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Introduction

» This is a module on stochastic simulation.

» Monte Carlo methods are certainly stochastic simulation
techniques.

» They are also very important in many modern statistical
analyses.

> | will cover “fundamental” theory and methodology for Markov
chain Monte Carlo.

» fundamental here means | cannot even cover 1% of what is
interesting.

» There are other methods of stochastic simulation, and also
deterministic counterparts to Monte Carlo.

> | hope that after the lectures you will understand why we can
use MCMC, and how to construct your own Monte Carlo
Markov chains.
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Approximating expectations

» Let (X, X) be a measurable space. We have a target
probability measure 7 : X — [0, 1] and we would like to
approximate the quantity

7(f) ::/Xf(x)w(dx),

where f € Li(X,7m) = {f : w(|f]) < oo}, i.e., expectations
w.r.t. m.

» We will assume that one can calculate 7's associated density
m: X = R4 w.r.t. some dominating measure (e.g., Lebesgue
or counting).

» A major motivation for this in statistics is to compute
posterior expectations in Bayesian inference.
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Posterior expectations

» We have

» a prior probability distribution for an unknown X-valued
parameter with probability density function p : X — R, and

» a collection of probability distributions with probability density
functions {gx; x € X} for some observed data y € Y.

» We can use Bayes' rule to obtain that the conditional
distribution of the unknown X-valued parameter is defined by
the probability density function

7T(X) _ p(X)gx(Y) .
Jx p(2)gz(y)dz

» Posterior expectations 7(f) cannot generally be calculated
analytically, and so numerical methods are needed to
approximate them.
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The Strong Law of Large Numbers

Theorem (Strong Law of Large Numbers)

Assume (Xp)n>1 is a sequence of i.i.d. random variables distributed
according to . Define

Sa(f) = F(X)),
i=1

for f € L1(X, p). Then

lim ~S,() = u(f)

n—oo N

almost surely.
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Monte Carlo Integration

» We can apply the SLLN with y = 7 to use n™1S,(f) as an
estimate of 7(f), if we can sample according to 7.

» There are some ways of doing this in special cases, e.g.,

» inverse transform,

» composition,

» special representations in terms of random variables we can
simulate easily.

» other methods in, e.g., Devroye [1986]

» Most of the time in practical applications, we cannot easily
sample according to 7.
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Radon—Nikodym derivative

» If 4 and v are densities w.r.t. the Lebesgue measure and
v(x) > 0= u(x) > 0 then

/AI/Ei;M(X)dX = /Ay(x)dx =v(A),

for an arbitrary measurable A.

» If p and v are o-finite measures on (X, X’) and 1 dominates v
(v < p)then there is a function f such that

/A FOOu(dx) = (A), A€ X,

and we call it the Radon—-Nikodym derivative g—z.
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Rejection sampling
Rejection sampling
1. Sample X ~ pu.

2. With prob. & ”EQ output X, otherwise go back to step 1.

» A general purpose method for sampling from © when we can
sample from p and

>3

X
()
(X

> Letting Y =1 (U < W (X ) where U is uniformly distributed

~—

<M < 0.

on [0, 1] we obtain
PriXeAY=1)
Pr(Y =1)

Ja Hgi p(x)dx

= 1 7(x) = m(A).
fX Mu(x)u X)dX

P(XcA|lY=1) =
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Cost of rejection sampling

» We have
1 7(x) 1
Pr(Y =1)= | ———ux)dx=—.
(v =1) = [ guax = 4
> |t follows that the time until acceptance is a geometric random

variable with success probability M.

v

The expected time to obtain a single sample is M.

v

In many practical applications M is prohibitively large.

» Toy example: consider what happens as d increases when
m(x) = [17y p(x), 1(x) = I} g() and sup, 2% > 1.
Practical intuition: for complicated © we do not usually know

how to find a “good” p.

v
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Importance sampling

» Recall that (X;)n>1 is a sequence of i.i.d. p-distributed
random variables.

» We again appeal to the SLLN, but now assume only that
m < p and we define

f(x) = f(x)w(x), xeX,

where f € L;(X, ) is the function defining the expectation of
interest and

WX':M X
O N

is the “importance weight” function.
> |t follows that

F) = X@ X)ax = X)mXx)ax =1
() = [ 70T Sutax = [ Fm(ie = ()
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Cost of importance sampling

» Consider y
f(x) = f(x)w(x).

Then if f € Ly(X, 1) we have

v

var(F(X)) = /X F(xPu(dx) — u(F)? = u(P?) — u(F)2.

One can then obtain

v

var(n-15,(y) = M) =1

n

v

Note: it is possible that f € Ly(X,7) but f ¢ Lp(X, ).

» in practice, one can avoid this by having sup, m(x)/u(x) < co.

v

In many practical situations, the numerator of this expression
is prohibitively large.
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Self-normalized importance sampling

>

In many situations, one can only compute 7 up to an unknown

normalizing constant.
We define the self-normalized estimate via

f n (X)) w(X;
ln(fv 7T7/’L) = Sn(f) = ZI:ln ( I)W( ’)7
Sn(w) >im w(Xi)
and it is clear that one only needs to know 7 up to an

unknown normalizing constant.
Then

nll_)rr;O In(f, 7, 1) = m(f)

almost surely.
If [y [1+f(x)?] Lxg (x)dx < oo then asymptotically the
variance of I,(f) is

/ [f(x) - Ww(x)dx.

Note: this expression can be smaller than var(n=1S,(f)).

12/87



Outline
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Markov chains and stochastic stability

» If unspecified, the source of a definition or theorem is

Meyn, S. and Tweedie, R. L. (2009) Markov chains and
stochastic stability, 2nd ed.

» This is a great single and reasonably accessible source for a lot
of what you might want to know about Markov chains on a
general state space.

» There is a free version online at http://probability.ca/MT/
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Time homogeneous, discrete time Markov chains

» We will assume now that X is countably generated, e.g. the
Borel o-algebra on R,

» Let X := (X,)n>0 be a discrete time Markov chain evolving on
X with some initial distribution for Xj.
» This means that for Ae X

PI’(X,,EA|X0:X0,...,X,,_1 :Xn—l) = Pr(X,,EA|X,,_1 :Xn—l)a

i.e. X possesses the Markov property.
» We will restrict our attention to the time-homogeneous case:

Pr(Xp € A| Xno1=x) =Pr(X1 € A| Xo = x),

for any n € N.

» Then X is described by a single Markov transition kernel
P:Xx X —[0,1] with

Pr(X1 € A| Xo = x) = P(x, A).
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Example: simple random walk on N
» Let p,g €(0,1] and r € [0,1) such that p4+ g+ r =1, and

p j=i—1,
i
PG =7 2T s
roj=i,
0 otherwise,
with P(1,1) = p+r and P(1,2) = q.
~
o
P
> <+
gty [
o 20 40 60 80 100
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Example: simple random walk on N

» How can we characterize the behaviour of X?

» Does it “escape to infinity"?

» Will it visit every point at least once?

» Will it visit each point infinitely many times?

» Does it have a “stationary distribution”?

» Does it look the same forwards and backwards in time?

» How do the partial sums
Sa(f) ==Y F(X)
i=1

behave?
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Example: simple random walk on N
When g < p:

>

It is recurrent - it almost surely visits every state infinitely
often.

It is therefore not transient.
It has an invariant probability measure pu(x) = Geo(x; q/p).
It is (time)-reversible - if Xy ~ p then

L(Xo, X1,y ..., Xn) = L(Xn, Xn—1, ..., X0)-

It is irreducible.

The proportion of time it spends at each point x converges
almost surely to u(x).

It is aperiodic and for each i € N (irrespective of xp),

lim Pr(X,=1i|Xo=x0) = pu(i).

n—o0

The list could go on...
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Example: simple random walk on N

When g > p:
» |t is transient - the expected number of visits to each state is
finite.
» |t does not have an invariant probability measure.
» It is not time-reversible (depending on the definition!).
» |t is aperiodic and irreducible.
When g = p:

» |t is recurrent.

v

It does not have an invariant probability measure.

v

It is not time-reversible (again, depending on the definition).

v

It is aperiodic and irreducible.

Our interest is in Markov chains that behave as in the case g < p.
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Stability properties of Markov chains

>

Many of the properties discussed above can be verified in this
specific case in a number of different ways.

We are interested, however, in more general classifications.
Consider a simple random walk on R4 with Xy = 0 and

Xn = max {X,_1 + W,,0},

where (W,,),>1 is a sequence of i.i.d. random variables with
mean (3.

Is X recurrent or transient? Does it have an invariant
(probability) measure?

Clearly this chain has some differences to the simple random
walk on N.

> e.g., it does not visit an arbitrary x € R, \ {0} with positive
probability.
Since most statistical applications involve X C RY we need to
discuss properties of Markov chains on general state spaces.
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Why do we care?

Theorem (An Ergodic Theorem (an LLN for Markov chains))

Suppose that X = (X,)n>0 is a positive Harris Markov chain with
invariant probability measure 7. Then for any
feli(X,7m)={f:n(|f]) < oo},

.1
nILmOO ;Sn(f) = n(f),

almost surely for any initial distribution for Xy.

» We need to understand some of these definitions.
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Outline

First stability properties
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General state spaces

» When considering a Markov chain X on a general state space,
we must start to think about sets A € X rather than points
x e X.

» When statements about the chain X are made in probability P
or expectation E, we can use a subscript x or u to denote the
“initial” or marginal distribution of Xp.

» We define P" to be the n-step transition kernel by
P!(x,A) := P(x, A) and

P"(x,A) := / P(z, A)P"Y(x,dz), n>2.
X

» We will use P to denote the linear operator associated with
this Markov transition kernel, which acts to the left on
measures:

wP(A) ::/X,u(dx)P(X,A).
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p-irreducibility

Definition

X is -irreducible if ¢ is a measure on X’ such that whenever
©(A) > 0 and x € X, there exists some n possibly depending on
both x and A such that P"(x, A) > 0.

» It is important to note that this holds for every x € X and is
therefore rather strong.

» One can think of X having a maximal irreducibility probability
measure 1) whenever it is p-irreducible, such that (MT
Proposition 4.2.2)

1. X'is 4)-irreducible;
2. Xis ¢’-irreducible if and only if ¢/ < 9.
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Recurrent and transient sets

» We define the occupation time of a set A C X to be

o

nA == Z]I{X,, € A}

n=1

The set A is recurrent if Ex[na] = oo for all x € A.

The set A is uniformly transient if there exists M < oo such that
Ex[na]l < M for all x € A.
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Recurrence/transience dichotomy

» When X is ¢-irreducible, a dichotomy theorem describes
whether the chain X is recurrent or transient.

Theorem (MT Theorem 8.0.1)
Suppose that X is v-irreducible. Then either

1. every set A € X with ¢(A) > 0 is recurrent, and we call X
recurrent, or

2. there is a countable cover of X with uniformly transient sets,
and we call X transient.

» You can find alternative definitions of recurrence and
transience in MT Appendix A, e.g., X is recurrent iff

Y P(x,A) =00, x€X, ¥(A)>0,
n>0

or statements about P, (X visits A i.0.) = 1.
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Harris recurrence

» In order to make statements about X regardless of the value of
Xp one requires a stronger definition of recurrence.

A set A is Harris recurrent if Py(na = 00) =1 for all x € A.

X is Harris (recurrent) if it is ¢-irreducible and every set A € X
such that 1)(A) > 0 is Harris recurrent.

» The difference between recurrence and Harris recurrence is the
difference between

Ex[na] = oo and Px(na=o0) = 1.
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Example of non-Harris recurrence

» The difference between recurrence and Harris recurrence is the
difference between

Ex[na] = o0 and Px(na =o00) =1.
» When X = N, consider Charlie Geyer's example:
P(1,1) =1, P(x,x+1)=1—x72, P(x,1) = x"2.

Then ¥({x}) >0 <= x =1, and for all x, Ex[n1;] = o0
since P, (X1 = 1) > 0. However,

O 1 x—1
Pu(Xp = forallmy=J[(1- ) = ,
( x +n for all n) jx< 12> . >0

SO PX(T]{]_} = OO) < 1.
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[nvariant measures

A sigma-finite measure y is an invariant measure for X if

pP = p.

» Our interest in invariant measures is related to viewing a
special version of X as a stationary process.

> Indeed, assume that p is a probability measure and that
Pr(Xo € A) = pu(A) forall Ae X.

» Then it is not too difficult to see that X is a stationary
process, i.e. the marginal distribution of (X, ..., X,,x) does
not change as n varies.

» |n general, invariant measures are not necessarily finite.

» When X is recurrent, the unique (up to constant multiples)
invariant measure for X is equivalent (as a measure) to ¢ (MT
Theorem 10.4.9)
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Positive and null chains

Definition
If X is v-irreducible and admits an invariant probability measure

then it is positive. If X does not admit such a measure then it is
null.

Example

Consider X being a simple random walk on N as before. If p > g,
X is positive (recurrent). If p = g then X is null (but) recurrent. If
q > p then X is (null and) transient.
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The LLN again
Theorem (An Ergodic Theorem for Harris Chains)

Suppose that X = (X,)n>0 is a positive Harris Markov chain with
invariant probability measure w. Then for any
feliX,m)={f:n(|f]) < oo},

lim 25,(F) = n(F),

n—oo N

almost surely for any initial distribution for Xo.

» One can replace Harris recurrence with @-irreducibility and
positivity but then the statement holds only for 7-almost all
Xo. This is eventually a consequence of Birkhoff’s Pointwise
Ergodic Theorem.

» Being positive Harris implies that if an LLN holds for f and
some initial distribution then it must hold for every initial
distribution (MT Proposition 17.1.6).

29/87



Null recurrent vs transient: simplified classic example
> Let (X,Si)),,zl be independent, simple random walks on Z:
p:q:%, forgach ie{l,...,d}.
» We have PO(X,S') = 0) = 0 for odd n, and
1

Po(X!) = 0) = Pr(Bap = n) ~

n

3

where By, is a Binomial(2n, 3) r.v.
» Consider the Markov chain (X,(,l), . ,X,Sd)) started at 0. Then

Eo [n10] = Eo [ZH(xﬁl)_..._Xrgd)_())]

n=1
oo

- SR ()= =X <o)

()92,

¢
M2

n=1

which is infinite only for d € {1,2}.
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Constructing m-invariant Markov chains
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Motivation

» The LLN motivates the following question:

Can we construct a Harris recurrent or at least
p-irreducible Markov chain with invariant distribution 7
where all we compute is the density w(x) (up to an
unknown normalizing constant) for any x € X?

» If so, then we can produce a realization X and estimate 7(f)
via n715,(f) where

Sa(F) == F(X)).
i=1

» A positive, constructive answer to this question was a pivotal
moment in Bayesian statistics, and many other sciences.
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Metropolis—Hastings

» There are a large number of ways of constructing such Markov
chains, but we will focus on the essentials.

» By far the most commonly used Markov chains in practice are
constructed using Metropolis—Hastings Markov transition
kernels.

» These owe their development to the seminal papers Metropolis
et al. [1953] and Hastings [1970].

» Assume 7 has a density w.r.t. u.

» In order to define the Metropolis—Hastings kernel for a
particular target ™ we require only to specify a proposal
Markov kernel @ admitting a density g w.r.t. p, i.e.

Q(x,dz) = q(x, z)u(dz).
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Metropolis—Hastings
To simulate according to Py (x, -):
1. Simulate Z ~ Q(x, ).
2. With prob. aym(x, Z) output Z; otherwise, output x, where

m(2)q(z, x)

anm(x; z) 1= 1A m(x)q(x, 2)

» Equivalently,
Pym(x, A) = / anvm(x, 2) Q(x,dz) + rmumu(x)1a(x),
A

where

nva(x) :=1— /XaMH(X,z)Q(x, dz).

» We need only know the density 7 up to a normalizing constant.
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Metropolis—Hastings validity

» |n order to show that P leaves 7 invariant, we need to check
TP =m

i.e., that
/ m(dx)P(x, A) = 7(A), VA e X.
X

» Verifying 1P = 7 is extremely difficult in general.

» Determining the invariant measure of a given Markov kernel is
also v. difficult.

» The m-invariance of the Metropolis—Hastings Markov chain is a
special case of the w-invariance of m-reversible Markov chains.
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Reversible Markov chains

A m-reversible Markov chain is a stationary Markov chain with
invariant probability measure 7 satisfying

Pr(Xo € Ao, ..., Xn € Ap) = Pr(Xo € Ap, ..., X € Ao).

> |t suffices to check that

Pﬂ-(Xo S A,Xl S B) = Pﬂ-(Xo S B,Xl S A),

/A 7(dx)P(x, B) = /B 7(dx)P(x, A).

» Moreover, m-invariance is obvious by considering A = X:

/ m(dx)P(x, B) = / m(dx)P(x,X) = w(B).
X B
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Reversible Markov chains

» That [, m(dx)P(x,B) = [gm(dx)P(x, A) implies reversibility
is slightly laborious in the general state space context.

» For intuition, consider a discrete state space where the
property becomes

Pr(Xo = x0,...,Xn=xn) = Pr(Xo = Xxpn, ..., Xn =x0),
which is indeed implied by 7(x)P(x, z) = w(z)P(z, x) since

Pr(Xo =x0,...,Xn = xn)
= 7(x0)P(x0,x1) - P(Xn—1,Xn)
P(x1, x0)m(x1)P(x1, x2) - - - P(Xpn—1, Xn)
P(x1,x0)P(x2,x1) - - - P(Xn, Xn—1)7(xn)
= Px(Xo =Xn,..., Xnh = x0).
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Verifying m-reversibility

» When P(x,A) = [, p(x,z)pu(dz) + r(x)1a(x), we can verify
reversibility by considering the densities m(x) and p(x, z) each
w.r.t u. Indeed if the detailed balance condition

n(x)p(x, z) = 7(z)p(z,x), x,ze€X
holds then

/A (dx)P(x, B)
)| [ o 2hutdz) + 1016 ()
@) | [ ez (@) ) + [ nGortoutax

/.
Joe)]
= [ @) | [ otz + @140 a2
/B 7(dx)P(x, A).
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Verifying m-reversibility for Metropolis—Hastings

» The key utility of detailed balance is it need only be checked
pointwise — no integrals necessary!

» We now verify for Pyy:

m(x)puu(x,z) = w(x)q(x,z) {1/\

» This is extremely versatile and most Markov chains used in
statistics are constructed using reversible Markov transition
kernels.
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What about Harris recurrence?

» That Py is w-reversible implies that if it is also 7-irreducible
then it is positive and has the right invariant probability
measure.

» Verifying ¢-irreducibility is typically very easy.
» eg., m(A)>0,Ac X and g(x,A) >0, xe X,Ae X.

Theorem (Tierney [1994, Corollary 2], Roberts and Rosenthal

[2006, Theorem 8])

Every m-irreducible, full-dimensional Metropolis—Hastings Markov
chain is Harris recurrent.

» That's all you need to know to construct some sophisticated
Markov chains!
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Random walk Metropolis—Hastings

> Let m be given and let Q satisfy q(x,z) = q(||z — x]|). Then
the Metropolis—Hastings acceptance probability is

7(2)

m(x)

avu(x,z) =1A

xs[5000:10000]
0
|

T T T T T T
0 1000 2000 3000 4000 5000

Index
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Random walk Metropolis—Hastings

xs[5000:10000]
-0.04

» Choice of the proposal is important, even though the Markov

0.00

-0.08

chain is “valid".

- % -
i N - T R
S A" e e - °
7 S - - A eTe ==
o ° .. . - .d
, D oq . . -
S - ‘- .
i 8 == - -
[ s -
1 W )
-
i .
T T T T T T T T T T T T
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

Index Index

On the left, the variance of Q(x,-) is too small and on the

right it is too large.
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Independent Metropolis—Hastings

» One can even choose Q(x,-) = q(+) to be independent of x.

Then we have

v

avu(x,z) =1A U

m(x)q(z)’

It can be difficult to find a good ¢ in practice, but we will
return to this example later.

As before, it is helpful if

v

v

sup m(x) < 00

x q(x)
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Hybrid Markov chains

» We can easily construct w-invariant Markov chains out of
different m-invariant Markov transition kernels.

> |In practice, such hybrid chains are commonplace.
» the Gibbs sampler is an example.
» Generally speaking, we will have (Ps)scs and we will try to

make a mixture or cycle or combination of the two out of
them.
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Mixtures of Markov kernels
A Markov kernel P is a mixture of the Markov kernels (Ps)ses if

P(x,A) = w(s)Ps(x, A),

seS

where w is a p.m.f. (independent of x). Alternatively,
P = ZSES w(s)Ps.

Fact

A mixture of m-invariant Markov kernels is m-invariant.

Proof.

TP(A) =Y w(s)mPs(A) = Y w(s)m(A) = m(A).

sES seS
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Cycles of Markov kernels

A Markov kernel P is a cycle of Markov kernels P; and P, if

P(x, A) = / Py(x, dz)Ps(z, A),
X
i.e., P = f’lsz.

Fact

A cycle of w-invariant Markov kernels is w-invariant.

Proof.

TP(A) = mnP1P2(A) = nP2(A) = m(A).
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Remarks on hybrid chains

» If P is ¢-irreducible then so is a mixture including P with
positive probability.

» The same is not necessarily true for cycles, but it is often true
in practice.

» A mixture of w-reversible Markov kernels is m-reversible.

» A cycle of m-reversible Markov kernels is generally not
m-reversible.

» We will now see a special kind of hybrid Markov chain called
the Gibbs sampler.
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The Gibbs sampler

>

Let X = X1 X --- x Xg4.

» Let —/ denote the sequence (1,...7i —1,i+1,...,d) with the

convention that (1,0) = (d +1,d) = () is the empty sequence.

> If s=(s1,...,5;) then let x5 := (X1, Xs5, - - - 5 Xs;)-

Assume we can sample from each “full” conditional distribution
defined by
Tix_i(A) =Pr(Xi € A| X_; = x_;),

which has a density 7;(:|x_;) w.r.t. some dominating y.
Now define

Pi(x, Ay x -+ x Ag) = mix_ (A) [] 1% € A)).
J#i
It follows that P; is in fact a Metropolis—Hastings kernel with
acceptance probability 1 since
m(z1, ..., zg)mi(xilz—i)  mw(z—;)
m(x1,. .., xa)mi(zilx_;)  w(x_i)

anvu(x,z) = 1A

47 /87



The Gibbs sampler

>

Gibbs samplers are commonly used to sample from Bayesian
hierarchical models.

Example:

Y; ’9; ~ F@, i € {1,...,”}
9,”‘90 ~ 6907 iE{l,...,n}

g ~ H.
By fixing, e.g., (01,...,0,) one may know the distribution of
0o conditional upon 61, ...,60, and by fixing 3 one may know
the distribution of 61, ..., 0, conditional upon 6y and
Yi,..., Y.

Originally introduced in statistical physics, then to statistics in
Geman and Geman [1984] and popularized in Gelfand and
Smith [1990]
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Random scan and deterministic scan

» There are two major approaches to constructing a Gibbs
sampler.

» Random scan:

P(x,A) = > w(s)Ps(x, A),

seS

with S = {1,...,d} and usually w(s) = d~! for each s € S.

» Deterministic scan:
P= Pg(l) . Pg(d)

where o is some permutation of (1,...,d).

» These are just mixtures or cycles of the constituent kernels.
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Gibbs sampler: toy example
» Consider the case X = R x R and 7(x) = N(x,0,X), where
_ (1 r
Y= (p 1), pe(-1,1).
» Then we have 7(x1|x) = N(x1; px2, 1 — p?) and
m(xalx1) = N(x2; px1,1 — p?).
» Below we have a plot of the first coordinate of X when p =.1

(left) and p = .99 (right).
H Ab?;isl '.. i! E g;

xs[, 1]
-2 -1 0
1

1

|

T T T T T T
1000 0 200 600 1000

T T T T
0 200 600

Index Index 50/ 87



Gibbs sampler: blocking

» Imagine that X = R3 and the correlation between the first two
coordinates is large whilst the third is not very correlated.

» Then it makes sense to treat (xi,x2) and x3 as two
components in a Gibbs sampler.

» This is called “blocking”, as one updates several variables
together from their “joint” conditional.
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Metropolis-within-Gibbs samplers

> In some cases, only some of the conditional distributions can
be sampled from.

» So for any i such that we can’t sample from 7; , . we can
instead perform a Metropolis—Hastings update that updates
only the ith coordinate of x.
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Auxiliary variables

» Let (Y,)) be a measurable space.

» Let 7 be a probability measure on X’ ® ) such that
7(AY) = 7(A).

» Then it is clear that if we can construct a positive Harris
f-invariant Markov chain (X,, Y,)n>1, we can use

>0
i=1

to estimate 7(f) — we “discard” the auxiliary variables
(Yn)nzl-
» There are a huge number of auxiliary variable methods now.

» | will cover two interesting examples.
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Latent variable model

» Consider a target density where

7(x) o p(x) /Y g(y)f(x. y)dy.

» For example, y represents a latent variable whose conditional
density given x is f(x,-) and g(y) is the conditional density of
some observed data given y.

» Assume further that we cannot evaluate the function
x — [, g(y)f(x,y)dy pointwise.
» We can instead define an extended target density

t(x,y) o< p(x)g(y)f(x, ),

and construct a Markov chain with invariant distribution 7.

» More complicated alternatives: pseudo-marginal methods.
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Pseudo-marginal methods

>

For each x € X let W ~ @, be a non-negative random
variable with E,[W] = 7(x).

Define
w

t(x, w) = m(x) [QX(W)W(X)} :
and observe that 7(x) = [ #(x, w)dw = 7(x).
Metropolis—Hastings for 7: at (x, w) simulate Z ~ q(x, -) and
U ~ Qz and “accept” with probability

alx,w; Z,U) = 1A

No need to evaluate 7 exactly!
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Hamiltonian Markov chain Monte Carlo (v. briefly)

» This Markov chain is motivated by Hamiltonian dynamics in
physics.

» Assume X = R? and 7 is differentiable.

» We imagine a particle in X evolving in continuous time
according to fictitious dynamics according to 7 and an
auxiliary momentum variable p.

» Hamiltonian dynamics are time reversible and
measure-preserving:

» if x is distributed according to & and follows these dynamics to
produce Z then Z ~ 7.

» The formulation is to use H = U + V/, where U is the
potential energy and V' the kinetic energy.

» U is related to m and V describes the momentum variables.
» We have 7(x, p) x exp(—H(x, p)) = exp (—U(x) — V(p)).

> |n practice, we cannot simulate the system in continuous time

so discretization is required.
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Simple Hamiltonian Markov chain Monte Carlo

> Define #(x, p) := 7(x)N(p; 0,1) and set parameters h = 1,
LeNand T e N.

» The following “leapfrog” scheme is an approximation of
Hamiltonian dynamics in one dimension.

» At (x,p), sample Py ~ N(+;0,1) and set Zy = x.
» For [ =0,...,LT —1:

> Set Py1y, = P+ 2L log m(Zin).
> Set Z(I+1)h =Zp+ h'D(H—%)h'
> Set Piiapn = Puyayn + 5 5 108 7(Z(141)n)-

» Accept (z,q) := (Z7, P7) with probability

(z,q)
t(x, p)

o (X, piz,9) = 1A
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HMC: brief explanation

» We have U(x) = —log m(x) and V(p) = C(M) + 3p" M~1p:
7(x, p) = exp(—U(x) — V(p)) = 7(x)N(p; 0, M).

» The Hamiltonian dynamics are given by

dp U 1 dx _ oV _

__9Y _ 1y & _9Y _
dt Ox 2V 0g 7(x), dt  9dp

p.
» The h in the algorithm is a discretization step size.

» The deterministic part is “volume preserving” and reversible,
the proposal is “symmetric”.

» The acceptance probability corrects the time discretization: by
discretizing, energy is not preserved.
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Multivariate Hamiltonian Markov chain Monte Carlo

v

Define 7 (x, p) := 7(x)N(p; 0, M) and set parameters h =
LeNand T e N.
At (x, p), sample Py ~ N(+;0, M) and set Zp = x.
For I =0,...,LT — 1:
> Set P(yayy = P+ 5V log m(Zp).
> Set Zyiapn = Zn + hM~ P, 1.
> Set P(ryan = Pz + 2V log m1(Z(141)n)-

~=

v

v

v

Accept (z,q) := (Z1, P1) with probability

(z,q)
amu(x, p;z,q) =1A - .
Copiz @) =102 )

» M is a “mass matrix". The choice of M, L and T is important.
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Outline

Central limit theorems
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Central limit theorems

» Recall that S,(f) := D74 f(Xi), for some f € Li(X, ).

Definition

A central limit theorem holds for f if there exists a constant
0?(f) < oo such that

1
n

as n — oo, where f = f — (f).

Sa(F) & N(0, 0%(f))

» When a CLT holds for f and a particular chain X then it is an
indication that results can be reliable.

» Perhaps more obvious that if a CLT does not hold, then it is
unusual for n715,(f) to be close to 7(f).
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Central limit theorems

v

A huge amount of research has gone into characterizations of
when a CLT holds.

In some situations one can verify that it holds!
We cannot cover even a small fraction of this research.

Instead, we will look at important classifications of Markov
chains for which we can be assured that a CLT holds for all or
nearly all reasonable functions f.
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Some central limit theorems

Theorem ([Cogburn et al., 1972])

Assume that X is positive Harris and uniformly ergodic and that
7(f2) < oco. Then a CLT holds for f and

0?(f) = Ex [F(X0)?] +2 ) Ex [F(X0)F(Xe)] < o0.
k=1
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Some central limit theorems

Theorem ([Ibragimov and Linnik, 1971, Chan and Geyer,

1994])

Assume that X is positive Harris and geometrically ergodic with
invariant probability measure 7, and that 7(|f|>T%) < co for some
0 > 0. Then a CLT holds for f and

o2(f) = Ex [F(X0)?] +2ZE F(Xo)F(Xk)] < oo.
k=1
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Some central limit theorems

Theorem ([Roberts and Rosenthal, 1997])

Assume that X is positive Harris, T-reversible and geometrically
ergodic, and that 7(f?) < co. Then a CLT holds for f and

0?(f) = Ex [F(X0)?] +2 ) Ex [F(X0)F(Xe)] < o0.
k=1
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Remarks

» There are a number of different CLTs, with different
conditions.

» There are also different proof techniques and different
expressions for o%(f).

» |t appears from the above that uniform and geometric
ergodicity are beneficial properties.

» While true, they are not essential nor necessarily better than
non-geometrically ergodic counterparts in specific settings.
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Asymptotic variance

» The expression for 2(f) we have seen is not unusual.
» Imagine X with initial distribution 7 and f € Ly(X, 7). Then

var(Sy(f)) = var(S, (f)—w(f)) = var(S,(f))
— E[{Zf )¥?] — ne(F)?

= Zf +2ZZfX)f(X

i=1 j=i+1
= nn(F?) +2Z n— k)Ex [F(Xo)F(X))] -

So the variance of ﬁs,,(f) is

F(Xo)F(Xk)]

whose limit (if it exists) is o2(f). 66 /87



Optimality of Metropolis—Hastings

Theorem (Peskun [1973], Tierney [1998])

Let Q be fixed. Amongst reversible Markov kernels P of the form

P(x, A) = /A e el ) 4= e Fall)

where r(x) =1 — [, a(x,z)Q(x,dz), the one minimizing 2(f) for
all f € Ly(X, ) is the Metropolis—Hastings kernel.

» This is a statement about the form of aym(x, z).

» There are many valid “acceptance probability” functions but
they are dominated by aypy.

» Note: this tells us nothing about non-reversible Markov
kernels, or about non-asymptotic variance.
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Outline

Geometric ergodicity
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Total variation distance

The total variation distance between two probability measures
and v on X is

I = vlipy = sup [u(A) = v(A)].
Aex
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Ergodic Markov chains

Definition
A Markov chain with invariant probability measure = and Markov
transition kernel P is ergodic if

nll)”;o |P"(x,-) — 7T||TV =0,

for any x € X.

» That is, the probability measure associated with X, when
Xo = x is converging to 7 in total variation.

» Note: this is not a universal definition of ergodic.
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Note on aperiodicity

» |t is important to note that an ergodic Markov chain, as we
have defined, cannot be periodic.
» Loosely speaking, there cannot be disjoint sets D, ..., Dy

such

inf P(x,Diy1)=1, i€{l,...,d—1}
x€D;

and infyep, P(x,D1) =1, where d > 1.

» While clearly this is not obviously an issue for the LLN or even
the CLT, we will assume from now on that we are dealing with
aperiodic Markov chains.

» |In fact, periodic behaviour is exceedingly rare amongst Monte
Carlo Markov chains.
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Uniform ergodicity

Definition
A Markov chain with invariant probability measure = and Markov
transition kernel P is uniformly ergodic if

1P )~ wllpy < Mp",  x€X

for some constant M and p < 1.

» The total variation distance decreases geometrically fast, with
p governing this rate, and the bound is independent of x.
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Geometric ergodicity

Definition
A Markov chain with invariant probability measure © and Markov
transition kernel P is geometrically ergodic if

IP7(x, ) = mllpy < M(x)p",  xeX

for some function M finite for 7-almost all x € X and p < 1.

» The total variation distance decreases geometrically fast, with
p governing this rate, and the bound is dependent on x.

» For some intuition, recall the simple random walk chain on N.
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Verifying uniform ergodicity

» One way to verify uniform ergodicity for an aperiodic,
m-irreducible Markov chain is to check that

P™(x,A) > ev(A), xeX Ac kX,

for some m € N, € > 0 and probability measure v.
» This is called a minorization condition.

> In this case it is basically Doeblin's condition and is equivalent
to uniform ergodicity.

» Important observation: P™(x,-) and P™(x’,-) have, loosely
speaking, some degree of similarity.
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A simple quantitative proof of uniform ergodicity

» We will look at the case where the minorization condition is
satisfied for m = 1, for simplicity.

» The method of proof is by coupling, due to Doeblin.
» We assume that P(x,-) > ev(-) and will show that

1P7(x;) = 7llpy < (1 — €)™

» We define a residual Markov kernel

P(x,A) — ev(A)

R(x,A) := 1% ,

xeX,Ae X,

and observe that P(x,-) = ev(:) + (1 — €)R(x, -).
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A simple quantitative proof of uniform ergodicity

» Loosely, a coupling between two probability measures p and v
on X is a pair of random variables (X, Y') defined on a
common probability space such that the marginal distribution
of X is v and the marginal distribution of Y is v.

» The coupling inequality states that for any such construction
1= Vlipy < Pr(X # V).

> So we will show an explicit coupling such that
Pr(Xn # Yn) < (1—¢)"

where X, is distributed according to P"(x,-) and Y, is
distributed according to .
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A simple quantitative proof of uniform ergodicity

> Let Xg = x and Yy ~ 7.

v

Now follow the procedure for each time n > 1:

1. If Xp—1 = Y,—1, sample Z, ~ P(X,_1,-), set X, = Y, = Z,.
2. Otherwise, with probability ¢, sample Z, ~ v and set
Xn =Y, =2,
3. Otherwise, sample X, ~ R(X,—1,-) and Y, ~ R(Yp_1,")
independently.

v

We observe that we have not changed the marginal
distributions of X, or Y, so X, ~ P"(x,) and
Y, ~7P"=m.

We also observe that

v

Pr(X, # Y,) < (1—¢)".

v

Hence, ||P"(x, ) — m|lpy < Pr(Xn # Ya) < (1—¢)".
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Example: independent Metropolis—Hastings

» Recall that P(x, A) = [, q(z)amu(x, z)dz + r(x)1a(x),

where anir(x,z) =1 A WEQZE;;

» Now assume that sup, m(x)/q(x) = K < oo. Then we have

™

q(z)amu(x,z) = q(2) [1/\ EZ;qE

Xx)q\z

qZ) q(x) 1,
7TZ)/\7TX):|>K (2)

™

~—
I—I

and so P(x,A) > K~ 1n(A).
» Therefore, X is uniformly ergodic and

1P (x, ) = 7( v < (1 — K™H)".

> In fact, if sup, m(x)/q(x) = oo then X is not even
geometrically ergodic.
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Small sets

» When X is evolving on a general state space, there is no
guarantee that two independent copies of X will visit a
particular state simultaneously.

» The minorization condition allowed us to successfully couple
the two Markov chains with probability € at each time.

» Of course, uniform ergodicity and therefore the minorization
condition we have seen is very strong in practice.

» This motivates the definition of a small set, which is essentially
a set for which points are “similar”.

A set C € X is small if

P™(x,A) > ev(A), xeC,Ac X,

for some m € N, € > 0 and probability measure v.
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Verifying geometric ergodicity

» The presence of a small set is only one of two ingredients
required for an aperiodic, m-irreducible Markov chain to be
geometrically ergodic.

> Intuitively, one can use a coupling argument if both chains are
in the small set C.

» We need to ensure that they are both in C simultaneously
“often enough”.

» A “drift condition” that ensures geometric ergodicity is

/X V(2)P(x,dz) < AV(x) + blc(x),

where A € (0,1), b < oo and V : X — [1, o] satisfies
V(x) < oo for at least one x € X.
» This condition guarantees that
sup Ex [r7¢] < o0,
xeC
for some k > 1, where 74 :=inf{n > 1: X, € A}
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Example: simple random walk on N

» Here the small set is no problem, we can take C = {1} and so
P(x,A) = v(A) for each x € C where v(-) = P(x,-).
» We take V/(x) = ¢*, ¢ > 1 and we have

/X V(z)P(x,dz) = rV(x)+pV(x—1)+qV(x+1)
= V(x)(r+p/c+ qc).

> Ifq<pandc€(1,§)then r+2+qgc<1.

» One choice, e.g., is ¢ = \/p/q, so that one can take
A=r+2,/pq.

> In Kovchegov [2010], e.g., it is shown that

1P"(1,) — 7( )y < A (pi) L B(r+2yp9)",

where A, B € R for a very slight difference of the Markov
chain’s behaviour at 1.
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Remarks

» |n practice, small sets are often possible to identify.

» The drift condition is usually harder, but it is still possible in
some cases.

» Drift conditions and return times are alternative ways to
characterize many of the stability criteria we have talked about.

» For example, X is “regular” (and therefore positive) iff

sup Ex(74) <00, A€ X, Y(A) >0, X=U;(.
x€C;

» Alternatively, X is regular iff

/ V(z)P(x,dz) < V(x)—1+blc(x), xeX, C "petite".
X
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Outline

Final remarks
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Conclusions

» We have covered a tiny fraction of what is interesting and
relevant.

» Hopefully, you have a clear idea of the fundamental theorems
underpinning the use of MCMC in statistical computations.

» If you are doing modern Bayesian inference, it is very common
to use MCMC.

» Research in this area is extremely varied:

theory

intuition-based methodology

theory-based methodology

hybrids of the two

applications <+ methodology <> theory < applications.

vV vy VYT VvYyy
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What we didn't cover

» We have covered a tiny fraction of what is interesting and
relevant.

» Markov chains and their use in Monte Carlo are very large
research areas.

» Just a few things that we didn't cover are:

vV VvV Y VY VY VY VY VY VY VvYYy

the splitting construction underpinning many of the results
perfect simulation

spectral properties of P

adaptive Markov chain Monte Carlo

optimal scaling

subgeometric rates of convergence and corresponding CLTs
genuinely non-reversible Markov chains

more methodology

non-homogeneous Markov chains

exact approximations

inexact approximations
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Further reading

» Meyn & Tweedie: Markov chains & stochastic stability
(available online to the public)

» Handbook of Markov chain Monte Carlo (available online
through proxy).

» Robert & Casella. Monte Carlo Statistical Methods.
» Liu: Monte Carlo Strategies in Scientific Computing.

» Roberts & Rosenthal: General state space Markov chains and
MCMC algorithms

» Jones: On the Markov chain central limit theorem.

» Look for Markov chain Monte Carlo papers in Ann. Stat.,
JRSS B, Biometrika, JASA, JCGS, Stats & Comp.

» |t is impossible to be comprehensive!
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