_{\rm MH}$.
- ► Note: this tells us nothing about non-reversible Markov kernels, or about non-asymptotic variance.

Outline

Motivation

What is a Markov chain?

First stability properties

Constructing π -invariant Markov chains

Central limit theorems

Geometric ergodicity

Final remarks

Total variation distance

Definition

The total variation distance between two probability measures μ and ν on $\mathcal X$ is

$$\|\mu - \nu\|_{\mathrm{TV}} := \sup_{A \in \mathcal{X}} |\mu(A) - \nu(A)|.$$

Ergodic Markov chains

Definition

A Markov chain with invariant probability measure π and Markov transition kernel P is ergodic if

$$\lim_{n\to\infty} \left\| P^n(x,\cdot) - \pi \right\|_{\mathrm{TV}} = 0,$$

for any $x \in X$.

- ▶ That is, the probability measure associated with X_n when $X_0 = x$ is converging to π in total variation.
- ▶ Note: this is not a universal definition of ergodic.

Note on aperiodicity

- It is important to note that an ergodic Markov chain, as we have defined, cannot be periodic.
- ▶ Loosely speaking, there cannot be disjoint sets $D_1, ..., D_d$ such

$$\inf_{x \in D_i} P(x, D_{i+1}) = 1, \quad i \in \{1, \dots, d-1\}$$

and $\inf_{x \in D_d} P(x, D_1) = 1$, where d > 1.

- While clearly this is not obviously an issue for the LLN or even the CLT, we will assume from now on that we are dealing with aperiodic Markov chains.
- In fact, periodic behaviour is exceedingly rare amongst Monte Carlo Markov chains.

Uniform ergodicity

Definition

A Markov chain with invariant probability measure π and Markov transition kernel P is uniformly ergodic if

$$\|P^n(x,\cdot) - \pi\|_{\text{TV}} \le M\rho^n, \qquad x \in X$$

for some constant M and $\rho < 1$.

▶ The total variation distance decreases geometrically fast, with ρ governing this rate, and the bound is independent of x.

Geometric ergodicity

Definition

A Markov chain with invariant probability measure π and Markov transition kernel P is geometrically ergodic if

$$\|P^n(x,\cdot)-\pi\|_{\mathrm{TV}} \leq M(x)\rho^n, \qquad x \in X$$

for some function M finite for π -almost all $x \in X$ and $\rho < 1$.

- The total variation distance decreases geometrically fast, with ρ governing this rate, and the bound is dependent on x.
- ▶ For some intuition, recall the simple random walk chain on \mathbb{N} .

Verifying uniform ergodicity

One way to verify uniform ergodicity for an aperiodic,
 π-irreducible Markov chain is to check that

$$P^m(x, A) \ge \epsilon \nu(A), \quad x \in X, A \in \mathcal{X},$$

for some $m \in \mathbb{N}$, $\epsilon > 0$ and probability measure ν .

- This is called a minorization condition.
- In this case it is basically Doeblin's condition and is equivalent to uniform ergodicity.
- ▶ Important observation: $P^m(x, \cdot)$ and $P^m(x', \cdot)$ have, loosely speaking, some degree of similarity.

A simple quantitative proof of uniform ergodicity

- We will look at the case where the minorization condition is satisfied for m = 1, for simplicity.
- ▶ The method of proof is by coupling, due to Doeblin.
- ▶ We assume that $P(x, \cdot) \ge \epsilon \nu(\cdot)$ and will show that

$$\|P^n(x,\cdot)-\pi\|_{\mathrm{TV}} \leq (1-\epsilon)^n.$$

We define a residual Markov kernel

$$R(x,A) := \frac{P(x,A) - \epsilon \nu(A)}{1 - \epsilon}, \quad x \in X, A \in \mathcal{X},$$

and observe that $P(x, \cdot) = \epsilon \nu(\cdot) + (1 - \epsilon)R(x, \cdot)$.

A simple quantitative proof of uniform ergodicity

- ▶ Loosely, a coupling between two probability measures μ and ν on \mathcal{X} is a pair of random variables (X,Y) defined on a common probability space such that the marginal distribution of X is μ and the marginal distribution of Y is ν .
- ► The coupling inequality states that for any such construction

$$\|\mu - \nu\|_{\mathrm{TV}} \le \Pr(X \ne Y).$$

So we will show an explicit coupling such that

$$\Pr(X_n \neq Y_n) \leq (1 - \epsilon)^n$$

where X_n is distributed according to $P^n(x, \cdot)$ and Y_n is distributed according to π .

A simple quantitative proof of uniform ergodicity

- ▶ Let $X_0 = x$ and $Y_0 \sim \pi$.
- ▶ Now follow the procedure for each time $n \ge 1$:
 - 1. If $X_{n-1} = Y_{n-1}$, sample $Z_n \sim P(X_{n-1}, \cdot)$, set $X_n = Y_n = Z_n$.
 - 2. Otherwise, with probability ϵ , sample $Z_n \sim \nu$ and set $X_n = Y_n = Z_n$.
 - 3. Otherwise, sample $X_n \sim R(X_{n-1}, \cdot)$ and $Y_n \sim R(Y_{n-1}, \cdot)$ independently.
- ▶ We observe that we have not changed the marginal distributions of X_n or Y_n , so $X_n \sim P^n(x, \cdot)$ and $Y_n \sim \pi P^n = \pi$.
- We also observe that

$$\Pr(X_n \neq Y_n) \leq (1 - \epsilon)^n$$
.

► Hence, $||P^n(x,\cdot) - \pi||_{\text{TV}} \le \Pr(X_n \neq Y_n) \le (1 - \epsilon)^n$.

Example: independent Metropolis-Hastings

- ▶ Recall that $P(x, A) = \int_A q(z) \alpha_{\text{MH}}(x, z) dz + r(x) \mathbf{1}_A(x)$, where $\alpha_{\text{MH}}(x, z) = 1 \wedge \frac{\pi(z)q(x)}{\pi(x)q(z)}$.
- ▶ Now assume that $\sup_x \pi(x)/q(x) = K < \infty$. Then we have

$$q(z)\alpha_{\mathrm{MH}}(x,z) = q(z) \left[1 \wedge \frac{\pi(z)q(x)}{\pi(x)q(z)} \right]$$
$$= \pi(z) \left[\frac{q(z)}{\pi(z)} \wedge \frac{q(x)}{\pi(x)} \right] \geq K^{-1}\pi(z)$$

and so $P(x,A) \geq K^{-1}\pi(A)$.

► Therefore, X is uniformly ergodic and

$$||P^n(x,\cdot) - \pi(\cdot)||_{\text{TV}} \le (1 - K^{-1})^n.$$

▶ In fact, if $\sup_x \pi(x)/q(x) = \infty$ then **X** is not even geometrically ergodic.

Small sets

- When X is evolving on a general state space, there is no guarantee that two independent copies of X will visit a particular state simultaneously.
- ▶ The minorization condition allowed us to successfully couple the two Markov chains with probability ϵ at each time.
- Of course, uniform ergodicity and therefore the minorization condition we have seen is very strong in practice.
- ► This motivates the definition of a small set, which is essentially a set for which points are "similar".

Definition

A set $C \in \mathcal{X}$ is small if

$$P^m(x, A) \ge \epsilon \nu(A), \quad x \in C, A \in \mathcal{X},$$

for some $m \in \mathbb{N}$, $\epsilon > 0$ and probability measure ν .

Verifying geometric ergodicity

- ▶ The presence of a small set is only one of two ingredients required for an aperiodic, π -irreducible Markov chain to be geometrically ergodic.
- ▶ Intuitively, one can use a coupling argument if both chains are in the small set *C*.
- ► We need to ensure that they are both in *C* simultaneously "often enough".
- ▶ A "drift condition" that ensures geometric ergodicity is

$$\int_{X} V(z)P(x,dz) \leq \lambda V(x) + b\mathbf{1}_{C}(x),$$

where $\lambda \in (0,1)$, $b < \infty$ and $V : X \to [1,\infty]$ satisfies $V(x) < \infty$ for at least one $x \in X$.

▶ This condition guarantees that

$$\sup_{x \in C} \mathsf{E}_{x} \left[\kappa^{\tau_{C}} \right] < \infty,$$

for some $\kappa > 1$, where $\tau_A := \inf\{n \ge 1 : X_n \in A\}$.

Example: simple random walk on $\mathbb N$

- ▶ Here the small set is no problem, we can take $C = \{1\}$ and so $P(x,A) = \nu(A)$ for each $x \in C$ where $\nu(\cdot) = P(x,\cdot)$.
- We take $V(x) = c^x$, c > 1 and we have

$$\int_{X} V(z)P(x,dz) = rV(x) + pV(x-1) + qV(x+1)$$
$$= V(x)(r+p/c+qc).$$

- ▶ If q < p and $c \in (1, \frac{p}{q})$ then $r + \frac{p}{c} + qc < 1$.
- ▶ One choice, e.g., is $c = \sqrt{p/q}$, so that one can take $\lambda = r + 2\sqrt{pq}$.
- ▶ In Kovchegov [2010], e.g., it is shown that

$$\|P^n(1,\cdot)-\pi(\cdot)\|_{\mathrm{TV}} \leq A\left(\frac{p}{p+r}\right)^n + B\left(r+2\sqrt{pq}\right)^n,$$

where $A, B \in \mathbb{R}_+$ for a very slight difference of the Markov chain's behaviour at 1.

Remarks

- In practice, small sets are often possible to identify.
- ► The drift condition is usually harder, but it is still possible in some cases.
- ▶ Drift conditions and return times are alternative ways to characterize many of the stability criteria we have talked about.
- ► For example, X is "regular" (and therefore positive) iff

$$\sup_{x \in C_j} \mathsf{E}_x(\tau_A) < \infty, \quad A \in \mathcal{X}, \ \psi(A) > 0, \ \mathsf{X} = \cup_j C_j.$$

► Alternatively, **X** is regular iff

$$\int_{\mathsf{X}} V(z) P(x, \mathrm{d}z) \leq V(x) - 1 + b \mathbf{1}_{C}(x), \quad x \in \mathsf{X}, \quad C \text{ "petite"}.$$

Outline

Motivation

What is a Markov chain?

First stability properties

Constructing π -invariant Markov chains

Central limit theorems

Geometric ergodicity

Final remarks

Conclusions

- We have covered a tiny fraction of what is interesting and relevant.
- ► Hopefully, you have a clear idea of the fundamental theorems underpinning the use of MCMC in statistical computations.
- If you are doing modern Bayesian inference, it is very common to use MCMC.
- ▶ Research in this area is extremely varied:
 - theory
 - intuition-based methodology
 - theory-based methodology
 - hybrids of the two
 - ▶ applications \leftrightarrow methodology \leftrightarrow theory \leftrightarrow applications.

What we didn't cover

- We have covered a tiny fraction of what is interesting and relevant.
- Markov chains and their use in Monte Carlo are very large research areas.
- Just a few things that we didn't cover are:
 - the splitting construction underpinning many of the results
 - perfect simulation
 - spectral properties of P
 - adaptive Markov chain Monte Carlo
 - optimal scaling
 - subgeometric rates of convergence and corresponding CLTs
 - genuinely non-reversible Markov chains
 - more methodology
 - non-homogeneous Markov chains
 - exact approximations
 - ▶ inexact approximations
 - ...

Further reading

- Meyn & Tweedie: Markov chains & stochastic stability (available online to the public)
- Handbook of Markov chain Monte Carlo (available online through proxy).
- Robert & Casella. Monte Carlo Statistical Methods.
- Liu: Monte Carlo Strategies in Scientific Computing.
- Roberts & Rosenthal: General state space Markov chains and MCMC algorithms
- ▶ Jones: On the Markov chain central limit theorem.
- ► Look for Markov chain Monte Carlo papers in Ann. Stat., JRSS B, Biometrika, JASA, JCGS, Stats & Comp.
- It is impossible to be comprehensive!

References I

- K. S. Chan and C. J. Geyer. Discussion: Markov chains for exploring posterior distributions. *The Annals of Statistics*, pages 1747–1758, 1994.
- R. Cogburn et al. The central limit theorem for Markov processes. In *Proc. Sixth Berkeley Symp. Math. Statist. Probab*, volume 2, pages 485–512, 1972.
- L. Devroye. *Non-uniform random variate generation*. Springer Verlag, 1986.
- A. E. Gelfand and A. F. M. Smith. Sampling-based approaches to calculating marginal densities. *Journal of the American Statistical Association*, 85(410):398–409, 1990.
- S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 6:721–741, 1984.

References II

- W. K. Hastings. Monte Carlo sampling methods using Markov chains and their applications. *Biometrika*, 57(1):97–109, 1970.
- I. A. Ibragimov and Y. V. Linnik. *Independent and stationary sequences of random variables*. Wolters-Noordhoff, 1971.
- Y. Kovchegov. Orthogonality and probability: mixing times. *Electronic Communications in Probability*, 15:59–67, 2010.
- N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller. Equation of state calculations by fast computing machines. *Journal of Chemical Physics*, 21(6):1087–1092, 1953.
- S. P. Meyn and R. L. Tweedie. *Markov chains and stochastic stability*. Cambridge University Press, 2 edition, 2009.
- P. H. Peskun. Optimum Monte-Carlo sampling using Markov chains. *Biometrika*, 60(3):607–612, 1973.

References III

- G. O. Roberts and J. S. Rosenthal. Geometric ergodicity and hybrid Markov chains. *Electronic Communications in Probability*, 2(2): 13–25, 1997.
- G. O. Roberts and J. S. Rosenthal. Harris recurrence of Metropolis-within-Gibbs and trans-dimensional Markov chains. *Annals of Applied Probability*, 16(4):2123–2139, 2006.
- L. Tierney. Markov chains for exploring posterior distributions. *Annals of Statistics*, 22(4):1701–1762, 1994.
- L. Tierney. A note on Metropolis-Hastings kernels for general state spaces. *Annals of Applied Probability*, 8(1):1–9, 1998.