Introduction to Markov chain Monte Carlo

Adam M. Johansen ${ }^{1}$

February 11, 2019
${ }^{1}$ Based on slides produced by Anthony Lee in previous years.

Outline

Motivation

What is a Markov chain?

First stability properties

Constructing π-invariant Markov chains

Central limit theorems

Geometric ergodicity

Final remarks

Outline

Motivation

What is a Markov chain?

First stability properties

Constructing π-invariant Markov chains

Central limit theorems

Geometric ergodicity

Final remarks

Introduction

- This is a module on stochastic simulation.
- Monte Carlo methods are certainly stochastic simulation techniques.
- They are also very important in many modern statistical analyses.
- I will cover "fundamental" theory and methodology for Markov chain Monte Carlo.
- fundamental here means I cannot even cover 1% of what is interesting.
- There are other methods of stochastic simulation, and also deterministic counterparts to Monte Carlo.
- I hope that after the lectures you will understand why we can use MCMC, and how to construct your own Monte Carlo Markov chains.

Approximating expectations

- Let $(\mathrm{X}, \mathcal{X})$ be a measurable space. We have a target probability measure $\pi: \mathcal{X} \rightarrow[0,1]$ and we would like to approximate the quantity

$$
\pi(f):=\int_{X} f(x) \pi(\mathrm{d} x)
$$

where $f \in L_{1}(\mathrm{X}, \pi)=\{f: \pi(|f|)<\infty\}$, i.e., expectations w.r.t. π.

- We will assume that one can calculate π 's associated density $\pi: \mathrm{X} \rightarrow \mathbb{R}_{+}$w.r.t. some dominating measure (e.g., Lebesgue or counting).
- A major motivation for this in statistics is to compute posterior expectations in Bayesian inference.

Posterior expectations

- We have
- a prior probability distribution for an unknown X-valued parameter with probability density function $p: \mathrm{X} \rightarrow \mathbb{R}_{+}$, and
- a collection of probability distributions with probability density functions $\left\{g_{x} ; x \in \mathrm{X}\right\}$ for some observed data $y \in \mathrm{Y}$.
- We can use Bayes' rule to obtain that the conditional distribution of the unknown X -valued parameter is defined by the probability density function

$$
\pi(x)=\frac{p(x) g_{x}(y)}{\int_{X} p(z) g_{z}(y) \mathrm{d} z}
$$

- Posterior expectations $\pi(f)$ cannot generally be calculated analytically, and so numerical methods are needed to approximate them.

The Strong Law of Large Numbers

Theorem (Strong Law of Large Numbers)

Assume $\left(X_{n}\right)_{n \geq 1}$ is a sequence of i.i.d. random variables distributed according to μ. Define

$$
S_{n}(f):=\sum_{i=1}^{n} f\left(X_{i}\right)
$$

for $f \in L_{1}(X, \mu)$. Then

$$
\lim _{n \rightarrow \infty} \frac{1}{n} S_{n}(f)=\mu(f)
$$

almost surely.

Monte Carlo Integration

- We can apply the SLLN with $\mu=\pi$ to use $n^{-1} S_{n}(f)$ as an estimate of $\pi(f)$, if we can sample according to π.
- There are some ways of doing this in special cases, e.g.,
- inverse transform,
- composition,
- special representations in terms of random variables we can simulate easily.
- other methods in, e.g., Devroye [1986]
- Most of the time in practical applications, we cannot easily sample according to π.

Radon-Nikodym derivative

- If μ and ν are densities w.r.t. the Lebesgue measure and $\nu(x)>0 \Rightarrow \mu(x)>0$ then

$$
\int_{A} \frac{\nu(x)}{\mu(x)} \mu(x) \mathrm{d} x=\int_{A} \nu(x) \mathrm{d} x=\nu(A)
$$

for an arbitrary measurable A.

- If μ and ν are σ-finite measures on (X, \mathcal{X}) and μ dominates ν ($\nu \ll \mu)$ then there is a function f such that

$$
\int_{A} f(x) \mu(\mathrm{d} x)=\nu(A), \quad A \in \mathcal{X}
$$

and we call it the Radon-Nikodym derivative $\frac{\mathrm{d} \nu}{\mathrm{d} \mu}$.

Rejection sampling

Rejection sampling

1. Sample $X \sim \mu$.
2. With prob. $\frac{1}{M} \frac{\pi(X)}{\mu(X)}$ output X, otherwise go back to step 1 .

- A general purpose method for sampling from π when we can sample from μ and

$$
\sup _{x} \frac{\pi(x)}{\mu(x)} \leq M<\infty
$$

- Letting $Y=\mathbb{I}\left(U<\frac{1}{M} \frac{\pi(X)}{\mu(X)}\right)$ where U is uniformly distributed on $[0,1]$ we obtain

$$
\begin{aligned}
\operatorname{Pr}(X \in A \mid Y=1) & =\frac{\operatorname{Pr}(X \in A, Y=1)}{\operatorname{Pr}(Y=1)} \\
& =\frac{\int_{A} \frac{1}{M} \frac{\pi(x)}{\mu(x)} \mu(x) \mathrm{d} x}{\int_{X} \frac{1}{M} \frac{\pi(x)}{\mu(x)} \mu(x) \mathrm{d} x}=\pi(A)
\end{aligned}
$$

Cost of rejection sampling

- We have

$$
\operatorname{Pr}(Y=1)=\int_{X} \frac{1}{M} \frac{\pi(x)}{\mu(x)} \mu(x) \mathrm{d} x=\frac{1}{M}
$$

- It follows that the time until acceptance is a geometric random variable with success probability M^{-1}.
- The expected time to obtain a single sample is M.
- In many practical applications M is prohibitively large.
- Toy example: consider what happens as d increases when $\pi(x)=\prod_{i=1}^{d} p\left(x_{i}\right), \mu(x)=\prod_{i=1}^{d} g\left(x_{i}\right)$ and $\sup _{x} \frac{p(x)}{g(x)}>1$.
- Practical intuition: for complicated π we do not usually know how to find a "good" μ.

Importance sampling

- Recall that $\left(X_{n}\right)_{n \geq 1}$ is a sequence of i.i.d. μ-distributed random variables.
- We again appeal to the SLLN, but now assume only that $\pi \ll \mu$ and we define

$$
\tilde{f}(x):=f(x) w(x), \quad x \in X
$$

where $f \in L_{1}(\mathrm{X}, \pi)$ is the function defining the expectation of interest and

$$
w(x):=\frac{\pi(x)}{\mu(x)}, \quad x \in X
$$

is the "importance weight" function.

- It follows that

$$
\mu(\tilde{f})=\int_{X} f(x) \frac{\pi(x)}{\mu(x)} \mu(x) \mathrm{d} x=\int_{X} f(x) \pi(x) \mathrm{d} x=\pi(f)
$$

Cost of importance sampling

- Consider

$$
\tilde{f}(x):=f(x) w(x)
$$

- Then if $\tilde{f} \in L_{2}(X, \mu)$ we have

$$
\operatorname{var}(\tilde{f}(X))=\int_{X} \tilde{f}(x)^{2} \mu(\mathrm{~d} x)-\mu(\tilde{f})^{2}=\mu\left(\tilde{f}^{2}\right)-\mu(\tilde{f})^{2}
$$

- One can then obtain

$$
\operatorname{var}\left(n^{-1} S_{n}(\tilde{f})\right)=\frac{\mu\left(\tilde{f}^{2}\right)-\mu(\tilde{f})^{2}}{n}
$$

- Note: it is possible that $f \in L_{2}(X, \pi)$ but $\tilde{f} \notin L_{2}(X, \mu)$.
- in practice, one can avoid this by having $\sup _{x} \pi(x) / \mu(x)<\infty$.
- In many practical situations, the numerator of this expression is prohibitively large.

Self-normalized importance sampling

- In many situations, one can only compute π up to an unknown normalizing constant.
- We define the self-normalized estimate via

$$
I_{n}(f, \pi, \mu):=\frac{S_{n}(\tilde{f})}{S_{n}(w)}=\frac{\sum_{i=1}^{n} f\left(X_{i}\right) w\left(X_{i}\right)}{\sum_{i=1}^{n} w\left(X_{i}\right)}
$$

and it is clear that one only needs to know π up to an unknown normalizing constant.

- Then

$$
\lim _{n \rightarrow \infty} I_{n}(f, \pi, \mu)=\pi(f)
$$

almost surely.

- If $\int_{\mathrm{X}}\left[1+f(x)^{2}\right] \frac{\pi(x)}{\mu(x)} \pi(x) \mathrm{d} x<\infty$ then asymptotically the variance of $I_{n}(f)$ is

$$
\frac{1}{n} \int_{X}[f(x)-\pi(f)]^{2} \frac{\pi(x)}{\mu(x)} \pi(x) \mathrm{d} x
$$

- Note: this expression can be smaller than $\operatorname{var}\left(n^{-1} S_{n}(\tilde{f})\right)$.

Outline

Motivation

What is a Markov chain?

First stability properties

Constructing π-invariant Markov chains

Central limit theorems

Geometric ergodicity

Final remarks

Markov chains and stochastic stability

- If unspecified, the source of a definition or theorem is Meyn, S. and Tweedie, R. L. (2009) Markov chains and stochastic stability, 2nd ed.
- This is a great single and reasonably accessible source for a lot of what you might want to know about Markov chains on a general state space.
- There is a free version online at http://probability.ca/MT/

Time homogeneous, discrete time Markov chains

- We will assume now that \mathcal{X} is countably generated, e.g. the Borel σ-algebra on \mathbb{R}^{d}.
- Let $\mathbf{X}:=\left(X_{n}\right)_{n \geq 0}$ be a discrete time Markov chain evolving on X with some initial distribution for X_{0}.
- This means that for $A \in \mathcal{X}$
$\operatorname{Pr}\left(X_{n} \in A \mid X_{0}=x_{0}, \ldots, X_{n-1}=x_{n-1}\right)=\operatorname{Pr}\left(X_{n} \in A \mid X_{n-1}=x_{n-1}\right)$,
i.e. X possesses the Markov property.
- We will restrict our attention to the time-homogeneous case:

$$
\operatorname{Pr}\left(X_{n} \in A \mid X_{n-1}=x\right)=\operatorname{Pr}\left(X_{1} \in A \mid X_{0}=x\right)
$$

for any $n \in \mathbb{N}$.

- Then \mathbf{X} is described by a single Markov transition kernel $P: \mathrm{X} \times \mathcal{X} \rightarrow[0,1]$ with

$$
\operatorname{Pr}\left(X_{1} \in A \mid X_{0}=x\right)=P(x, A)
$$

Example: simple random walk on \mathbb{N}

- Let $p, q \in(0,1]$ and $r \in[0,1)$ such that $p+q+r=1$, and

$$
P(i, j):=\left\{\begin{array}{ll}
p & j=i-1, \\
q & j=i+1, \\
r & j=i, \\
0 & \text { otherwise },
\end{array} \quad i \geq 2\right.
$$

with $P(1,1)=p+r$ and $P(1,2)=q$.

Example: simple random walk on \mathbb{N}

- How can we characterize the behaviour of \mathbf{X} ?
- Does it "escape to infinity"?
- Will it visit every point at least once?
- Will it visit each point infinitely many times?
- Does it have a "stationary distribution"?
- Does it look the same forwards and backwards in time?
- How do the partial sums

$$
S_{n}(f):=\sum_{i=1}^{n} f\left(X_{i}\right)
$$

behave?

Example: simple random walk on \mathbb{N}

When $q<p$:

- It is recurrent - it almost surely visits every state infinitely often.
- It is therefore not transient.
- It has an invariant probability measure $\mu(x)=\operatorname{Geo}(x ; q / p)$.
- It is (time)-reversible - if $X_{0} \sim \mu$ then

$$
\mathcal{L}\left(X_{0}, X_{1}, \ldots, X_{n}\right)=\mathcal{L}\left(X_{n}, X_{n-1}, \ldots, X_{0}\right)
$$

- It is irreducible.
- The proportion of time it spends at each point x converges almost surely to $\mu(x)$.
- It is aperiodic and for each $i \in \mathbb{N}$ (irrespective of x_{0}),

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left(X_{n}=i \mid X_{0}=x_{0}\right)=\mu(i)
$$

- The list could go on...

Example: simple random walk on \mathbb{N}

When $q>p$:

- It is transient - the expected number of visits to each state is finite.
- It does not have an invariant probability measure.
- It is not time-reversible.
- It is aperiodic and irreducible.

When $q=p$:

- It is recurrent.
- It does not have an invariant probability measure.
- It is not time-reversible.
- It is aperiodic and irreducible.

Our interest is in Markov chains that behave as in the case $q<p$.

Stability properties of Markov chains

- Many of the properties discussed above can be verified in this specific case in a number of different ways.
- We are interested, however, in more general classifications.
- Consider a simple random walk on \mathbb{R}_{+}with $X_{0}=0$ and

$$
X_{n}=\max \left\{X_{n-1}+W_{n}, 0\right\}
$$

where $\left(W_{n}\right)_{n \geq 1}$ is a sequence of i.i.d. random variables with mean β.

- Is X recurrent or transient? Does it have an invariant (probability) measure?
- Clearly this chain has some differences to the simple random walk on \mathbb{N}.
- e.g., it does not visit an arbitrary $x \in \mathbb{R}_{+} \backslash\{0\}$ with positive probability.
- Since most statistical applications involve $X \subseteq \mathbb{R}^{d}$ we need to discuss properties of Markov chains on general state spaces.

Why do we care?

Theorem (An Ergodic Theorem (an LLN for Markov chains))
Suppose that $\mathbf{X}=\left(X_{n}\right)_{n \geq 0}$ is a positive Harris Markov chain with invariant probability measure π. Then for any
$f \in L_{1}(X, \pi)=\{f: \pi(|f|)<\infty\}$,

$$
\lim _{n \rightarrow \infty} \frac{1}{n} S_{n}(f)=\pi(f)
$$

almost surely for any initial distribution for X_{0}.

- We need to understand some of these definitions.

Outline

Motivation

What is a Markov chain?

First stability properties

Constructing π-invariant Markov chains

Central limit theorems

Geometric ergodicity

Final remarks

General state spaces

- When considering a Markov chain X on a general state space, we must start to think about sets $A \in \mathcal{X}$ rather than points $x \in \mathrm{X}$.
- When statements about the chain X are made in probability P or expectation E , we can use a subscript x or μ to denote the "initial" or marginal distribution of X_{0}.
- We define P^{n} to be the n-step transition kernel by $P^{1}(x, A):=P(x, A)$ and

$$
P^{n}(x, A):=\int_{X} P(z, A) P^{n-1}(x, \mathrm{~d} z), \quad n \geq 2
$$

- We will use P to denote the linear operator associated with this Markov transition kernel, which acts to the left on measures:

$$
\mu P(A):=\int_{\mathrm{x}} \mu(\mathrm{~d} x) P(x, A)
$$

φ-irreducibility

Definition

X is φ-irreducible if φ is a measure on \mathcal{X} such that whenever $\varphi(A)>0$ and $x \in X$, there exists some n possibly depending on both x and A such that $P^{n}(x, A)>0$.

- It is important to note that this holds for every $x \in X$ and is therefore rather strong.
- One can think of \mathbf{X} having a maximal irreducibility probability measure ψ whenever it is φ-irreducible, such that (MT Proposition 4.2.2)

1. \mathbf{X} is ψ-irreducible;
2. \mathbf{X} is φ^{\prime}-irreducible if and only if $\varphi^{\prime} \ll \psi$.

Recurrent and transient sets

- We define the occupation time of a set $A \subseteq \mathrm{X}$ to be

$$
\eta_{A}:=\sum_{n=1}^{\infty} \mathbb{I}\left\{X_{n} \in A\right\}
$$

Definition

The set A is recurrent if $\mathrm{E}_{x}\left[\eta_{A}\right]=\infty$ for all $x \in A$.

Definition

The set A is uniformly transient if there exists $M<\infty$ such that $\mathrm{E}_{x}\left[\eta_{A}\right] \leq M$ for all $x \in A$.

Recurrence/transience dichotomy

- When \mathbf{X} is ψ-irreducible, a dichotomy theorem describes whether the chain \mathbf{X} is recurrent or transient.

Theorem (MT Theorem 8.0.1)

Suppose that \mathbf{X} is ψ-irreducible. Then either

1. every set $A \in \mathcal{X}$ with $\psi(A)>0$ is recurrent, and we call \mathbf{X} recurrent, or
2. there is a countable cover of X with uniformly transient sets, and we call \mathbf{X} transient.

- You can find alternative definitions of recurrence and transience in MT Appendix A, e.g., \mathbf{X} is recurrent iff

$$
\sum_{n \geq 0} P^{n}(x, A)=\infty, \quad x \in X, \quad \psi(A)>0
$$

or statements about $\mathrm{P}_{x}(\mathrm{X}$ visits A i.o. $)=1$.

Harris recurrence

- In order to make statements about \mathbf{X} regardless of the value of X_{0} one requires a stronger definition of recurrence.

Definition

A set A is Harris recurrent if $P_{x}\left(\eta_{A}=\infty\right)=1$ for all $x \in A$.

Definition

X is Harris (recurrent) if it is ψ-irreducible and every set $A \in \mathcal{X}$ such that $\psi(A)>0$ is Harris recurrent.

- The difference between recurrence and Harris recurrence is the difference between

$$
\mathrm{E}_{x}\left[\eta_{A}\right]=\infty \quad \text { and } \quad \mathrm{P}_{x}\left(\eta_{A}=\infty\right)=1
$$

Example of non-Harris recurrence

- The difference between recurrence and Harris recurrence is the difference between

$$
\mathrm{E}_{x}\left[\eta_{A}\right]=\infty \quad \text { and } \quad \mathrm{P}_{x}\left(\eta_{A}=\infty\right)=1
$$

- When $X=\mathbb{N}$, consider Charlie Geyer's example:

$$
P(1,1)=1, P(x, x+1)=1-x^{-2}, P(x, 1)=x^{-2}
$$

Then $\psi(\{x\})>0 \Longleftrightarrow x=1$, and for all $x, \mathrm{E}_{x}\left[\eta_{\{1\}}\right]=\infty$ since $P_{x}\left(X_{1}=1\right)>0$. However,

$$
\mathrm{P}_{x}\left(X_{n}=x+n \text { for all } n\right)=\prod_{j=x}^{\infty}\left(1-\frac{1}{j^{2}}\right)=\frac{x-1}{x}>0
$$

so $P_{x}\left(\eta_{\{1\}}=\infty\right)<1$.

Invariant measures

Definition

A sigma-finite measure μ is an invariant measure for \mathbf{X} if

$$
\mu P=\mu
$$

- Our interest in invariant measures is related to viewing a special version of \mathbf{X} as a stationary process.
- Indeed, assume that μ is a probability measure and that $\operatorname{Pr}\left(X_{0} \in A\right)=\mu(A)$ for all $A \in \mathcal{X}$.
- Then it is not too difficult to see that \mathbf{X} is a stationary process, i.e. the marginal distribution of $\left(X_{n}, \ldots, X_{n+k}\right)$ does not change as n varies.
- In general, invariant measures are not necessarily finite.
- When \mathbf{X} is recurrent, the unique (up to constant multiples) invariant measure for \mathbf{X} is equivalent (as a measure) to ψ (MT Theorem 10.4.9)

Positive and null chains

Definition

If \mathbf{X} is ψ-irreducible and admits an invariant probability measure then it is positive. If \boldsymbol{X} does not admit such a measure then it is null.

Example

Consider \mathbf{X} being a simple random walk on \mathbb{N} as before. If $p>q$, \mathbf{X} is positive (recurrent). If $p=q$ then \mathbf{X} is null (but) recurrent. If $q>p$ then X is (null and) transient.

The LLN again

Theorem (An Ergodic Theorem for Harris Chains)

Suppose that $\mathbf{X}=\left(X_{n}\right)_{n \geq 0}$ is a positive Harris Markov chain with invariant probability measure π. Then for any
$f \in L_{1}(X, \pi)=\{f: \pi(|f|)<\infty\}$,

$$
\lim _{n \rightarrow \infty} \frac{1}{n} S_{n}(f)=\pi(f)
$$

almost surely for any initial distribution for X_{0}.

- One can replace Harris recurrence with φ-irreducibility and positivity but then the statement holds only for π-almost all X_{0}. This is eventually a consequence of Birkhoff's Pointwise Ergodic Theorem.
- Being positive Harris implies that if an LLN holds for f and some initial distribution then it must hold for every initial distribution (MT Proposition 17.1.6).

Null recurrent vs transient: simplified classic example

- Let $\left(X_{n}^{(i)}\right)_{n \geq 1}$ be independent, simple random walks on \mathbb{Z} :
$p=q=\frac{1}{2}$, for each $i \in\{1, \ldots, d\}$.
- We have $\mathrm{P}_{0}\left(X_{n}^{(i)}=0\right)=0$ for odd n, and

$$
\mathrm{P}_{0}\left(X_{2 n}^{(i)}=0\right)=\operatorname{Pr}\left(B_{2 n}=n\right) \sim \frac{1}{\sqrt{\pi n}}
$$

where $B_{2 n}$ is a $\operatorname{Binomial}\left(2 n, \frac{1}{2}\right)$ r.v.

- Consider the Markov chain $\left(X_{n}^{(1)}, \ldots, X_{n}^{(d)}\right)$ started at 0 . Then

$$
\begin{aligned}
\mathrm{E}_{0}\left[\eta_{\{\mathbf{0}\}}\right] & =\mathrm{E}_{0}\left[\sum_{n=1}^{\infty} \mathbb{I}\left(X_{n}^{(1)}=\cdots=X_{n}^{(d)}=0\right)\right] \\
& =\sum_{n=1}^{\infty} \mathrm{P}_{0}\left(X_{2 n}^{(1)}=\cdots=X_{2 n}^{(d)}=0\right) \\
& \sim \sum_{n=1}^{\infty}(\pi n)^{-d / 2}
\end{aligned}
$$

which is infinite only for $d \in\{1,2\}$.

Outline

```
Motivation
What is a Markov chain?
First stability properties
```

Constructing π-invariant Markov chains

Central limit theorems

Geometric ergodicity

Final remarks

Motivation

- The LLN motivates the following question:

Can we construct a Harris recurrent or at least φ-irreducible Markov chain with invariant distribution π where all we compute is the density $\pi(x)$ (up to an unknown normalizing constant) for any $x \in X$?

- If so, then we can produce a realization \mathbf{X} and estimate $\pi(f)$ via $n^{-1} S_{n}(f)$ where

$$
S_{n}(f):=\sum_{i=1}^{n} f\left(X_{i}\right)
$$

- A positive, constructive answer to this question was a pivotal moment in Bayesian statistics, and many other sciences.

Metropolis-Hastings

- There are a large number of ways of constructing such Markov chains, but we will focus on the essentials.
- By far the most commonly used Markov chains in practice are constructed using Metropolis-Hastings Markov transition kernels.
- These owe their development to the seminal papers Metropolis et al. [1953] and Hastings [1970].
- Assume π has a density w.r.t. μ.
- In order to define the Metropolis-Hastings kernel for a particular target π we require only to specify a proposal Markov kernel Q admitting a density q w.r.t. μ, i.e.

$$
Q(x, \mathrm{~d} z)=q(x, z) \mu(\mathrm{d} z)
$$

Metropolis-Hastings

To simulate according to $P_{\mathrm{MH}}(x, \cdot)$:

1. Simulate $Z \sim Q(x, \cdot)$.
2. With prob. $\alpha_{\mathrm{MH}}(x, Z)$ output Z; otherwise, output x, where

$$
\alpha_{\mathrm{MH}}(x, z):=1 \wedge \frac{\pi(z) q(z, x)}{\pi(x) q(x, z)}
$$

- Equivalently,

$$
P_{\mathrm{MH}}(x, A):=\int_{A} \alpha_{\mathrm{MH}}(x, z) Q(x, \mathrm{~d} z)+r_{\mathrm{MH}}(x) \mathbf{1}_{A}(x)
$$

where

$$
r_{\mathrm{MH}}(x):=1-\int_{\mathrm{X}} \alpha_{\mathrm{MH}}(x, z) Q(x, \mathrm{~d} z)
$$

- We need only know the density π up to a normalizing constant.

Metropolis-Hastings validity

- In order to show that P leaves π invariant, we need to check

$$
\pi P=\pi
$$

i.e., that

$$
\int_{\mathrm{X}} \pi(\mathrm{~d} x) P(x, A)=\pi(A), \quad \forall A \in \mathcal{X}
$$

- Verifying $\pi P=\pi$ is extremVely difficult in general.
- Determining the invariant measure of a given Markov kernel is also v . difficult.
- The π-invariance of the Metropolis-Hastings Markov chain is a special case of the π-invariance of π-reversible Markov chains.

Reversible Markov chains

Definition

A π-reversible Markov chain is a stationary Markov chain with invariant probability measure π satisfying

$$
\mathrm{P}_{\pi}\left(X_{0} \in A_{0}, \ldots, X_{n} \in A_{n}\right)=\mathrm{P}_{\pi}\left(X_{0} \in A_{n}, \ldots, X_{n} \in A_{0}\right)
$$

- It suffices to check that

$$
\mathrm{P}_{\pi}\left(X_{0} \in A, X_{1} \in B\right)=\mathrm{P}_{\pi}\left(X_{0} \in B, X_{1} \in A\right)
$$

i.e.

$$
\int_{A} \pi(\mathrm{~d} x) P(x, B)=\int_{B} \pi(\mathrm{~d} x) P(x, A)
$$

- Moreover, π-invariance is obvious by considering $A=\mathrm{X}$:

$$
\int_{\mathrm{X}} \pi(\mathrm{~d} x) P(x, B)=\int_{B} \pi(\mathrm{~d} x) P(x, \mathrm{X})=\pi(B)
$$

Reversible Markov chains

- That $\int_{A} \pi(\mathrm{~d} x) P(x, B)=\int_{B} \pi(\mathrm{~d} x) P(x, A)$ implies reversibility is slightly laborious in the general state space context.
- For intuition, consider a discrete state space where the property becomes

$$
\mathrm{P}_{\pi}\left(X_{0}=x_{0}, \ldots, X_{n}=x_{n}\right)=\mathrm{P}_{\pi}\left(X_{0}=x_{n}, \ldots, X_{n}=x_{0}\right)
$$

which is indeed implied by $\pi(x) P(x, z)=\pi(z) P(z, x)$ since

$$
\begin{aligned}
& \mathrm{P}_{\pi}\left(X_{0}=x_{0}, \ldots, X_{n}=x_{n}\right) \\
= & \pi\left(x_{0}\right) P\left(x_{0}, x_{1}\right) \cdots P\left(x_{n-1}, x_{n}\right) \\
= & P\left(x_{1}, x_{0}\right) \pi\left(x_{1}\right) P\left(x_{1}, x_{2}\right) \cdots P\left(x_{n-1}, x_{n}\right) \\
= & P\left(x_{1}, x_{0}\right) P\left(x_{2}, x_{1}\right) \cdots P\left(x_{n}, x_{n-1}\right) \pi\left(x_{n}\right) \\
= & \mathrm{P}_{\pi}\left(x_{0}=x_{n}, \ldots, X_{n}=x_{0}\right) .
\end{aligned}
$$

Verifying π-reversibility for Metropolis-Hastings

- When $P(x, A)=\int_{A} p(x, z) \mu(\mathrm{d} z)+r(x) 1_{A}(x)$, we can verify reversibility by considering the densities $\pi(x)$ and $p(x, z)$ each w.r.t μ. Indeed if the detailed balance condition

$$
\pi(x) p(x, z)=\pi(z) p(z, x), \quad x, z \in X
$$

holds then

$$
\begin{aligned}
& \int_{A} \pi(\mathrm{~d} x) P(x, B) \\
= & \int_{A} \pi(x)\left[\int_{B} p(x, z) \mu(\mathrm{d} z)+r(x) \mathbf{1}_{B}(x)\right] \mu(\mathrm{d} x) \\
= & \int_{B} \pi(z)\left[\int_{A} p(z, x) \mu(\mathrm{d} x)\right] \mu(\mathrm{d} z)+\int_{A \cap B} \pi(x) r(x) \mu(\mathrm{d} x) \\
= & \int_{B} \pi(z)\left[\int_{A} p(z, x) \mu(\mathrm{d} x)+r(z) \mathbf{1}_{A}(z)\right] \mu(\mathrm{d} z) \\
= & \int_{B} \pi(\mathrm{~d} x) P(x, A) .
\end{aligned}
$$

Verifying π-reversibility for Metropolis-Hastings

- The benefit of detailed balance is that it need only be checked pointwise - no integration necessary!
- We now verify for P_{MH} :

$$
\begin{aligned}
\pi(x) p_{\mathrm{MH}}(x, z) & =\pi(x) q(x, z)\left[1 \wedge \frac{\pi(z) q(z, x)}{\pi(x) q(x, z)}\right] \\
& =[\pi(x) q(x, z) \wedge \pi(z) q(z, x)] \\
& =\pi(z) q(z, x)\left[\frac{\pi(x) q(x, z)}{\pi(z) q(z, x)} \wedge 1\right] \\
& =\pi(z) p_{\mathrm{MH}}(z, x) .
\end{aligned}
$$

- This is extremely versatile and most Markov chains used in statistics are constructed using reversible Markov transition kernels.

What about Harris recurrence?

- That P_{MH} is π-reversible implies that if it is also π-irreducible then it is positive and has the right invariant probability measure.
- Verifying φ-irreducibility is typically very easy.
- e.g., $\pi(A)>0, A \in \mathcal{X}$ and $q(x, A)>0, x \in X, A \in \mathcal{X}$.

Theorem (Tierney [1994, Corollary 2], Roberts and Rosenthal [2006, Theorem 8])

Every π-irreducible, full-dimensional Metropolis-Hastings Markov chain is Harris recurrent.

- That's all you need to know to construct some sophisticated Markov chains!

Random walk Metropolis-Hastings

- Let π be given and let Q satisfy $q(x, z)=q(\|z-x\|)$. Then the Metropolis-Hastings acceptance probability is

$$
\alpha_{\mathrm{MH}}(x, z)=1 \wedge \frac{\pi(z)}{\pi(x)}
$$

Random walk Metropolis-Hastings

- Choice of the proposal is important, even though the Markov chain is "valid".

- On the left, the variance of $Q(x, \cdot)$ is too small and on the right it is too large.

Independent Metropolis-Hastings

- One can even choose $Q(x, \cdot)=q(\cdot)$ to be independent of x.
- Then we have

$$
\alpha_{\mathrm{MH}}(x, z)=1 \wedge \frac{\pi(z) q(x)}{\pi(x) q(z)}
$$

- It can be difficult to find a good q in practice, but we will return to this example later.
- As before, it is helpful if

$$
\sup _{x} \frac{\pi(x)}{q(x)}<\infty .
$$

Hybrid Markov chains

- We can easily construct π-invariant Markov chains out of different π-invariant Markov transition kernels.
- In practice, such hybrid chains are commonplace.
- the Gibbs sampler is an example.
- Generally speaking, we will have $\left(P_{s}\right)_{s \in S}$ and we will try to make a mixture or cycle or combination of the two out of them.

Mixtures of Markov kernels

Definition

A Markov kernel P is a mixture of the Markov kernels $\left(P_{s}\right)_{s \in S}$ if

$$
P(x, A)=\sum_{s \in S} w(s) P_{s}(x, A)
$$

where w is a p.m.f. (independent of x). Alternatively, $P=\sum_{s \in S} w(s) P_{s}$.

Fact

A mixture of π-invariant Markov kernels is π-invariant.

Proof.

$$
\pi P(A)=\sum_{s \in S} w(s) \pi P_{s}(A)=\sum_{s \in S} w(s) \pi(A)=\pi(A)
$$

Cycles of Markov kernels

Definition

A Markov kernel P is a cycle of Markov kernels P_{1} and P_{2} if

$$
P(x, A)=\int_{X} P_{1}(x, \mathrm{~d} z) P_{2}(z, A)
$$

i.e., $P=P_{1} P_{2}$.

Fact

A cycle of π-invariant Markov kernels is π-invariant.

Proof.

$$
\pi P(A)=\pi P_{1} P_{2}(A)=\pi P_{2}(A)=\pi(A)
$$

Remarks on hybrid chains

- If P is φ-irreducible then so is a mixture including P with positive probability.
- The same is not necessarily true for cycles, but it is often true in practice.
- A mixture of π-reversible Markov kernels is π-reversible.
- A cycle of π-reversible Markov kernels is generally not π-reversible.
- We will now see a special kind of hybrid Markov chain called the Gibbs sampler.

The Gibbs sampler

- Let $X=X_{1} \times \cdots \times X_{d}$.
- Let $-i$ denote the sequence $(1, \ldots i-1, i+1, \ldots, d)$ with the convention that $(1,0)=(d+1, d)=()$ is the empty sequence.
- If $s=\left(s_{1}, \ldots, s_{j}\right)$ then let $x_{s}:=\left(x_{s_{1}}, x_{s_{2}}, \ldots, x_{s_{j}}\right)$.
- Assume we can sample from each "full" conditional distribution defined by

$$
\pi_{i, x_{-i}}(A)=\operatorname{Pr}\left(X_{i} \in A \mid X_{-i}=x_{-i}\right)
$$

which has a density $\pi_{i}\left(\cdot \mid x_{-i}\right)$ w.r.t. some dominating μ.

- Now define

$$
P_{i}\left(x, A_{1} \times \cdots \times A_{d}\right):=\pi_{i, x_{-i}}\left(A_{i}\right) \prod_{j \neq i} \mathbb{I}\left(x_{j} \in A_{j}\right)
$$

- It follows that P_{i} is in fact a Metropolis-Hastings kernel with acceptance probability 1 since

$$
\alpha_{\mathrm{MH}}(x, z)=1 \wedge \frac{\pi\left(z_{1}, \ldots, z_{d}\right) \pi_{i}\left(x_{i} \mid z_{-i}\right)}{\pi\left(x_{1}, \ldots, x_{d}\right) \pi_{i}\left(z_{i} \mid x_{-i}\right)}=\frac{\pi\left(z_{-i}\right)}{\pi\left(x_{-i}\right)}=1 .
$$

The Gibbs sampler

- Gibbs samplers are commonly used to sample from Bayesian hierarchical models.
- Example:

$$
\begin{aligned}
Y_{i} \mid \theta_{i} & \sim F_{\theta_{i}}, & & i \in\{1, \ldots, n\} \\
\theta_{i} \mid \theta_{0} & \sim G_{\theta_{0}}, & & i \in\{1, \ldots, n\} \\
\theta_{0} & \sim H . & &
\end{aligned}
$$

- By fixing, e.g., $\left(\theta_{1}, \ldots, \theta_{n}\right)$ one may know the distribution of θ_{0} conditional upon $\theta_{1}, \ldots, \theta_{n}$ and by fixing θ_{0} one may know the distribution of $\theta_{1}, \ldots, \theta_{n}$ conditional upon θ_{0} and Y_{1}, \ldots, Y_{n}.
- Originally introduced in statistical physics, then to statistics in Geman and Geman [1984] and popularized in Gelfand and Smith [1990]

Random scan and deterministic scan

- There are two major approaches to constructing a Gibbs sampler.
- Random scan:

$$
P(x, A)=\sum_{s \in S} w(s) P_{s}(x, A)
$$

with $S=\{1, \ldots, d\}$ and usually $w(s)=d^{-1}$ for each $s \in S$.

- Deterministic scan:

$$
P=P_{\sigma(1)} \ldots P_{\sigma(d)}
$$

where σ is some permutation of $(1, \ldots, d)$.

- These are just mixtures or cycles of the constituent kernels.

Gibbs sampler: toy example

- Consider the case $\mathrm{X}=\mathbb{R} \times \mathbb{R}$ and $\pi(x)=\mathcal{N}(x, 0, \Sigma)$, where

$$
\Sigma=\left(\begin{array}{ll}
1 & \rho \\
\rho & 1
\end{array}\right), \quad \rho \in(-1,1) .
$$

- Then we have $\pi\left(x_{1} \mid x_{2}\right)=\mathcal{N}\left(x_{1} ; \rho x_{2}, 1-\rho^{2}\right)$ and $\pi\left(x_{2} \mid x_{1}\right)=\mathcal{N}\left(x_{2} ; \rho x_{1}, 1-\rho^{2}\right)$.
- Below we have a plot of the first coordinate of \mathbf{X} when $\rho=.1$ (left) and $\rho=.99$ (right).

Gibbs sampler: blocking

- Imagine that $X=\mathbb{R}^{3}$ and the correlation between the first two coordinates is large whilst the third is not very correlated.
- Then it makes sense to treat $\left(x_{1}, x_{2}\right)$ and x_{3} as two components in a Gibbs sampler.
- This is called "blocking", as one updates several variables together from their "joint" conditional.

Metropolis-within-Gibbs samplers

- In some cases, only some of the conditional distributions can be sampled from.
- So for any i such that we can't sample from $\pi_{i, x_{-i}}$ we can instead perform a Metropolis-Hastings update that updates only the i th coordinate of x.

Auxiliary variables

- Let $(\mathrm{Y}, \mathcal{Y})$ be a measurable space.
- Let $\tilde{\pi}$ be a probability measure on $\mathcal{X} \otimes \mathcal{Y}$ such that $\tilde{\pi}(A, Y)=\pi(A)$.
- Then it is clear that if we can construct a positive Harris $\tilde{\pi}$-invariant Markov chain $\left(X_{n}, Y_{n}\right)_{n \geq 1}$, we can use

$$
\frac{1}{n} \sum_{i=1}^{n} f\left(X_{i}\right)
$$

to estimate $\pi(f)$ - we "discard" the auxiliary variables $\left(Y_{n}\right)_{n \geq 1}$.

- There are a huge number of auxiliary variable methods now.
- I will cover three interesting examples.

Latent variable model

- Consider a target density where

$$
\pi(x) \propto p(x) \int_{Y} g(y) f(x, y) \mathrm{d} y
$$

- For example, y represents a latent variable whose conditional density given x is $f(x, \cdot)$ and $g(y)$ is the conditional density of some observed data given y.
- Assume further that we cannot evaluate the function $x \mapsto \int_{Y} g(y) f(x, y) \mathrm{d} y$ pointwise.
- We can instead define an extended target density

$$
\tilde{\pi}(x, y) \propto p(x) g(y) f(x, y)
$$

and construct a Markov chain with invariant distribution $\tilde{\pi}$.

- More complicated alternatives: pseudo-marginal methods.

Pseudo-marginal methods

- For each $x \in X$ let $W \sim Q_{x}$ be a non-negative random variable with $\mathbb{E}_{x}[W]=\pi(x)$.
- Define

$$
\tilde{\pi}(x, w)=\pi(x)\left[Q_{x}(w) \frac{w}{\pi(x)}\right] .
$$

and observe that $\tilde{\pi}(x)=\int_{\mathbb{R}_{+}} \tilde{\pi}(x, w) \mathrm{d} w=\pi(x)$.

- Metropolis-Hastings for $\tilde{\pi}$: at (x, w) simulate $Z \sim q(x, \cdot)$ and $U \sim Q_{z}$ and "accept" with probability

$$
\begin{aligned}
\alpha(x, w ; Z, U) & =1 \wedge \frac{\tilde{\pi}(Z, U) q(Z, x) Q_{x}(w)}{\tilde{\pi}(x, w) q(x, Z) Q_{Z}(U)} \\
& =1 \wedge \frac{U}{w} \cdot \frac{q(Z, x)}{q(x, Z)}
\end{aligned}
$$

- No need to evaluate π exactly!

Hamiltonian Markov chain Monte Carlo (v. briefly)

- This Markov chain is motivated by Hamiltonian dynamics in physics.
- Assume $X=\mathbb{R}^{d}$ and π is differentiable.
- We imagine a particle in X evolving in continuous time according to fictitious dynamics according to π and an auxiliary momentum variable p.
- Hamiltonian dynamics are time reversible and measure-preserving:
- if x is distributed according to $\tilde{\pi}$ and follows these dynamics to produce Z then $Z \sim \tilde{\pi}$.
- The formulation is to use $H=U+V$, where U is the potential energy and V the kinetic energy.
- U is related to π and V describes the momentum variables.
- We have $\tilde{\pi}(x, p) \propto \exp (-H(x, p))=\exp (-U(x)-V(p))$.
- In practice, we cannot simulate the system in continuous time so discretization is required.

Simple Hamiltonian Markov chain Monte Carlo

- Define $\tilde{\pi}(x, p):=\pi(x) \mathcal{N}(p ; 0,1)$ and set parameters $h=\frac{1}{L}$, $L \in \mathbb{N}$ and $T \in \mathbb{N}$.
- The following "leapfrog" scheme is an approximation of Hamiltonian dynamics in one dimension.
- At (x, p), sample $P_{0} \sim \mathcal{N}(\cdot ; 0,1)$ and set $Z_{0}=x$.
- For $I=0, \ldots, L T-1$:
- Set $P_{\left(l+\frac{1}{2}\right) h}=P_{l h}+\frac{h}{2} \frac{\mathrm{~d}}{\mathrm{~d} x} \log \pi\left(Z_{l h}\right)$.
- Set $Z_{(1+1) h}=Z_{l h}+h P_{\left(1+\frac{1}{2}\right) h}$.
- Set $P_{(1+1) h}=P_{\left(1+\frac{1}{2}\right) h}+\frac{h}{2} \frac{\mathrm{~d}}{\mathrm{~d} x} \log \pi\left(Z_{(1+1) h}\right)$.
- Accept $(z, q):=\left(Z_{T}, P_{T}\right)$ with probability

$$
\alpha_{\mathrm{MH}}(x, p ; z, q)=1 \wedge \frac{\tilde{\pi}(z, q)}{\tilde{\pi}(x, p)}
$$

HMC: brief explanation

- We have $U(x)=-\log \pi(x)$ and $V(p)=C(M)+\frac{1}{2} p^{T} M^{-1} p:$

$$
\tilde{\pi}(x, p)=\exp (-U(x)-V(p))=\pi(x) \mathcal{N}(p ; 0, M)
$$

- The Hamiltonian dynamics are given by

$$
\frac{\mathrm{d} p}{\mathrm{~d} t}=-\frac{\partial U}{\partial x}=\frac{1}{2} \nabla \log \pi(x), \quad \frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{\partial V}{\partial p}=M^{-1} p .
$$

- The h in the algorithm is a discretization step size.
- The deterministic part is "volume preserving" and reversible, the proposal is "symmetric".
- The acceptance probability corrects the time discretization: by discretizing, energy is not preserved.

Multivariate Hamiltonian Markov chain Monte Carlo

- Define $\tilde{\pi}(x, p):=\pi(x) \mathcal{N}(p ; 0, M)$ and set parameters $h=\frac{1}{L}$, $L \in \mathbb{N}$ and $T \in \mathbb{N}$.
- At (x, p), sample $P_{0} \sim \mathcal{N}(\cdot ; 0, M)$ and set $Z_{0}=x$.
- For $I=0, \ldots, L T-1$:
- Set $P_{\left(I+\frac{1}{2}\right) h}=P_{l h}+\frac{h}{2} \nabla \log \pi\left(Z_{l h}\right)$.
- Set $Z_{(l+1) h}=Z_{l h}+h M^{-1} P_{\left(I+\frac{1}{2}\right) h}$.
- Set $P_{(I+1) h}=P_{\left(I+\frac{1}{2}\right) h}+\frac{h}{2} \nabla \log \pi\left(Z_{(I+1) h}\right)$.
- Accept $(z, q):=\left(Z_{T}, P_{T}\right)$ with probability

$$
\alpha_{\mathrm{MH}}(x, p ; z, q)=1 \wedge \frac{\tilde{\pi}(z, q)}{\tilde{\pi}(x, p)}
$$

- M is a "mass matrix". The choice of M, L and T is important.

Outline

Motivation

What is a Markov chain?

First stability properties

Constructing π-invariant Markov chains

Central limit theorems

Geometric ergodicity

Final remarks

Central limit theorems

- Recall that $S_{n}(f):=\sum_{i=1}^{n} f\left(X_{i}\right)$, for some $f \in L_{1}(X, \pi)$.

Definition

A central limit theorem holds for f if there exists a constant $\sigma^{2}(f)<\infty$ such that

$$
\frac{1}{\sqrt{n}} S_{n}(\bar{f}) \xrightarrow{d} \mathcal{N}\left(0, \sigma^{2}(f)\right)
$$

as $n \rightarrow \infty$, where $\bar{f}=f-\pi(f)$.

- When a CLT holds for f and a particular chain \mathbf{X} then it is an indication that results can be reliable.
- Perhaps more obvious that if a CLT does not hold, then it is unusual for $n^{-1} S_{n}(f)$ to be close to $\pi(f)$.

Central limit theorems

- A huge amount of research has gone into characterizations of when a CLT holds.
- In some situations one can verify that it holds!
- We cannot cover even a small fraction of this research.
- Instead, we will look at important classifications of Markov chains for which we can be assured that a CLT holds for all or nearly all reasonable functions f.

Some central limit theorems

Theorem ([Cogburn et al., 1972])

Assume that \mathbf{X} is positive Harris and uniformly ergodic and that $\pi\left(f^{2}\right)<\infty$. Then a CLT holds for f and

$$
\sigma^{2}(f)=\mathrm{E}_{\pi}\left[\bar{f}\left(X_{0}\right)^{2}\right]+2 \sum_{k=1}^{\infty} \mathrm{E}_{\pi}\left[\bar{f}\left(X_{0}\right) \bar{f}\left(X_{k}\right)\right]<\infty
$$

Some central limit theorems

Theorem ([lbragimov and Linnik, 1971, Chan and Geyer, 1994])

Assume that \mathbf{X} is positive Harris and geometrically ergodic with invariant probability measure π, and that $\pi\left(|f|^{2+\delta}\right)<\infty$ for some $\delta>0$. Then a CLT holds for f and

$$
\sigma^{2}(f)=\mathrm{E}_{\pi}\left[\bar{f}\left(X_{0}\right)^{2}\right]+2 \sum_{k=1}^{\infty} \mathrm{E}_{\pi}\left[\bar{f}\left(X_{0}\right) \bar{f}\left(X_{k}\right)\right]<\infty .
$$

Some central limit theorems

Theorem ([Roberts and Rosenthal, 1997])

Assume that \mathbf{X} is positive Harris, π-reversible and geometrically ergodic, and that $\pi\left(f^{2}\right)<\infty$. Then a CLT holds for f and

$$
\sigma^{2}(f)=\mathrm{E}_{\pi}\left[\bar{f}\left(X_{0}\right)^{2}\right]+2 \sum_{k=1}^{\infty} \mathrm{E}_{\pi}\left[\bar{f}\left(X_{0}\right) \bar{f}\left(X_{k}\right)\right]<\infty .
$$

Remarks

- There are a number of different CLTs, with different conditions.
- There are also different proof techniques and different expressions for $\sigma^{2}(f)$.
- It appears from the above that uniform and geometric ergodicity are beneficial properties.
- While true, they are not essential nor necessarily better than non-geometrically ergodic counterparts in specific settings.

Asymptotic variance

- The expression for $\sigma^{2}(f)$ we have seen is not unusual.
- Imagine \mathbf{X} with initial distribution π and $f \in L_{2}(X, \pi)$. Then

$$
\begin{aligned}
\operatorname{var}\left(S_{n}(f)\right) & =\operatorname{var}\left(S_{n}(f)-\pi(f)\right)=\operatorname{var}\left(S_{n}(\bar{f})\right) \\
& =\mathrm{E}_{\pi}\left[\left\{\sum_{i=1}^{n} \bar{f}\left(X_{i}\right)\right\}^{2}\right]-n \pi(\bar{f})^{2} \\
& =\mathrm{E}_{\pi}\left[\sum_{i=1}^{n} \bar{f}\left(X_{i}\right)^{2}+2 \sum_{i=1}^{n} \sum_{j=i+1}^{n} \bar{f}\left(X_{i}\right) \bar{f}\left(X_{j}\right)\right] \\
& =n \pi\left(\bar{f}^{2}\right)+2 \sum_{k=1}^{n-1}(n-k) \mathrm{E}_{\pi}\left[\bar{f}\left(X_{0}\right) \bar{f}\left(X_{j}\right)\right]
\end{aligned}
$$

So the variance of $\frac{1}{\sqrt{n}} S_{n}(f)$ is

$$
\mathrm{E}_{\pi}\left[\bar{f}\left(X_{0}\right)^{2}\right]+2 \sum_{k=1}^{n-1} \frac{n-k}{n} \mathrm{E}_{\pi}\left[\bar{f}\left(X_{0}\right) \bar{f}\left(X_{k}\right)\right]
$$

whose limit (if it exists) is $\sigma^{2}(f)$.

Optimality of Metropolis-Hastings

Theorem (Peskun [1973], Tierney [1998])

Let Q be fixed. Amongst reversible Markov kernels P of the form

$$
P(x, A)=\int_{A} Q(x, \mathrm{~d} z) \alpha(x, z)+r(x) 1_{A}(x)
$$

where $r(x)=1-\int_{X} \alpha(x, z) Q(x, d z)$, the one minimizing $\sigma^{2}(f)$ for all $f \in L_{2}(X, \pi)$ is the Metropolis-Hastings kernel.

- This is a statement about the form of $\alpha_{\mathrm{MH}}(x, z)$.
- There are many valid "acceptance probability" functions but they are dominated by α_{MH}.
- Note: this tells us nothing about non-reversible Markov kernels, or about non-asymptotic variance.

Outline

```
Motivation
What is a Markov chain?
First stability properties
Constructing }\pi\mathrm{ -invariant Markov chains
Central limit theorems
Geometric ergodicity
```

Final remarks

Total variation distance

Definition

The total variation distance between two probability measures μ and ν on \mathcal{X} is

$$
\|\mu-\nu\|_{\mathrm{TV}}:=\sup _{A \in \mathcal{X}}|\mu(A)-\nu(A)| .
$$

Ergodic Markov chains

Definition

A Markov chain with invariant probability measure π and Markov transition kernel P is ergodic if

$$
\lim _{n \rightarrow \infty}\left\|P^{n}(x, \cdot)-\pi\right\|_{\mathrm{TV}}=0
$$

for any $x \in X$.

- That is, the probability measure associated with X_{n} when $X_{0}=x$ is converging to π in total variation.
- Note: this is not a universal definition of ergodic.

Note on aperiodicity

- It is important to note that an ergodic Markov chain, as we have defined, cannot be periodic.
- Loosely speaking, there cannot be disjoint sets D_{1}, \ldots, D_{d} such

$$
\inf _{x \in D_{i}} P\left(x, D_{i+1}\right)=1, \quad i \in\{1, \ldots, d-1\}
$$

and $\inf _{x \in D_{d}} P\left(x, D_{1}\right)=1$, where $d>1$.

- While clearly this is not obviously an issue for the LLN or even the CLT, we will assume from now on that we are dealing with aperiodic Markov chains.
- In fact, periodic behaviour is exceedingly rare amongst Monte Carlo Markov chains.

Uniform ergodicity

Definition

A Markov chain with invariant probability measure π and Markov transition kernel P is uniformly ergodic if

$$
\left\|P^{n}(x, \cdot)-\pi\right\|_{\mathrm{TV}} \leq M \rho^{n}, \quad x \in \mathrm{X}
$$

for some constant M and $\rho<1$.

- The total variation distance decreases geometrically fast, with ρ governing this rate, and the bound is independent of x.

Geometric ergodicity

Definition

A Markov chain with invariant probability measure π and Markov transition kernel P is geometrically ergodic if

$$
\left\|P^{n}(x, \cdot)-\pi\right\|_{\mathrm{TV}} \leq M(x) \rho^{n}, \quad x \in \mathrm{X}
$$

for some function M finite for π-almost all $x \in X$ and $\rho<1$.

- The total variation distance decreases geometrically fast, with ρ governing this rate, and the bound is dependent on x.
- For some intuition, recall the simple random walk chain on \mathbb{N}.

Verifying uniform ergodicity

- One way to verify uniform ergodicity for an aperiodic, π-irreducible Markov chain is to check that

$$
P^{m}(x, A) \geq \epsilon \nu(A), \quad x \in X, A \in \mathcal{X}
$$

for some $m \in \mathbb{N}, \epsilon>0$ and probability measure ν.

- This is called a minorization condition.
- In this case it is basically Doeblin's condition and is equivalent to uniform ergodicity.
- Important observation: $P^{m}(x, \cdot)$ and $P^{m}\left(x^{\prime}, \cdot\right)$ have, loosely speaking, some degree of similarity.

A simple quantitative proof of uniform ergodicity

- We will look at the case where the minorization condition is satisfied for $m=1$, for simplicity.
- The method of proof is by coupling, due to Doeblin.
- We assume that $P(x, \cdot) \geq \epsilon \nu(\cdot)$ and will show that

$$
\left\|P^{n}(x, \cdot)-\pi\right\|_{\mathrm{TV}} \leq(1-\epsilon)^{n}
$$

- We define a residual Markov kernel

$$
R(x, A):=\frac{P(x, A)-\epsilon \nu(A)}{1-\epsilon}, \quad x \in X, A \in \mathcal{X}
$$

and observe that $P(x, \cdot)=\epsilon \nu(\cdot)+(1-\epsilon) R(x, \cdot)$.

A simple quantitative proof of uniform ergodicity

- Loosely, a coupling between two probability measures μ and ν on \mathcal{X} is a pair of random variables (X, Y) defined on a common probability space such that the marginal distribution of X is μ and the marginal distribution of Y is ν.
- The coupling inequality states that for any such construction

$$
\|\mu-\nu\|_{\mathrm{TV}} \leq \operatorname{Pr}(X \neq Y)
$$

- So we will show an explicit coupling such that

$$
\operatorname{Pr}\left(X_{n} \neq Y_{n}\right) \leq(1-\epsilon)^{n}
$$

where X_{n} is distributed according to $P^{n}(x, \cdot)$ and Y_{n} is distributed according to π.

A simple quantitative proof of uniform ergodicity

- Let $X_{0}=x$ and $Y_{0} \sim \pi$.
- Now follow the procedure for each time $n \geq 1$:

1. If $X_{n-1}=Y_{n-1}$, sample $Z_{n} \sim P\left(X_{n-1}, \cdot\right)$, set $X_{n}=Y_{n}=Z_{n}$.
2. Otherwise, with probability ϵ, sample $Z_{n} \sim \nu$ and set $X_{n}=Y_{n}=Z_{n}$.
3. Otherwise, sample $X_{n} \sim R\left(X_{n-1}, \cdot\right)$ and $Y_{n} \sim R\left(Y_{n-1}, \cdot\right)$ independently.

- We observe that we have not changed the marginal distributions of X_{n} or Y_{n}, so $X_{n} \sim P^{n}(x, \cdot)$ and $Y_{n} \sim \pi P^{n}=\pi$.
- We also observe that

$$
\operatorname{Pr}\left(X_{n} \neq Y_{n}\right) \leq(1-\epsilon)^{n} .
$$

- Hence, $\left\|P^{n}(x, \cdot)-\pi\right\|_{\mathrm{TV}} \leq \operatorname{Pr}\left(X_{n} \neq Y_{n}\right) \leq(1-\epsilon)^{n}$.

Example: independent Metropolis-Hastings

- Recall that $P(x, A)=\int_{A} q(z) \alpha_{\mathrm{MH}}(x, z) \mathrm{d} z+r(x) \mathbf{1}_{A}(x)$, where $\alpha_{\mathrm{MH}}(x, z)=1 \wedge \frac{\pi(z) q(x)}{\pi(x) q(z)}$.
- Now assume that $\sup _{x} \pi(x) / q(x)=K<\infty$. Then we have

$$
\begin{aligned}
q(z) \alpha_{\mathrm{MH}}(x, z) & =q(z)\left[1 \wedge \frac{\pi(z) q(x)}{\pi(x) q(z)}\right] \\
& =\pi(z)\left[\frac{q(z)}{\pi(z)} \wedge \frac{q(x)}{\pi(x)}\right] \geq K^{-1} \pi(z)
\end{aligned}
$$

and so $P(x, A) \geq K^{-1} \pi(A)$.

- Therefore, \mathbf{X} is uniformly ergodic and

$$
\left\|P^{n}(x, \cdot)-\pi(\cdot)\right\|_{\mathrm{TV}} \leq\left(1-K^{-1}\right)^{n}
$$

- In fact, if $\sup _{x} \pi(x) / q(x)=\infty$ then \mathbf{X} is not even geometrically ergodic.

Small sets

- When \mathbf{X} is evolving on a general state space, there is no guarantee that two independent copies of \mathbf{X} will visit a particular state simultaneously.
- The minorization condition allowed us to successfully couple the two Markov chains with probability ϵ at each time.
- Of course, uniform ergodicity and therefore the minorization condition we have seen is very strong in practice.
- This motivates the definition of a small set, which is essentially a set for which points are "similar".

Definition

A set $C \in \mathcal{X}$ is small if

$$
P^{m}(x, A) \geq \epsilon \nu(A), \quad x \in C, A \in \mathcal{X}
$$

for some $m \in \mathbb{N}, \epsilon>0$ and probability measure ν.

Verifying geometric ergodicity

- The presence of a small set is only one of two ingredients required for an aperiodic, π-irreducible Markov chain to be geometrically ergodic.
- Intuitively, one can use a coupling argument if both chains are in the small set C.
- We need to ensure that they are both in C simultaneously "often enough".
- A "drift condition" that ensures geometric ergodicity is

$$
\int_{X} V(z) P(x, \mathrm{~d} z) \leq \lambda V(x)+b 1_{C}(x)
$$

where $\lambda \in(0,1), b<\infty$ and $V: X \rightarrow[1, \infty]$ satisfies $V(x)<\infty$ for at least one $x \in X$.

- This condition guarantees that

$$
\sup _{x \in C} \mathrm{E}_{x}\left[\kappa^{\tau}\right]<\infty
$$

for some $\kappa>1$, where $\tau_{A}:=\inf \left\{n \geq 1: X_{n} \in A\right\}$.

Example: simple random walk on \mathbb{N}

- Here the small set is no problem, we can take $C=\{1\}$ and so $P(x, A)=\nu(A)$ for each $x \in C$ where $\nu(\cdot)=P(x, \cdot)$.
- We take $V(x)=c^{x}, c>1$ and we have

$$
\begin{aligned}
\int_{\mathrm{X}} V(z) P(x, \mathrm{~d} z) & =r V(x)+p V(x-1)+q V(x+1) \\
& =V(x)(r+p / c+q c)
\end{aligned}
$$

- If $q<p$ and $c \in\left(1, \frac{p}{q}\right)$ then $r+\frac{p}{c}+q c<1$.
- One choice, e.g., is $c=\sqrt{p / q}$, so that one can take $\lambda=r+2 \sqrt{p q}$.
- In Kovchegov [2010], e.g., it is shown that

$$
\left\|P^{n}(1, \cdot)-\pi(\cdot)\right\|_{\mathrm{TV}} \leq A\left(\frac{p}{p+r}\right)^{n}+B(r+2 \sqrt{p q})^{n}
$$

where $A, B \in \mathbb{R}_{+}$for a very slight difference of the Markov chain's behaviour at 1 .

Remarks

- In practice, small sets are often possible to identify.
- The drift condition is usually harder, but it is still possible in some cases.
- Drift conditions and return times are alternative ways to characterize many of the stability criteria we have talked about.
- For example, \mathbf{X} is "regular" (and therefore positive) iff

$$
\sup _{x \in C_{j}} \mathrm{E}_{x}\left(\tau_{A}\right)<\infty, \quad A \in \mathcal{X}, \psi(A)>0, \mathrm{X}=\cup_{j} C_{j}
$$

- Alternatively, \mathbf{X} is regular iff

$$
\int_{\mathrm{X}} V(z) P(x, \mathrm{~d} z) \leq V(x)-1+b 1_{C}(x), \quad x \in X, \quad C \text { "petite" }
$$

Outline

Motivation

What is a Markov chain?

First stability properties

Constructing π-invariant Markov chains

Central limit theorems

Geometric ergodicity

Final remarks

Conclusions

- We have covered a tiny fraction of what is interesting and relevant.
- Hopefully, you have a clear idea of the fundamental theorems underpinning the use of MCMC in statistical computations.
- If you are doing modern Bayesian inference, it is very common to use MCMC.
- Research in this area is extremely varied:
- theory
- intuition-based methodology
- theory-based methodology
- hybrids of the two
- applications \leftrightarrow methodology \leftrightarrow theory \leftrightarrow applications.

What we didn't cover

- We have covered a tiny fraction of what is interesting and relevant.
- Markov chains and their use in Monte Carlo are very large research areas.
- Just a few things that we didn't cover are:
- the splitting construction underpinning many of the results
- perfect simulation
- spectral properties of P
- adaptive Markov chain Monte Carlo
- optimal scaling
- subgeometric rates of convergence and corresponding CLTs
- genuinely non-reversible Markov chains
- more methodology
- non-homogeneous Markov chains
- exact approximations
- inexact approximations
- ...

Further reading

- Meyn \& Tweedie: Markov chains \& stochastic stability (available online to the public)
- Handbook of Markov chain Monte Carlo (available online through proxy).
- Robert \& Casella. Monte Carlo Statistical Methods.
- Liu: Monte Carlo Strategies in Scientific Computing.
- Roberts \& Rosenthal: General state space Markov chains and MCMC algorithms
- Jones: On the Markov chain central limit theorem.
- Look for Markov chain Monte Carlo papers in Ann. Stat., JRSS B, Biometrika, JASA, JCGS, Stats \& Comp.
- It is impossible to be comprehensive!

References I

K. S. Chan and C. J. Geyer. Discussion: Markov chains for exploring posterior distributions. The Annals of Statistics, pages 1747-1758, 1994.
R. Cogburn et al. The central limit theorem for Markov processes. In Proc. Sixth Berkeley Symp. Math. Statist. Probab, volume 2, pages 485-512, 1972.
L. Devroye. Non-uniform random variate generation. Springer Verlag, 1986.
A. E. Gelfand and A. F. M. Smith. Sampling-based approaches to calculating marginal densities. Journal of the American Statistical Association, 85(410):398-409, 1990.
S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6:721-741, 1984.

References II

W. K. Hastings. Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57(1):97-109, 1970.
I. A. Ibragimov and Y. V. Linnik. Independent and stationary sequences of random variables. Wolters-Noordhoff, 1971.
Y. Kovchegov. Orthogonality and probability: mixing times. Electronic Communications in Probability, 15:59-67, 2010.
N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E . Teller. Equation of state calculations by fast computing machines. Journal of Chemical Physics, 21(6):1087-1092, 1953.
S. P. Meyn and R. L. Tweedie. Markov chains and stochastic stability. Cambridge University Press, 2 edition, 2009.
P. H. Peskun. Optimum Monte-Carlo sampling using Markov chains. Biometrika, 60(3):607-612, 1973.

References III

G. O. Roberts and J. S. Rosenthal. Geometric ergodicity and hybrid Markov chains. Electronic Communications in Probability, 2(2): 13-25, 1997.
G. O. Roberts and J. S. Rosenthal. Harris recurrence of Metropolis-within-Gibbs and trans-dimensional Markov chains. Annals of Applied Probability, 16(4):2123-2139, 2006.
L. Tierney. Markov chains for exploring posterior distributions. Annals of Statistics, 22(4):1701-1762, 1994.
L. Tierney. A note on Metropolis-Hastings kernels for general state spaces. Annals of Applied Probability, 8(1):1-9, 1998.

