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Importance sampling

I Intractable target:

Eπ[f (X)] :=

∫
f (x)π(dx).

I Monte Carlo: let X(1:N) ∼ π⊗N . Then

Eπ[f (X)] ≈ 1

N

N∑
i=1

f (X(i)).

I Change of measure:

Eπ[f (X)] = Eµ
[
dπ

dµ
(X)f (X)

]
=

∫
dπ

dµ
(x)f (x)µ(dx).

I Importance sampling: let X(1:N) ∼ µ⊗N . Then

Eπ[f (X)] ≈ 1

N

N∑
i=1

dπ

dµ
(X(i))f (X(i)).



Sequential Monte Carlo / Interacting Particle System

1: for i ∈ {1, . . . ,N} Sample X
(i)
0 ∼ µ0.

2: for i ∈ {1, . . . ,N} Set

w
(i)
0 ←

π0(X
(i)
0 )/µ0(X

(i)
0 )∑N

j=1 π0(X
(j)
0 )/µ0(X

(j)
0 )

.

3: for t ∈ {1, . . . ,T} do
4: Sample (a

(1)
t , . . . , a

(N)
t ) ∼ Categorical(w

(1)
t−1, . . . ,w

(N)
t−1).

5: for i ∈ {1, . . . ,N} Sample X
(i)
t ∼ µt(·|X(a

(i)
t )

t−1 ).
6: for i ∈ {1, . . . ,N} Set

w
(i)
t ←

πt(X
(i)
t |X

(a
(i)
t )

t−1 )/µt(X
(i)
t |X

(a
(i)
t )

t−1 )∑N
j=1 πt(X

(j)
t |X

(a
(j)
t )

t−1 )/µt(X
(j)
t |X

(a
(j)
t )

t−1 )
.



Example: Hidden Markov Model

I Let {Xt}t≥0 be a Markov process with transition density
p(x, x′) and initial density π(x).

I Suppose a noisy observation Yt with density g(y|x) is made
of each state Xt .

I SMC algorithms with

π0(x0) ∝ π(x0)g(y0|x0),

πt(xt |x1:(t−1)) ∝ p(xt−1, xt)g(yt |xt)

target P(X0:T ∈ dx0:T |Y0:T = y0:T ).

I E.g. the boostrap particle filter: µ0 = π,
µt(xt |x1:(t−1)) = p(xt−1, xt), and wt ∝ g(yt |xt).



Example: Bootstrap Particle Filter (Gordon et al., 1993)

1: for i ∈ {1, . . . ,N} Sample X
(i)
0 ∼ π.

2: for i ∈ {1, . . . ,N} Set

w
(i)
0 ←

g(y0|X (i)
0 )∑N

j=1 g(y0|X (j)
0 )

.

3: for t ∈ {1, . . . ,T} do
4: Sample (a

(1)
t , . . . , a

(N)
t ) ∼ Categorical(w

(1)
t−1, . . . ,w

(N)
t−1).

5: for i ∈ {1, . . . ,N} Sample X
(i)
t ∼ p(X

(a
(i)
t )

t−1 , ·).
6: for i ∈ {1, . . . ,N} Set

w
(i)
t ←

g(yt |X (i)
t )∑N

j=1 g(yt |X (j)
t )

.



Path degeneracy

I Suppose T � 1, and f (X0:T ) depends on every time point.

I Mergers due to resampling mean that times t � T are
estimated from m� N paths.

I ⇒ High variance estimators.

I Loss of paths also means that fewer than N × T particles
need to be stored, reducing memory cost.

I Aim: a priori estimates of:

E[TMRCA], Var(TMRCA), P(TMRCA > t),

etc.



Reasons to Characterize Path Degeneracy include. . .

I Qualitative understanding of methods.

I Calibrating fixed-lag techniques, e.g. Doucet and Sénécal
(2004).

I Relationship with estimator variance (Chan et al., 2013; Lee
and Whiteley, 2015).

I Understanding storage requirements (Jacob et al., 2015).



The coalescent process (Kingman, 1982)

I Let {R(n)
t }t≥0 be a partition-valued process.

I R
(n)
0 = {{1}, . . . , {n}}.

I Each pair of blocks {i}, {j} merge at rate 1.

I A “death” process of rate
(k

2

)
where k is the number of

blocks.

Example: n = 4

T1 ∼Exp(6) T2 ∼Exp(3) Exp(1)

T1 T2 T3



The genealogical process

I It is convenient to reverse the direction of time. . .

I Let {G (n,N)
t }t∈N0 be the

genealogy of n ≤ N particles
sampled randomly from an
N-particle SMC algorithm of
interest.

I G
(n,N)
0 = {{1}, . . . , {n}}.

I i ∼ j in G
(n,N)
t ⇒ particles i and

j have a common ancestor t
generations ago.

I G (2,7) illustrated.



Objective: Establish conditions under which

As N →∞:

T1 T2 T3



Rescaling time

I For i ∈ {1, . . . ,N} and t ∈ N, let ν
(i)
t be the number of

children of particle i , t generations ago.

I Define

cN(t) :=
1

(N)2

N∑
i=1

(ν
(i)
t )2 ≈ E[ESS(t)−1],

τN(t) := inf

{
s ≥ 1 :

s∑
r=1

cN(r) ≥ t

}
,

DN(t) :=
1

N(N)2

N∑
i=1

(ν
(i)
t )2

(
ν

(i)
t +

1

N

N∑
j 6=i

(ν
(j)
t )2

)
.



Convergence theorem

Suppose that all assignments of offspring to parents are equally
likely, and that

lim
N→∞

E

[
τN(t)∑

r=τN(s)+1

DN(r)

]
= 0,

lim
N→∞

E[cN(t)] = 0,

lim
N→∞

E

[
τN(t)∑

r=τN(s)+1

cN(r)2

]
= 0,

E[τN(t)− τN(s)] ≤ Ct,sN.

Then (G
(n,N)
τN(t) )t≥0 converges to the Kingman coalescent in the

sense of finite dimensional distributions.



Proof outline

I Consider finite dimensional distributions.

I Apply straightforward, but intricate counting arguments,

I together with bounds on elementary transition probabilities,

I to upper and lower bound the elements of the FDDs.

I Compare these with those of the coalescent.



Sketch proof

I Let ξ and η be partitions of {1, . . . , n}, with the block counts
of η in terms of the blocks of ξ being b1, . . . , b|η|,
i.e. b1 + . . .+ b|η| = |ξ|.

I The conditional one-step transition probability of G
(n,N)
t given

family sizes is

pξη(t) :=
1

(N)|ξ|

N∑
i1 6=... 6=i|η|=1

(ν
(i1)
t )b1 . . . (ν

(i|η|)
t )b|η| .

I FDDs:

P(G
(n,N)
τN(t1) = η1, . . . ,G

(n,N)
τN(tk ) = ηk |G

(n,N)
τN(t0) = η0)

= E

[
k∏

d=1

{
τN(td )∏

r=τN(td−1)+1

PN(r)

}
ηd−1ηd

]
.



Sketch proof II

I For a single time interval{
τN(td )∏

r=τN(td−1)+1

PN(r)

}
ηd−1ηd

=
∑
ξ

τN(td )∏
s=τN(td−1)+1

pξs−1ξs (s),

where ξ = (ηd−1, ξτN(td−1)+1, . . . , ξτN(td )−1, ηd).

I Each partition in ξ is either equal to its predecessor, or
obtained from its predeceror by merging some subset(s) of
blocks.



Sketch proof III

pξξ(t) ≈ 1−
(
|ξ|
2

)
1

(N)2
−
(
|ξ|
2

)
cN(t).

If η is formed by merging two blocks of ξ,

cN(t)−
(
|ξ| − 2

2

)
DN(t) . pξη(t) . cN(t).

If η is formed by merging more than two blocks of ξ,

pξη(t) .

(
|ξ| − 2

2

)
DN(t).



Sketch proof IV

∑
ξ

τN(td )∏
s=τN(td−1)+1

pξs−1ξs (s) ≈
|ηd−1|−|ηd |∑

α=1

∑
(λ,µ)∈Π2([α])

C

×
τN(td )∑

s1<...<sα=τN(td−1)+1

{∏
r∈λ

cN(sr )

}{∏
r∈µ

DN(sr )

}
,

DN(t) ≈ cN(t)

N
,

τN(td )∑
s<...<sα=τN(td−1)+1

α∏
r=1

cN(sr ) ≈ (td − td−1)α

α!
.



Sketch proof V

When ξ consists of binary mergers only, i.e. α = |ηd−1| − |ηd |,

∑
ξ

τN(td )∏
s=τN(td−1)+1

pξs−1ξs (s)

≈ C ′
τN(td )∑

s1<...<sα=τN(td−1)+1

{
α∏

r=1

cN(sr )

}
τN(td )∏

r=τN(td−1)+1

{1− C ′′cN(r)}

≈
τN(td )−τN(td−1)−α∑

β=0

C ′′′
τN(td )∑

s1<...<sα+β=τN(td−1)+1

α+β∏
r=1

cN(sr ).



Sketch proof VI

It turns out that the constant C ′′′ is exactly (Qα+β)ηd−1ηd , where
Q is the Kingman coalescent generator!

∑
ξ

τN(td )∏
s=τN(td−1)+1

pξs−1ξs (s)

≈
τN(td )−τN(td−1)−α∑

β=0

C ′′′
τN(td )∑

s1<...<sα+β=τN(td−1)+1

α+β∏
r=1

cN(sr )

≈
τN(td )−τN(td−1)−α∑

β=0

(Qα+β)ηd−1ηd

(td − td−1)α+β

(α + β)!

≈ (eQ(td−td−1))ηd−1ηd .



Corollary 1

The genealogy of n particles sampled uniformly at random from an
N-particle bootstrap particle filter with multinomial resampling
converges to a Kingman coalescent under the time-scaling τN(t)
whenever

1

a
≤ g(yt |xt) ≤ a,

εh(xt) ≤ p(xt−1, xt) ≤
1

ε
h(xt),

for some 0 < ε ≤ 1 ≤ a <∞, and some probability density h(x)
uniformly in time, space, and the observations.



Sketch proof

I Conditional on weights, the offspring counts have multinomial

distributions with parameters (N;w
(1)
t , . . . ,w

(N)
t ).

I Upper and lower bounds on observation densities imply

ε2

a2N
≤ w

(i)
t ≤

a2

ε2N
.

I The required upper and lower bounds follow from these
bounds, standard moment-calculations for multinomial
distributions, and the local dependence structure of particle
filters.



Corollary 2

Let Tn be the total Kingman coalescent tree height of n particles.
Under the preceding assumptions,

2ε4N

a4

(
1− 1

n

)
≤ E[τN(Tn)] ≤ 2ε4N

a4

(
1− 1

n

)
+

a8

ε4
,

N2ε8

a8

(
4π2

3
− 12 + O(n−1)

)
≤Var(τN(Tn))

≤N2a8

ε8

(
4π2

3
− 12 + O(n−1)

)
+ O(N).



A numerical example

I Take the earlier HMM to be

Xt+1 = (1−∆)Xt +
√

∆ξt

X0 ∼ N(0, 1),

Yt |Xt ∼ N(Xt , σ
2),

where ξt ∼ N(0, 1).

I This model violates the assumed lower bounds.

I Nevertheless, simulations using a boostrap particle filter show
that the Kingman scalings hold, even when n = N.



Mean tree height
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Mean tree height II
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Tree height variance
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Tree height variance II
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Conclusions

I Genealogies of n� N particles from N-particle SMC
algorithms converge to the Kingman coalescent when time is
measured in units of N, as N →∞.

I Strong technical assumptions (i.e. a compact state space)
which do not seem necessary in practice.

I Predicted scalings observed in experiments for finite N, seem
to hold even when n ≈ N.

I Result holds for multinomial resampling, but other schemes
agree with predictions empirically.

I This result also demonstrates that the domain of attraction of
the Kingman coalescent includes certain non-Markovian
genealogies.



Outlook

I Some areas in which genealogical results might be interesting:
I Variance estimation from SMC output (Lee and Whiteley,

2015).
I Smoothing and static parameter estimation.
I Mixing in particle Gibbs/iterated cSMC.

I Room for improvement (selected topics. . . )
I Relaxing strong assumptions.
I Incorporating other resampling schemes.
I Obtaining stronger modes of convergence.
I (Formal analysis of n ≈ N.)
I Incorporating conditional SMC.
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