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Introduction

I This is a module on stochastic simulation.
I Monte Carlo methods are certainly stochastic simulation

techniques.
I They are also very important in many modern statistical

analyses.
I I will cover “fundamental” theory and methodology for Markov

chain Monte Carlo.
I fundamental here means I cannot even cover 1% of what is

interesting.

I There are other methods of stochastic simulation, and also
deterministic counterparts to Monte Carlo.

I I hope that after the lectures you will understand why we can
use MCMC, and how to construct your own Monte Carlo
Markov chains.
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Approximating expectations

I Let (X,X ) be a measurable space. We have a target
probability measure π : X → [0, 1] and we would like to
approximate the quantity

π(f ) :=

∫
X
f (x)π(dx),

where f ∈ L1(X, π) = {f : π(|f |) <∞}, i.e., expectations
w.r.t. π.

I We will assume that one can calculate π’s associated density
π : X→ R+ w.r.t. some dominating measure (e.g., Lebesgue
or counting).

I A major motivation for this in statistics is to compute
posterior expectations in Bayesian inference.
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Posterior expectations

I We have
I a prior probability distribution for an unknown X-valued

parameter with probability density function p : X→ R+, and
I a collection of probability distributions with probability density

functions {gx ; x ∈ X} for some observed data y ∈ Y.

I We can use Bayes’ rule to obtain that the conditional
distribution of the unknown X-valued parameter is defined by
the probability density function

π(x) =
p(x)gx(y)∫

X p(z)gz(y)dz
.

I Posterior expectations π(f ) cannot generally be calculated
analytically, and so numerical methods are needed to
approximate them.

4 / 87



The Strong Law of Large Numbers

Theorem (Strong Law of Large Numbers)

Assume (Xn)n≥1 is a sequence of i.i.d. random variables distributed
according to µ. Define

Sn(f ) :=
n∑

i=1

f (Xi ),

for f ∈ L1(X, µ). Then

lim
n→∞

1
n
Sn(f ) = µ(f )

almost surely.
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Monte Carlo Integration

I We can apply the SLLN with µ = π to use n−1Sn(f ) as an
estimate of π(f ), if we can sample according to π.

I There are some ways of doing this in special cases, e.g.,
I inverse transform,
I composition,
I special representations in terms of random variables we can

simulate easily.
I other methods in, e.g., Devroye [1986]

I Most of the time in practical applications, we cannot easily
sample according to π.
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Radon–Nikodym derivative

I If µ and ν are densities w.r.t. the Lebesgue measure and
ν(x) > 0⇒ µ(x) > 0 then∫

A

ν(x)

µ(x)
µ(x)dx =

∫
A
ν(x)dx = ν(A),

for an arbitrary measurable A.
I If µ and ν are σ-finite measures on (X,X ) and µ dominates ν

(ν � µ)then there is a function f such that∫
A
f (x)µ(dx) = ν(A), A ∈ X ,

and we call it the Radon–Nikodym derivative dν
dµ .
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Rejection sampling
Rejection sampling
1. Sample X ∼ µ.
2. With prob. 1

M
π(X )
µ(X ) output X , otherwise go back to step 1.

I A general purpose method for sampling from π when we can
sample from µ and

sup
x

π(x)

µ(x)
≤ M <∞.

I Letting Y = I
(
U < 1

M
π(X )
µ(X )

)
where U is uniformly distributed

on [0, 1] we obtain

Pr(X ∈ A | Y = 1) =
Pr(X ∈ A,Y = 1)

Pr(Y = 1)

=

∫
A

1
M
π(x)
µ(x)µ(x)dx∫

X
1
M
π(x)
µ(x)µ(x)dx

= π(A).
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Cost of rejection sampling

I We have

Pr(Y = 1) =

∫
X

1
M

π(x)

µ(x)
µ(x)dx =

1
M
.

I It follows that the time until acceptance is a geometric random
variable with success probability M−1.

I The expected time to obtain a single sample is M.
I In many practical applications M is prohibitively large.

I Toy example: consider what happens as d increases when
π(x) =

∏d
i=1 p(xi ), µ(x) =

∏d
i=1 g(xi ) and supx

p(x)
g(x) > 1.

I Practical intuition: for complicated π we do not usually know
how to find a “good” µ.
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Importance sampling

I Recall that (Xn)n≥1 is a sequence of i.i.d. µ-distributed
random variables.

I We again appeal to the SLLN, but now assume only that
π � µ and we define

f̃ (x) := f (x)w(x), x ∈ X,

where f ∈ L1(X, π) is the function defining the expectation of
interest and

w(x) :=
π(x)

µ(x)
, x ∈ X,

is the “importance weight” function.
I It follows that

µ(f̃ ) =

∫
X
f (x)

π(x)

µ(x)
µ(x)dx =

∫
X
f (x)π(x)dx = π(f ).
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Cost of importance sampling

I Consider
f̃ (x) := f (x)w(x).

I Then if f̃ ∈ L2(X, µ) we have

var(f̃ (X )) =

∫
X
f̃ (x)2µ(dx)− µ(f̃ )2 = µ(f̃ 2)− µ(f̃ )2.

I One can then obtain

var(n−1Sn(f̃ )) =
µ(f̃ 2)− µ(f̃ )2

n
.

I Note: it is possible that f ∈ L2(X, π) but f̃ /∈ L2(X, µ).
I in practice, one can avoid this by having supx π(x)/µ(x) <∞.

I In many practical situations, the numerator of this expression
is prohibitively large.
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Self-normalized importance sampling
I In many situations, one can only compute π up to an unknown

normalizing constant.
I We define the self-normalized estimate via

In(f , π, µ) :=
Sn(f̃ )

Sn(w)
=

∑n
i=1 f (Xi )w(Xi )∑n

i=1 w(Xi )
,

and it is clear that one only needs to know π up to an
unknown normalizing constant.

I Then
lim
n→∞

In(f , π, µ) = π(f )

almost surely.
I If

∫
X

[
1 + f (x)2] π(x)

µ(x)π(x)dx <∞ then asymptotically the
variance of In(f ) is

1
n

∫
X

[f (x)− π(f )]2
π(x)

µ(x)
π(x)dx .

I Note: this expression can be smaller than var(n−1Sn(f̃ )).
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Markov chains and stochastic stability

I If unspecified, the source of a definition or theorem is

Meyn, S. and Tweedie, R. L. (2009) Markov chains and
stochastic stability, 2nd ed.

I This is a great single and reasonably accessible source for a lot
of what you might want to know about Markov chains on a
general state space.

I There is a free version online at http://probability.ca/MT/
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Time homogeneous, discrete time Markov chains
I We will assume now that X is countably generated, e.g. the

Borel σ-algebra on Rd .
I Let X := (Xn)n≥0 be a discrete time Markov chain evolving on

X with some initial distribution for X0.
I This means that for A ∈ X

Pr (Xn ∈ A | X0 = x0, . . . ,Xn−1 = xn−1) = Pr (Xn ∈ A | Xn−1 = xn−1) ,

i.e. X possesses the Markov property.
I We will restrict our attention to the time-homogeneous case:

Pr (Xn ∈ A | Xn−1 = x) = Pr (X1 ∈ A | X0 = x) ,

for any n ∈ N.
I Then X is described by a single Markov transition kernel

P : X×X → [0, 1] with

Pr(X1 ∈ A | X0 = x) = P(x ,A).
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Example: simple random walk on N
I Let p, q ∈ (0, 1] and r ∈ [0, 1) such that p + q + r = 1, and

P(i , j) :=


p j = i − 1,
q j = i + 1,
r j = i ,

0 otherwise,

i ≥ 2

with P(1, 1) = p + r and P(1, 2) = q.

0 20 40 60 80 100
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7

time

X
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Example: simple random walk on N

I How can we characterize the behaviour of X?
I Does it “escape to infinity”?
I Will it visit every point at least once?
I Will it visit each point infinitely many times?
I Does it have a “stationary distribution”?
I Does it look the same forwards and backwards in time?
I How do the partial sums

Sn(f ) :=
n∑

i=1

f (Xi )

behave?
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Example: simple random walk on N
When q < p:

I It is recurrent - it almost surely visits every state infinitely
often.

I It is therefore not transient.
I It has an invariant probability measure µ(x) = Geo(x ; q/p).
I It is (time)-reversible - if X0 ∼ µ then

L(X0,X1, . . . ,Xn) = L(Xn,Xn−1, . . . ,X0).

I It is irreducible.
I The proportion of time it spends at each point x converges

almost surely to µ(x).
I It is aperiodic and for each i ∈ N (irrespective of x0),

lim
n→∞

Pr(Xn = i | X0 = x0) = µ(i).

I The list could go on...
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Example: simple random walk on N

When q > p:
I It is transient - the expected number of visits to each state is

finite.
I It does not have an invariant probability measure.
I It is not time-reversible (depending on the definition!).
I It is aperiodic and irreducible.

When q = p:
I It is recurrent.
I It does not have an invariant probability measure.
I It is not time-reversible (again, depending on the definition).
I It is aperiodic and irreducible.

Our interest is in Markov chains that behave as in the case q < p.
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Stability properties of Markov chains
I Many of the properties discussed above can be verified in this

specific case in a number of different ways.
I We are interested, however, in more general classifications.
I Consider a simple random walk on R+ with X0 = 0 and

Xn = max {Xn−1 + Wn, 0} ,

where (Wn)n≥1 is a sequence of i.i.d. random variables with
mean β.

I Is X recurrent or transient? Does it have an invariant
(probability) measure?

I Clearly this chain has some differences to the simple random
walk on N.

I e.g., it does not visit an arbitrary x ∈ R+ \ {0} with positive
probability.

I Since most statistical applications involve X ⊆ Rd we need to
discuss properties of Markov chains on general state spaces.
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Why do we care?

Theorem (An Ergodic Theorem (an LLN for Markov chains))

Suppose that X = (Xn)n≥0 is a positive Harris Markov chain with
invariant probability measure π. Then for any
f ∈ L1(X, π) = {f : π(|f |) <∞},

lim
n→∞

1
n
Sn(f ) = π(f ),

almost surely for any initial distribution for X0.

I We need to understand some of these definitions.
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General state spaces
I When considering a Markov chain X on a general state space,

we must start to think about sets A ∈ X rather than points
x ∈ X.

I When statements about the chain X are made in probability P
or expectation E, we can use a subscript x or µ to denote the
“initial” or marginal distribution of X0.

I We define Pn to be the n-step transition kernel by
P1(x ,A) := P(x ,A) and

Pn(x ,A) :=

∫
X
P(z ,A)Pn−1(x , dz), n ≥ 2.

I We will use P to denote the linear operator associated with
this Markov transition kernel, which acts to the left on
measures:

µP(A) :=

∫
X
µ(dx)P(x ,A).
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ϕ-irreducibility

Definition
X is ϕ-irreducible if ϕ is a measure on X such that whenever
ϕ(A) > 0 and x ∈ X, there exists some n possibly depending on
both x and A such that Pn(x ,A) > 0.

I It is important to note that this holds for every x ∈ X and is
therefore rather strong.

I One can think of X having a maximal irreducibility probability
measure ψ whenever it is ϕ-irreducible, such that (MT
Proposition 4.2.2)

1. X is ψ-irreducible;
2. X is ϕ′-irreducible if and only if ϕ′ � ψ.
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Recurrent and transient sets

I We define the occupation time of a set A ⊆ X to be

ηA :=
∞∑
n=1

I{Xn ∈ A}.

Definition
The set A is recurrent if Ex [ηA] =∞ for all x ∈ A.

Definition
The set A is uniformly transient if there exists M <∞ such that
Ex [ηA] ≤ M for all x ∈ A.
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Recurrence/transience dichotomy
I When X is ψ-irreducible, a dichotomy theorem describes

whether the chain X is recurrent or transient.

Theorem (MT Theorem 8.0.1)

Suppose that X is ψ-irreducible. Then either

1. every set A ∈ X with ψ(A) > 0 is recurrent, and we call X
recurrent, or

2. there is a countable cover of X with uniformly transient sets,
and we call X transient.

I You can find alternative definitions of recurrence and
transience in MT Appendix A, e.g., X is recurrent iff∑

n≥0

Pn(x ,A) =∞, x ∈ X, ψ(A) > 0,

or statements about Px(X visits A i.o.) = 1.
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Harris recurrence

I In order to make statements about X regardless of the value of
X0 one requires a stronger definition of recurrence.

Definition
A set A is Harris recurrent if Px(ηA =∞) = 1 for all x ∈ A.

Definition
X is Harris (recurrent) if it is ψ-irreducible and every set A ∈ X
such that ψ(A) > 0 is Harris recurrent.

I The difference between recurrence and Harris recurrence is the
difference between

Ex [ηA] =∞ and Px(ηA =∞) = 1.
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Example of non-Harris recurrence

I The difference between recurrence and Harris recurrence is the
difference between

Ex [ηA] =∞ and Px(ηA =∞) = 1.

I When X = N, consider Charlie Geyer’s example:

P(1, 1) = 1, P(x , x + 1) = 1− x−2, P(x , 1) = x−2.

Then ψ({x}) > 0 ⇐⇒ x = 1, and for all x , Ex [η{1}] =∞
since Px(X1 = 1) > 0. However,

Px(Xn = x + n for all n) =
∞∏
j=x

(
1− 1

j2

)
=

x − 1
x

> 0,

so Px(η{1} =∞) < 1.
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Invariant measures
Definition
A sigma-finite measure µ is an invariant measure for X if

µP = µ.

I Our interest in invariant measures is related to viewing a
special version of X as a stationary process.

I Indeed, assume that µ is a probability measure and that
Pr(X0 ∈ A) = µ(A) for all A ∈ X .

I Then it is not too difficult to see that X is a stationary
process, i.e. the marginal distribution of (Xn, . . . ,Xn+k) does
not change as n varies.

I In general, invariant measures are not necessarily finite.
I When X is recurrent, the unique (up to constant multiples)

invariant measure for X is equivalent (as a measure) to ψ (MT
Theorem 10.4.9)
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Positive and null chains

Definition
If X is ψ-irreducible and admits an invariant probability measure
then it is positive. If X does not admit such a measure then it is
null.

Example
Consider X being a simple random walk on N as before. If p > q,
X is positive (recurrent). If p = q then X is null (but) recurrent. If
q > p then X is (null and) transient.
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The LLN again
Theorem (An Ergodic Theorem for Harris Chains)

Suppose that X = (Xn)n≥0 is a positive Harris Markov chain with
invariant probability measure π. Then for any
f ∈ L1(X, π) = {f : π(|f |) <∞},

lim
n→∞

1
n
Sn(f ) = π(f ),

almost surely for any initial distribution for X0.

I One can replace Harris recurrence with ϕ-irreducibility and
positivity but then the statement holds only for π-almost all
X0. This is eventually a consequence of Birkhoff’s Pointwise
Ergodic Theorem.

I Being positive Harris implies that if an LLN holds for f and
some initial distribution then it must hold for every initial
distribution (MT Proposition 17.1.6).
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Null recurrent vs transient: simplified classic example
I Let (X

(i)
n )n≥1 be independent, simple random walks on Z:

p = q = 1
2 , for each i ∈ {1, . . . , d}.

I We have P0(X
(i)
n = 0) = 0 for odd n, and

P0(X
(i)
2n = 0) = Pr(B2n = n) ∼ 1√

πn

where B2n is a Binomial(2n, 1
2) r.v.

I Consider the Markov chain (X
(1)
n , . . . ,X

(d)
n ) started at 0. Then

E0
[
η{0}

]
= E0

[ ∞∑
n=1

I
(
X

(1)
n = · · · = X

(d)
n = 0

)]

=
∞∑
n=1

P0

(
X

(1)
2n = · · · = X

(d)
2n = 0

)
∼

∞∑
n=1

(πn)−d/2 ,

which is infinite only for d ∈ {1, 2}.
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Motivation

I The LLN motivates the following question:

Can we construct a Harris recurrent or at least
ϕ-irreducible Markov chain with invariant distribution π
where all we compute is the density π(x) (up to an
unknown normalizing constant) for any x ∈ X?

I If so, then we can produce a realization X and estimate π(f )
via n−1Sn(f ) where

Sn(f ) :=
n∑

i=1

f (Xi ).

I A positive, constructive answer to this question was a pivotal
moment in Bayesian statistics, and many other sciences.
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Metropolis–Hastings

I There are a large number of ways of constructing such Markov
chains, but we will focus on the essentials.

I By far the most commonly used Markov chains in practice are
constructed using Metropolis–Hastings Markov transition
kernels.

I These owe their development to the seminal papers Metropolis
et al. [1953] and Hastings [1970].

I Assume π has a density w.r.t. µ.
I In order to define the Metropolis–Hastings kernel for a

particular target π we require only to specify a proposal
Markov kernel Q admitting a density q w.r.t. µ, i.e.

Q(x , dz) = q(x , z)µ(dz).
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Metropolis–Hastings

To simulate according to PMH(x , ·):
1. Simulate Z ∼ Q(x , ·).
2. With prob. αMH(x ,Z ) output Z ; otherwise, output x , where

αMH(x , z) := 1 ∧ π(z)q(z , x)

π(x)q(x , z)

I Equivalently,

PMH(x ,A) :=

∫
A
αMH(x , z)Q(x , dz) + rMH(x)1A(x),

where
rMH(x) := 1−

∫
X
αMH(x , z)Q(x , dz).

I We need only know the density π up to a normalizing constant.
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Metropolis–Hastings validity

I In order to show that P leaves π invariant, we need to check

πP = π

i.e., that ∫
X
π(dx)P(x ,A) = π(A), ∀A ∈ X .

I Verifying πP = π is extremely difficult in general.
I Determining the invariant measure of a given Markov kernel is

also v. difficult.
I The π-invariance of the Metropolis–Hastings Markov chain is a

special case of the π-invariance of π-reversible Markov chains.
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Reversible Markov chains
Definition
A π-reversible Markov chain is a stationary Markov chain with
invariant probability measure π satisfying

Pπ(X0 ∈ A0, . . . ,Xn ∈ An) = Pπ(X0 ∈ An, . . . ,Xn ∈ A0).

I It suffices to check that

Pπ(X0 ∈ A,X1 ∈ B) = Pπ(X0 ∈ B,X1 ∈ A),

i.e. ∫
A
π(dx)P(x ,B) =

∫
B
π(dx)P(x ,A).

I Moreover, π-invariance is obvious by considering A = X:∫
X
π(dx)P(x ,B) =

∫
B
π(dx)P(x ,X) = π(B).
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Reversible Markov chains

I That
∫
A π(dx)P(x ,B) =

∫
B π(dx)P(x ,A) implies reversibility

is slightly laborious in the general state space context.
I For intuition, consider a discrete state space where the

property becomes

Pπ(X0 = x0, . . . ,Xn = xn) = Pπ(X0 = xn, . . . ,Xn = x0),

which is indeed implied by π(x)P(x , z) = π(z)P(z , x) since

Pπ(X0 = x0, . . . ,Xn = xn)

= π(x0)P(x0, x1) · · ·P(xn−1, xn)

= P(x1, x0)π(x1)P(x1, x2) · · ·P(xn−1, xn)

= P(x1, x0)P(x2, x1) · · ·P(xn, xn−1)π(xn)

= Pπ(X0 = xn, . . . ,Xn = x0).
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Verifying π-reversibility
I When P(x ,A) =

∫
A p(x , z)µ(dz) + r(x)1A(x), we can verify

reversibility by considering the densities π(x) and p(x , z) each
w.r.t µ. Indeed if the detailed balance condition

π(x)p(x , z) = π(z)p(z , x), x , z ∈ X

holds then∫
A
π(dx)P(x ,B)

=

∫
A
π(x)

[∫
B
p(x , z)µ(dz) + r(x)1B(x)

]
µ(dx)

=

∫
B
π(z)

[∫
A
p(z , x)µ(dx)

]
µ(dz) +

∫
A∩B

π(x)r(x)µ(dx)

=

∫
B
π(z)

[∫
A
p(z , x)µ(dx) + r(z)1A(x)

]
µ(dz)

=

∫
B
π(dx)P(x ,A).
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Verifying π-reversibility for Metropolis–Hastings

I The key utility of detailed balance is it need only be checked
pointwise — no integrals necessary!

I We now verify for PMH:

π(x)pMH(x , z) = π(x)q(x , z)

[
1 ∧ π(z)q(z , x)

π(x)q(x , z)

]
= [π(x)q(x , z) ∧ π(z)q(z , x)]

= π(z)q(z , x)

[
π(x)q(x , z)

π(z)q(z , x)
∧ 1
]

= π(z)pMH(z , x).

I This is extremely versatile and most Markov chains used in
statistics are constructed using reversible Markov transition
kernels.
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What about Harris recurrence?

I That PMH is π-reversible implies that if it is also π-irreducible
then it is positive and has the right invariant probability
measure.

I Verifying ϕ-irreducibility is typically very easy.
I e.g., π(A) > 0, A ∈ X and q(x ,A) > 0, x ∈ X,A ∈ X .

Theorem (Tierney [1994, Corollary 2], Roberts and Rosenthal
[2006, Theorem 8])

Every π-irreducible, full-dimensional Metropolis–Hastings Markov
chain is Harris recurrent.

I That’s all you need to know to construct some sophisticated
Markov chains!

39 / 87



Random walk Metropolis–Hastings
I Let π be given and let Q satisfy q(x , z) = q(‖z − x‖). Then

the Metropolis–Hastings acceptance probability is

αMH(x , z) = 1 ∧ π(z)

π(x)
.
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Random walk Metropolis–Hastings
I Choice of the proposal is important, even though the Markov

chain is “valid”.
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I On the left, the variance of Q(x , ·) is too small and on the
right it is too large.
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Independent Metropolis–Hastings

I One can even choose Q(x , ·) = q(·) to be independent of x .
I Then we have

αMH(x , z) = 1 ∧ π(z)q(x)

π(x)q(z)
.

I It can be difficult to find a good q in practice, but we will
return to this example later.

I As before, it is helpful if

sup
x

π(x)

q(x)
<∞.
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Hybrid Markov chains

I We can easily construct π-invariant Markov chains out of
different π-invariant Markov transition kernels.

I In practice, such hybrid chains are commonplace.
I the Gibbs sampler is an example.

I Generally speaking, we will have (Ps)s∈S and we will try to
make a mixture or cycle or combination of the two out of
them.
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Mixtures of Markov kernels
Definition
A Markov kernel P is a mixture of the Markov kernels (Ps)s∈S if

P(x ,A) =
∑
s∈S

w(s)Ps(x ,A),

where w is a p.m.f. (independent of x). Alternatively,
P =

∑
s∈S w(s)Ps .

Fact
A mixture of π-invariant Markov kernels is π-invariant.

Proof.

πP(A) =
∑
s∈S

w(s)πPs(A) =
∑
s∈S

w(s)π(A) = π(A).
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Cycles of Markov kernels

Definition
A Markov kernel P is a cycle of Markov kernels P1 and P2 if

P(x ,A) =

∫
X
P1(x , dz)P2(z ,A),

i.e., P = P1P2.

Fact
A cycle of π-invariant Markov kernels is π-invariant.

Proof.

πP(A) = πP1P2(A) = πP2(A) = π(A).
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Remarks on hybrid chains

I If P is ϕ-irreducible then so is a mixture including P with
positive probability.

I The same is not necessarily true for cycles, but it is often true
in practice.

I A mixture of π-reversible Markov kernels is π-reversible.
I A cycle of π-reversible Markov kernels is generally not
π-reversible.

I We will now see a special kind of hybrid Markov chain called
the Gibbs sampler.
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The Gibbs sampler
I Let X = X1 × · · · × Xd .
I Let −i denote the sequence (1, . . . i − 1, i + 1, . . . , d) with the

convention that (1, 0) = (d + 1, d) = () is the empty sequence.
I If s = (s1, . . . , sj) then let xs := (xs1 , xs2 , . . . , xsj ).
I Assume we can sample from each “full” conditional distribution

defined by

πi ,x−i
(A) = Pr(Xi ∈ A | X−i = x−i ),

which has a density πi (·|x−i ) w.r.t. some dominating µ.
I Now define

Pi (x ,A1 × · · · × Ad) := πi ,x−i
(Ai )

∏
j 6=i

I(xj ∈ Aj).

I It follows that Pi is in fact a Metropolis–Hastings kernel with
acceptance probability 1 since

αMH(x , z) = 1 ∧ π(z1, . . . , zd)πi (xi |z−i )
π(x1, . . . , xd)πi (zi |x−i )

=
π(z−i )

π(x−i )
= 1.
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The Gibbs sampler

I Gibbs samplers are commonly used to sample from Bayesian
hierarchical models.

I Example:

Yi | θi ∼ Fθi , i ∈ {1, . . . , n}
θi | θ0 ∼ Gθ0 , i ∈ {1, . . . , n}

θ0 ∼ H.

I By fixing, e.g., (θ1, . . . , θn) one may know the distribution of
θ0 conditional upon θ1, . . . , θn and by fixing θ0 one may know
the distribution of θ1, . . . , θn conditional upon θ0 and
Y1, . . . ,Yn.

I Originally introduced in statistical physics, then to statistics in
Geman and Geman [1984] and popularized in Gelfand and
Smith [1990]
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Random scan and deterministic scan

I There are two major approaches to constructing a Gibbs
sampler.

I Random scan:

P(x ,A) =
∑
s∈S

w(s)Ps(x ,A),

with S = {1, . . . , d} and usually w(s) = d−1 for each s ∈ S .
I Deterministic scan:

P = Pσ(1) . . .Pσ(d)

where σ is some permutation of (1, . . . , d).
I These are just mixtures or cycles of the constituent kernels.
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Gibbs sampler: toy example
I Consider the case X = R× R and π(x) = N (x , 0,Σ), where

Σ =

(
1 ρ
ρ 1

)
, ρ ∈ (−1, 1).

I Then we have π(x1|x2) = N (x1; ρx2, 1− ρ2) and
π(x2|x1) = N (x2; ρx1, 1− ρ2).

I Below we have a plot of the first coordinate of X when ρ = .1
(left) and ρ = .99 (right).
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Gibbs sampler: blocking

I Imagine that X = R3 and the correlation between the first two
coordinates is large whilst the third is not very correlated.

I Then it makes sense to treat (x1, x2) and x3 as two
components in a Gibbs sampler.

I This is called “blocking”, as one updates several variables
together from their “joint” conditional.
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Metropolis-within-Gibbs samplers

I In some cases, only some of the conditional distributions can
be sampled from.

I So for any i such that we can’t sample from πi ,x−i
we can

instead perform a Metropolis–Hastings update that updates
only the ith coordinate of x .
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Auxiliary variables

I Let (Y,Y) be a measurable space.
I Let π̃ be a probability measure on X ⊗ Y such that
π̃(A,Y) = π(A).

I Then it is clear that if we can construct a positive Harris
π̃-invariant Markov chain (Xn,Yn)n≥1, we can use

1
n

n∑
i=1

f (Xi )

to estimate π(f ) — we “discard” the auxiliary variables
(Yn)n≥1.

I There are a huge number of auxiliary variable methods now.
I I will cover two interesting examples.
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Latent variable model

I Consider a target density where

π(x) ∝ p(x)

∫
Y
g(y)f (x , y)dy .

I For example, y represents a latent variable whose conditional
density given x is f (x , ·) and g(y) is the conditional density of
some observed data given y .

I Assume further that we cannot evaluate the function
x 7→

∫
Y g(y)f (x , y)dy pointwise.

I We can instead define an extended target density

π̃(x , y) ∝ p(x)g(y)f (x , y),

and construct a Markov chain with invariant distribution π̃.
I More complicated alternatives: pseudo-marginal methods.
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Pseudo-marginal methods

I For each x ∈ X let W ∼ Qx be a non-negative random
variable with Ex [W ] = π(x).

I Define

π̃(x ,w) = π(x)

[
Qx(w)

w

π(x)

]
.

and observe that π̃(x) =
∫
R+
π̃(x ,w)dw = π(x).

I Metropolis–Hastings for π̃: at (x ,w) simulate Z ∼ q(x , ·) and
U ∼ QZ and “accept” with probability

α(x ,w ;Z ,U) = 1 ∧ π̃(Z ,U)q(Z , x)Qx(w)

π̃(x ,w)q(x ,Z )QZ (U)

= 1 ∧ U

w
· q(Z , x)

q(x ,Z )
.

I No need to evaluate π exactly!
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Hamiltonian Markov chain Monte Carlo (v. briefly)
I This Markov chain is motivated by Hamiltonian dynamics in

physics.
I Assume X = Rd and π is differentiable.
I We imagine a particle in X evolving in continuous time

according to fictitious dynamics according to π and an
auxiliary momentum variable p.

I Hamiltonian dynamics are time reversible and
measure-preserving:

I if x is distributed according to π̃ and follows these dynamics to
produce Z then Z ∼ π̃.

I The formulation is to use H = U + V , where U is the
potential energy and V the kinetic energy.

I U is related to π and V describes the momentum variables.
I We have π̃(x , p) ∝ exp(−H(x , p)) = exp (−U(x)− V (p)).

I In practice, we cannot simulate the system in continuous time
so discretization is required.
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Simple Hamiltonian Markov chain Monte Carlo

I Define π̃(x , p) := π(x)N (p; 0, 1) and set parameters h = 1
L ,

L ∈ N and T ∈ N.
I The following “leapfrog” scheme is an approximation of

Hamiltonian dynamics in one dimension.
I At (x , p), sample P0 ∼ N (·; 0, 1) and set Z0 = x .
I For l = 0, . . . , LT − 1:

I Set P(l+ 1
2 )h

= Plh + h
2

d
dx log π(Zlh).

I Set Z(l+1)h = Zlh + hP(l+ 1
2 )h

.
I Set P(l+1)h = P(l+ 1

2 )h
+ h

2
d
dx log π(Z(l+1)h).

I Accept (z , q) := (ZT ,PT ) with probability

αMH(x , p; z , q) = 1 ∧ π̃(z , q)

π̃(x , p)
.
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HMC: brief explanation

I We have U(x) = − log π(x) and V (p) = C (M) + 1
2p

TM−1p:

π̃(x , p) = exp(−U(x)− V (p)) = π(x)N (p; 0,M).

I The Hamiltonian dynamics are given by

dp
dt

= −∂U
∂x

=
1
2
∇ log π(x),

dx
dt

=
∂V

∂p
= M−1p.

I The h in the algorithm is a discretization step size.
I The deterministic part is “volume preserving” and reversible,

the proposal is “symmetric”.
I The acceptance probability corrects the time discretization: by

discretizing, energy is not preserved.

58 / 87



Multivariate Hamiltonian Markov chain Monte Carlo

I Define π̃(x , p) := π(x)N (p; 0,M) and set parameters h = 1
L ,

L ∈ N and T ∈ N.
I At (x , p), sample P0 ∼ N (·; 0,M) and set Z0 = x .
I For l = 0, . . . , LT − 1:

I Set P(l+ 1
2 )h

= Plh + h
2∇ log π(Zlh).

I Set Z(l+1)h = Zlh + hM−1P(l+ 1
2 )h

.
I Set P(l+1)h = P(l+ 1

2 )h
+ h

2∇ log π(Z(l+1)h).

I Accept (z , q) := (ZT ,PT ) with probability

αMH(x , p; z , q) = 1 ∧ π̃(z , q)

π̃(x , p)
.

I M is a “mass matrix”. The choice of M, L and T is important.
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Central limit theorems

I Recall that Sn(f ) :=
∑n

i=1 f (Xi ), for some f ∈ L1(X, π).

Definition
A central limit theorem holds for f if there exists a constant
σ2(f ) <∞ such that

1√
n
Sn(f̄ )

d→ N (0, σ2(f ))

as n→∞, where f̄ = f − π(f ).

I When a CLT holds for f and a particular chain X then it is an
indication that results can be reliable.

I Perhaps more obvious that if a CLT does not hold, then it is
unusual for n−1Sn(f ) to be close to π(f ).
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Central limit theorems

I A huge amount of research has gone into characterizations of
when a CLT holds.

I In some situations one can verify that it holds!
I We cannot cover even a small fraction of this research.
I Instead, we will look at important classifications of Markov

chains for which we can be assured that a CLT holds for all or
nearly all reasonable functions f .
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Some central limit theorems

Theorem ([Cogburn et al., 1972])

Assume that X is positive Harris and uniformly ergodic and that
π(f 2) <∞. Then a CLT holds for f and

σ2(f ) = Eπ
[
f̄ (X0)2]+ 2

∞∑
k=1

Eπ
[
f̄ (X0)f̄ (Xk)

]
<∞.
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Some central limit theorems

Theorem ([Ibragimov and Linnik, 1971, Chan and Geyer,
1994])

Assume that X is positive Harris and geometrically ergodic with
invariant probability measure π, and that π(|f |2+δ) <∞ for some
δ > 0. Then a CLT holds for f and

σ2(f ) = Eπ
[
f̄ (X0)2]+ 2

∞∑
k=1

Eπ
[
f̄ (X0)f̄ (Xk)

]
<∞.
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Some central limit theorems

Theorem ([Roberts and Rosenthal, 1997])

Assume that X is positive Harris, π-reversible and geometrically
ergodic, and that π(f 2) <∞. Then a CLT holds for f and

σ2(f ) = Eπ
[
f̄ (X0)2]+ 2

∞∑
k=1

Eπ
[
f̄ (X0)f̄ (Xk)

]
<∞.
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Remarks

I There are a number of different CLTs, with different
conditions.

I There are also different proof techniques and different
expressions for σ2(f ).

I It appears from the above that uniform and geometric
ergodicity are beneficial properties.

I While true, they are not essential nor necessarily better than
non-geometrically ergodic counterparts in specific settings.
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Asymptotic variance
I The expression for σ2(f ) we have seen is not unusual.
I Imagine X with initial distribution π and f ∈ L2(X, π). Then

var(Sn(f )) = var(Sn(f )− π(f )) = var(Sn(f̄ ))

= Eπ[{
n∑

i=1

f̄ (Xi )}2]− nπ(f̄ )2

= Eπ

 n∑
i=1

f̄ (Xi )
2 + 2

n∑
i=1

n∑
j=i+1

f̄ (Xi )f̄ (Xj)


= nπ(f̄ 2) + 2

n−1∑
k=1

(n − k)Eπ
[
f̄ (X0)f̄ (Xj)

]
.

So the variance of 1√
n
Sn(f ) is

Eπ
[
f̄ (X0)2]+ 2

n−1∑
k=1

n − k

n
Eπ
[
f̄ (X0)f̄ (Xk)

]
whose limit (if it exists) is σ2(f ). 66 / 87



Optimality of Metropolis–Hastings

Theorem (Peskun [1973], Tierney [1998])

Let Q be fixed. Amongst reversible Markov kernels P of the form

P(x ,A) =

∫
A
Q(x , dz)α(x , z) + r(x)1A(x),

where r(x) = 1−
∫
X α(x , z)Q(x , dz), the one minimizing σ2(f ) for

all f ∈ L2(X, π) is the Metropolis–Hastings kernel.

I This is a statement about the form of αMH(x , z).
I There are many valid “acceptance probability” functions but

they are dominated by αMH.
I Note: this tells us nothing about non-reversible Markov

kernels, or about non-asymptotic variance.
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Total variation distance

Definition
The total variation distance between two probability measures µ
and ν on X is

‖µ− ν‖TV := sup
A∈X
|µ(A)− ν(A)|.
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Ergodic Markov chains

Definition
A Markov chain with invariant probability measure π and Markov
transition kernel P is ergodic if

lim
n→∞

‖Pn(x , ·)− π‖TV = 0,

for any x ∈ X.

I That is, the probability measure associated with Xn when
X0 = x is converging to π in total variation.

I Note: this is not a universal definition of ergodic.
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Note on aperiodicity

I It is important to note that an ergodic Markov chain, as we
have defined, cannot be periodic.

I Loosely speaking, there cannot be disjoint sets D1, . . . ,Dd

such
inf
x∈Di

P(x ,Di+1) = 1, i ∈ {1, . . . , d − 1}

and infx∈Dd
P(x ,D1) = 1, where d > 1.

I While clearly this is not obviously an issue for the LLN or even
the CLT, we will assume from now on that we are dealing with
aperiodic Markov chains.

I In fact, periodic behaviour is exceedingly rare amongst Monte
Carlo Markov chains.
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Uniform ergodicity

Definition
A Markov chain with invariant probability measure π and Markov
transition kernel P is uniformly ergodic if

‖Pn(x , ·)− π‖TV ≤ Mρn, x ∈ X

for some constant M and ρ < 1.

I The total variation distance decreases geometrically fast, with
ρ governing this rate, and the bound is independent of x .
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Geometric ergodicity

Definition
A Markov chain with invariant probability measure π and Markov
transition kernel P is geometrically ergodic if

‖Pn(x , ·)− π‖TV ≤ M(x)ρn, x ∈ X

for some function M finite for π-almost all x ∈ X and ρ < 1.

I The total variation distance decreases geometrically fast, with
ρ governing this rate, and the bound is dependent on x .

I For some intuition, recall the simple random walk chain on N.
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Verifying uniform ergodicity

I One way to verify uniform ergodicity for an aperiodic,
π-irreducible Markov chain is to check that

Pm(x ,A) ≥ εν(A), x ∈ X,A ∈ X ,

for some m ∈ N, ε > 0 and probability measure ν.
I This is called a minorization condition.
I In this case it is basically Doeblin’s condition and is equivalent

to uniform ergodicity.
I Important observation: Pm(x , ·) and Pm(x ′, ·) have, loosely

speaking, some degree of similarity.
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A simple quantitative proof of uniform ergodicity

I We will look at the case where the minorization condition is
satisfied for m = 1, for simplicity.

I The method of proof is by coupling, due to Doeblin.
I We assume that P(x , ·) ≥ εν(·) and will show that

‖Pn(x , ·)− π‖TV ≤ (1− ε)n.

I We define a residual Markov kernel

R(x ,A) :=
P(x ,A)− εν(A)

1− ε
, x ∈ X,A ∈ X ,

and observe that P(x , ·) = εν(·) + (1− ε)R(x , ·).
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A simple quantitative proof of uniform ergodicity

I Loosely, a coupling between two probability measures µ and ν
on X is a pair of random variables (X ,Y ) defined on a
common probability space such that the marginal distribution
of X is µ and the marginal distribution of Y is ν.

I The coupling inequality states that for any such construction

‖µ− ν‖TV ≤ Pr(X 6= Y ).

I So we will show an explicit coupling such that

Pr(Xn 6= Yn) ≤ (1− ε)n

where Xn is distributed according to Pn(x , ·) and Yn is
distributed according to π.
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A simple quantitative proof of uniform ergodicity

I Let X0 = x and Y0 ∼ π.
I Now follow the procedure for each time n ≥ 1:

1. If Xn−1 = Yn−1, sample Zn ∼ P(Xn−1, ·), set Xn = Yn = Zn.
2. Otherwise, with probability ε, sample Zn ∼ ν and set

Xn = Yn = Zn.
3. Otherwise, sample Xn ∼ R(Xn−1, ·) and Yn ∼ R(Yn−1, ·)

independently.

I We observe that we have not changed the marginal
distributions of Xn or Yn, so Xn ∼ Pn(x , ·) and
Yn ∼ πPn = π.

I We also observe that

Pr(Xn 6= Yn) ≤ (1− ε)n.

I Hence, ‖Pn(x , ·)− π‖TV ≤ Pr(Xn 6= Yn) ≤ (1− ε)n.
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Example: independent Metropolis–Hastings

I Recall that P(x ,A) =
∫
A q(z)αMH(x , z)dz + r(x)1A(x),

where αMH(x , z) = 1 ∧ π(z)q(x)
π(x)q(z) .

I Now assume that supx π(x)/q(x) = K <∞. Then we have

q(z)αMH(x , z) = q(z)

[
1 ∧ π(z)q(x)

π(x)q(z)

]
= π(z)

[
q(z)

π(z)
∧ q(x)

π(x)

]
≥ K−1π(z)

and so P(x ,A) ≥ K−1π(A).
I Therefore, X is uniformly ergodic and

‖Pn(x , ·)− π(·)‖TV ≤ (1− K−1)n.

I In fact, if supx π(x)/q(x) =∞ then X is not even
geometrically ergodic.
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Small sets
I When X is evolving on a general state space, there is no

guarantee that two independent copies of X will visit a
particular state simultaneously.

I The minorization condition allowed us to successfully couple
the two Markov chains with probability ε at each time.

I Of course, uniform ergodicity and therefore the minorization
condition we have seen is very strong in practice.

I This motivates the definition of a small set, which is essentially
a set for which points are “similar”.

Definition
A set C ∈ X is small if

Pm(x ,A) ≥ εν(A), x ∈ C ,A ∈ X ,

for some m ∈ N, ε > 0 and probability measure ν.
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Verifying geometric ergodicity
I The presence of a small set is only one of two ingredients

required for an aperiodic, π-irreducible Markov chain to be
geometrically ergodic.

I Intuitively, one can use a coupling argument if both chains are
in the small set C .

I We need to ensure that they are both in C simultaneously
“often enough”.

I A “drift condition” that ensures geometric ergodicity is∫
X
V (z)P(x , dz) ≤ λV (x) + b1C (x),

where λ ∈ (0, 1), b <∞ and V : X→ [1,∞] satisfies
V (x) <∞ for at least one x ∈ X.

I This condition guarantees that

sup
x∈C

Ex [κτC ] <∞,

for some κ > 1, where τA := inf{n ≥ 1 : Xn ∈ A}.
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Example: simple random walk on N
I Here the small set is no problem, we can take C = {1} and so

P(x ,A) = ν(A) for each x ∈ C where ν(·) = P(x , ·).
I We take V (x) = cx , c > 1 and we have∫

X
V (z)P(x , dz) = rV (x) + pV (x − 1) + qV (x + 1)

= V (x)(r + p/c + qc).

I If q < p and c ∈ (1, pq ) then r + p
c + qc < 1.

I One choice, e.g., is c =
√
p/q, so that one can take

λ = r + 2
√
pq.

I In Kovchegov [2010], e.g., it is shown that

‖Pn(1, ·)− π(·)‖TV ≤ A

(
p

p + r

)n

+ B (r + 2
√
pq)n ,

where A,B ∈ R+ for a very slight difference of the Markov
chain’s behaviour at 1.
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Remarks

I In practice, small sets are often possible to identify.
I The drift condition is usually harder, but it is still possible in

some cases.
I Drift conditions and return times are alternative ways to

characterize many of the stability criteria we have talked about.
I For example, X is “regular” (and therefore positive) iff

sup
x∈Cj

Ex(τA) <∞, A ∈ X , ψ(A) > 0, X = ∪jCj .

I Alternatively, X is regular iff∫
X
V (z)P(x , dz) ≤ V (x)−1+b1C (x), x ∈ X, C "petite".
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Conclusions

I We have covered a tiny fraction of what is interesting and
relevant.

I Hopefully, you have a clear idea of the fundamental theorems
underpinning the use of MCMC in statistical computations.

I If you are doing modern Bayesian inference, it is very common
to use MCMC.

I Research in this area is extremely varied:
I theory
I intuition-based methodology
I theory-based methodology
I hybrids of the two
I applications ↔ methodology ↔ theory ↔ applications.
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What we didn’t cover
I We have covered a tiny fraction of what is interesting and

relevant.
I Markov chains and their use in Monte Carlo are very large

research areas.
I Just a few things that we didn’t cover are:

I the splitting construction underpinning many of the results
I perfect simulation
I spectral properties of P
I adaptive Markov chain Monte Carlo
I optimal scaling
I subgeometric rates of convergence and corresponding CLTs
I genuinely non-reversible Markov chains
I more methodology
I non-homogeneous Markov chains
I exact approximations
I inexact approximations
I ...
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Further reading

I Meyn & Tweedie: Markov chains & stochastic stability
(available online to the public)

I Handbook of Markov chain Monte Carlo (available online
through proxy).

I Robert & Casella. Monte Carlo Statistical Methods.
I Liu: Monte Carlo Strategies in Scientific Computing.
I Roberts & Rosenthal: General state space Markov chains and

MCMC algorithms
I Jones: On the Markov chain central limit theorem.
I Look for Markov chain Monte Carlo papers in Ann. Stat.,

JRSS B, Biometrika, JASA, JCGS, Stats & Comp.
I It is impossible to be comprehensive!
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