Sequential Monte Carlo and Integral Equations

Adam M. Johansen

a.m.johansen@warwick.ac.uk http://go.warwick.ac.uk/amjohansen/talks/

ST912 Statistical Frontiers Seminar March 2021

Overview

Motivating Problem Filtering Monte Carlo Solutions Sequential Monte Carlo algorithms Feynman-Kac Formulae A mathematical description Fredholm Equations A non-standard application

A Motivating Problem

(General State Space) Hidden Markov Models / State Space Models

• Unobserved Markov chain $\{X_n\}$ transition f.

• Observed process $\{Y_n\}$ conditional density g.

Density:

$$p(x_{1:n}, y_{1:n}) = f_1(x_1)g(y_1|x_1)\prod_{i=2}^n f(x_i|x_{i-1})g(y_i|x_i).$$

Filtering / Smoothing

Let X₁,... denote the position of an object which follows Markovian dynamics:

$$X_n|\{X_{n-1}=x_{n-1}\}\sim f(\cdot|x_{n-1}).$$

• Let Y_1, \ldots denote a collection of observations:

$$Y_n|\{X_n=x_n\}\sim g(\cdot|x_n).$$

Smoothing: estimate, as observations arrive, p(x_{1:n}|y_{1:n}).
 Filtering: estimate, as observations arrive, p(x_n|y_{1:n}).
 Formal Solution:

$$p(x_{1:n}|y_{1:n}) = p(x_{1:n-1}|y_{1:n-1}) \frac{f(x_n|x_{n-1})g(y_n|x_n)}{p(y_n|y_{1:n-1})}$$
$$p(x_n|y_{1:n}) = \frac{\int f(x_n|x_{n-1})g(y_n|x_n)p(x_{n-1}|y_{1:n-1})dx_{n-1}}{\int f(x_n|x_{n-1})g(y_n|x_n)p(x_{n-1}|y_{1:n-1})dx_{n-1}dx_n}$$

A Motivating Example: Data

Example: Almost Constant Velocity Model

$$\begin{bmatrix} s_n^{\chi} \\ u_n^{\chi} \\ s_n^{y} \\ u_n^{y} \end{bmatrix} = \begin{bmatrix} 1 & \Delta t & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & \Delta t \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} s_{n-1}^{\chi} \\ u_{n-1}^{\chi} \\ s_{n-1}^{y} \\ u_{n-1}^{y} \end{bmatrix} + \epsilon_n$$

• Observation: $y_n = Bx_n + \nu_n$

$$\begin{bmatrix} r_n^{x} \\ r_n^{y} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} s_n^{x} \\ u_n^{x} \\ s_n^{y} \\ u_n^{y} \end{bmatrix} + \nu_n$$

 \triangleright ϵ_n and ν_n are random variables

Sampling Approaches

The Monte Carlo Method

• Given a probability density, f, and $\varphi: E \to \mathbb{R}$

$$I = \int_E \varphi(x) f(x) dx$$

Simple Monte Carlo solution:

Sample
$$X_1, \ldots, X_N \stackrel{\text{i.i.d.}}{\sim} f$$
.
Estimate $\widehat{I} = \frac{1}{N} \sum_{i=1}^N \varphi(X_i)$.

Justified by the law of large numbers...

and the central limit theorem.

• Can also be viewed as approximating $\pi(dx) = f(x)dx$ with

$$\widehat{\pi}^N(dx) = \frac{1}{N} \sum_{i=1}^N \delta_{X_i}(dx).$$

Justified by Glivenko-Cantelli type results.

The Importance–Sampling Identity

► Given *g*, such that

▶
$$f(x) > 0 \Rightarrow g(x) > 0$$

▶ and $f(x)/g(x) < \infty$,
define $w(x) = f(x)/g(x)$ and:

$$\int \varphi(x)f(x)dx = \int \varphi(x)f(x)g(x)/g(x)dx = \int \varphi(x)w(x)g(x)dx.$$

This suggests the importance sampling estimator:

Sample
$$X_1, \ldots, X_N \stackrel{\text{i.i.d.}}{\sim} g$$
.
Estimate $\widehat{I} = \frac{1}{N} \sum_{i=1}^N w(X_i) \varphi(X_i)$.

• Can also be viewed as approximating $\pi(dx) = f(x)dx$ with

$$\widehat{\pi}^N(dx) = \frac{1}{N} \sum_{i=1}^N w(X_i) \delta_{X_i}(dx).$$

Importance Sampling Example

Self-Normalised Importance Sampling

Often, f is known only up to a normalising constant.

• If
$$v(x) = cf(x)/g(x) = cw(x)$$
, then

$$\frac{\mathbb{E}_g(v\varphi)}{\mathbb{E}_g(v\mathbf{1})} = \frac{\mathbb{E}_g(cw\varphi)}{\mathbb{E}_g(cw\mathbf{1})} = \frac{c\mathbb{E}_f(\varphi)}{c\mathbb{E}_f(\mathbf{1})} = \mathbb{E}_f(\varphi).$$

Estimate the numerator and denominator with the same sample:

$$\widehat{I} = \frac{\sum_{i=1}^{N} v(X_i)\varphi(X_i)}{\sum_{i=1}^{N} v(X_i)}$$

- ▶ Biased for finite samples, but consistent.
- Typically reduces variance.

Importance Sampling for Smoothing/Filtering

Sample $\{X_{1:n}^{(i)}\}$ at time *n* from $q_n(x_{1:n})$, define

$$w_n(x_{1:n}) \propto \frac{p(x_{1:n}|y_{1:n})}{q(x_{1:n})} = \frac{p(x_{1:n}, y_{1:n})}{q(x_{1:n})p(y_{1:n})}$$
$$\propto \frac{f(x_1)g(y_1|x_1)\prod_{m=2}^n f(x_m|x_{m-1})g(y_m|x_m)}{q_n(x_{1:n})}$$

• set
$$W_n^{(i)} = w_n(X_{1:n}^{(i)}) / \sum_j w_n(X_{1:n}^{(j)})$$
,

- then $\{W_n^{(i)}, X_n^{(i)}\}$ is a consistently weighted sample.
- This seems inefficient.

Sequential Importance Sampling (SIS) I

Importance weight

$$w_n(x_{1:n}) \propto \frac{f(x_1)g(y_1|x_1)\prod_{m=2}^n f(x_m|x_{m-1})g(y_m|x_m)}{q_n(x_{1:n})}$$
$$= \frac{f(x_1)g(y_1|x_1)}{q_n(x_1)}\prod_{m=2}^n \frac{f(x_m|x_{m-1})g(y_m|x_m)}{q_n(x_m|x_{1:m-1})}$$

Sequential Importance Sampling (SIS) II

And update the weights:

$$w_{n}(x_{1:n}) = w_{n-1}(x_{1:n-1}) \frac{f(x_{n}|x_{n-1})g(y_{n}|x_{n})}{q_{n}(x_{n}|x_{n-1})}$$
$$W_{n}^{(i)} = w_{n}(X_{1:n}^{(i)})$$
$$= w_{n-1}(X_{1:n-1}^{(i)}) \frac{f(X_{n}^{(i)}|X_{n-1}^{(i)})g(y_{n}|X_{n}^{(i)})}{q_{n}(X_{n}^{(i)}|X_{n-1}^{(i)})}$$
$$= W_{n-1}^{(i)} \frac{f(X_{n}^{(i)}|X_{n-1}^{(i)})g(y_{n}|X_{n}^{(i)})}{q_{n}(x_{n}^{(i)}|X_{n-1}^{(i)})}$$

- If $\int p(x_{1:n}|y_{1:n}) dx_n \approx p(x_{1:n-1}|y_{1:n-1})$ this makes sense.
- We only need to store $\{W_n^{(i)}, X_{n-1:n}^{(i)}\}$.
- Same computation every iteration.

Importance Sampling on Huge Spaces Doesn't Work

It's said that IS breaks the curse of dimensionality:

$$\sqrt{N}\left[\frac{1}{N}\sum_{i=1}^{N}w(X_{i})\varphi(X_{i})-\int\varphi(x)f(x)dx\right]\overset{d}{\rightarrow}\mathcal{N}(0,\mathbb{V}\mathrm{ar}_{g}[w\varphi])$$

- This is true.
- But it's not enough.
- ▶ $\mathbb{V}ar_g[w\varphi]$ increases (often exponentially) with dimension.
- **Eventually**, an SIS estimator (of $p(x_{1:n}|y_{1:n})$) will fail.
- But $p(x_n|y_{1:n})$ is a *fixed-dimensional* distribution.

Sequential Importance Resampling

Resampling

- ▶ We can produce unweighted samples from weighted ones.
- Given $\{W_i, X_i\}_{i=1}^N$ a consistent resampling $\{\tilde{X}_i\}_{i=1}^N$ is such that

$$\mathbb{E}\left[\frac{1}{N}\sum_{i=1}^{N}\varphi(\tilde{X}_{i})\middle|\{W_{i},X_{i}\}_{i=1}^{N}\right]=\sum_{i=1}^{N}W_{i}\varphi(X_{i})$$

for any continuous bounded φ .

Simplest option: sample from empirical distribution

$$ilde{X}_1,\ldots, ilde{X}_N \stackrel{\textit{iid}}{\sim} \sum_{j=1}^N W_j \delta_{X_j}(\cdot)$$

Other approaches reduce the additional variance.

The SIR[esampling] Algorithm

Problem: variance of the weights builds up over time.

Solution? Given
$$\{W_{n-1}^{(i)}, X_{1:n-1}^{(i)}\}$$
:
Resample to obtain $\{\frac{1}{2i}, \widetilde{X}_{1:n-1}^{(i)}\}$

2. Sample
$$X_n^{(i)} \sim q_n(\cdot | \widetilde{X}_{n-1}^{(i)})$$
.

3. Set
$$X_{1:n-1}^{(i)} = \widetilde{X}_{1:n-1}^{(i)}$$
.

4. Set
$$W_n^{(i)} = f(X_n^{(i)}|X_{n-1}^{(i)})g(y_n|X_n^{(i)})/q_n(X_n^{(i)}|X_{n-1}^{(i)}).$$

And continue as with SIS.

There is a cost, but this really works...

at least for problems like filtering.

Feynman-Kac Formulæ

A Probabilistic Perspective

Feynman-Kac Formulæ

- A natural description for measure-valued stochastic processes.
- Model for:
 - Particle motion in absorbing environments.
 - Classes of branching particle system.
 - Simple genetic algorithms.
 - Particle filters and related algorithms.
- Elements of this framework:
 - Probabilistic Construction
 - Semigroup[oid] Structure
 - McKean Interpretations
 - Particle Approximations
 - Selected Results

Probabilistic Construction

Following Del Moral (2004)

The Canonical Markov Chain

Consider the filtered probability space:

 $(\Omega, \mathcal{F}, \{\mathcal{F}_n\}_{n \in \mathbb{N}}, \mathbb{P}_{\mu})$

▶ Let $\{X_n\}_{n \in \mathbb{N}}$ be a Markov chain such that for any $n \in \mathbb{N}$:

$$\mathbb{P}_{\mu}(X_{1:n} \in dx_{1:n}) = \mu(dx_1) \prod_{i=2}^n M_i(x_{i-1}, dx_i)$$

 $X_i: \Omega \rightarrow E_i \qquad \mu \in \mathcal{P}(E_1) \qquad M_i: E_{i-1} \rightarrow \mathcal{P}(E_i)$

•
$$(E_i, \mathcal{E}_i)$$
 are measurable spaces.

- The X_i are $\mathcal{E}_i/\mathcal{F}_i$ -measurable.
- Using Kolmogorov's/Tulcea's extension theorem there exists a unique process-valued extension.

Some Operator Notation

Given two measurable spaces, (E, \mathcal{E}) and (F, \mathcal{F}) , a measure μ on (E, \mathcal{E}) and a Markov kernel, $K : E \to \mathcal{P}(F)$, define:

$$\mu(\varphi_E) := \int \mu(dx)\varphi_E(x)$$

$$\mu K(\varphi_F) := \int \mu(dx)K(x, dy)\varphi_F(y) \qquad \mu K \in \mathcal{P}(F)$$

$$K(\varphi_F)(x) := \int K(x, dy)\varphi_F(y) \qquad K(\varphi_F) : E \to \mathbb{R}$$

with φ_E, φ_F suitably measurable functions.

Given two functions, $g, h : E \to \mathbb{R}$, define $g \cdot h : E \to \mathbb{R}$ via $(g \cdot h)(x) = g(x)h(x)$.

Given $e: E \to \mathbb{R}$ and $f: F \to \mathbb{R}$, let $(e \otimes f)(x, y) := e(x)f(y)$.

The Feynman-Kac Formulæ

• Given \mathbb{P}_{μ} and **potential functions**:

$$\{G_i\}_{i\in\mathbb{N}}$$
 $G_i: E_i \to [0,\infty)$

Define two path measures weakly:

$$\mathbb{Q}_{n}(\varphi_{1:n}) = \frac{\mathbb{E}\left[\varphi_{1:n}(X_{1:n})\prod_{i=1}^{n-1}G_{i}(X_{i})\right]}{\mathbb{E}\left[\prod_{i=1}^{n-1}G_{i}(X_{i})\right]}$$
$$\widehat{\mathbb{Q}}_{n}(\varphi_{1:n}) = \frac{\mathbb{E}\left[\varphi_{1:n}(X_{1:n})\prod_{i=1}^{n}G_{i}(X_{i})\right]}{\mathbb{E}\left[\prod_{i=1}^{n}G_{i}(X_{i})\right]}$$

where
$$\varphi_{1:n}: \otimes_{i=1}^{n} E_i \to \mathbb{R}$$
.

Example (Filtering via FK Formulæ: Prediction)

• Let
$$\mu(x_1) = f(x_1)$$
, $M_n(x_{n-1}, dx_n) = f(x_n | x_{n-1}) dx_n$.

• Let
$$G_n(x_n) = g(y_n|x_n)$$
.

► Then:

$$\begin{aligned} \mathbb{Q}_{n}(\varphi_{1:n}) &= \mathbb{E}\left[\varphi_{1:n}(X_{1:n})\prod_{i=1}^{n-1}G_{i}(X_{i})\right] \middle/ \mathbb{E}\left[\prod_{i=1}^{n-1}G_{i}(X_{i})\right] \\ &= \mathbb{E}\left[\varphi_{1:n}(X_{1:n})\prod_{i=1}^{n-1}g(y_{i}|X_{i})\right] \middle/ \mathbb{E}\left[\prod_{i=1}^{n-1}g(y_{i}|X_{i})\right] \\ &= \frac{\int \left[f(x_{1})\prod_{i=2}^{n}f(x_{i}|x_{i-1})\right] \left[\prod_{j=1}^{n-1}g(y_{j}|x_{j})\right]\varphi_{1:n}(x_{1:n})dx_{1:n}}{\int \left[f(x_{1})\prod_{i=2}^{n}f(x_{i}|x_{i-1})\right] \left[\prod_{j=1}^{n-1}g(y_{j}|x_{j})\right]dx_{1:n}} \\ &= \int p(x_{1:n}|y_{1:n-1})\varphi_{1:n}(x_{1:n})dx_{1:n}\end{aligned}$$

Example (Filtering via FK Formulæ: Update/Filtering)Whilst:

$$\begin{aligned} \widehat{\mathbb{Q}}_{n}(\varphi_{1:n}) &= \mathbb{E}\left[\varphi_{1:n}(X_{1:n})\prod_{i=1}^{n}G_{i}(X_{i})\right] / \mathbb{E}\left[\prod_{i=1}^{n}G_{i}(X_{i})\right] \\ &= \mathbb{E}\left[\varphi_{1:n}(X_{1:n})\prod_{i=1}^{n}g(y_{i}|X_{i})\right] / \mathbb{E}\left[\prod_{i=1}^{n}g(y_{i}|X_{i})\right] \\ &= \frac{\int\left[f(x_{1})\prod_{i=2}^{n}f(x_{i}|x_{i-1})\right]\left[\prod_{j=1}^{n}g(y_{j}|x_{j})\right]\varphi_{1:n}(x_{1:n})dx_{1:n}}{\int\left[f(x_{1})\prod_{i=2}^{n}f(x_{i}|x_{i-1})\right]\left[\prod_{j=1}^{n}g(y_{j}|x_{j})\right]dx_{1:n}} \\ &= \int\rho(x_{1:n}|y_{1:n})\varphi_{1:n}(x_{1:n})dx_{1:n}\end{aligned}$$

Feynman-Kac Marginal Measures

We are typically interested in marginals:

"Predicted"

$$\gamma_{n}(\varphi_{n}) = \mathbb{E}\left[\varphi_{n}(X_{n})\prod_{i=1}^{n-1}G_{i}(X_{i})\right] \quad \widehat{\gamma}_{n}(\varphi_{n}) = \mathbb{E}\left[\varphi_{n}(X_{n})\prod_{i=1}^{n}G_{i}(X_{i})\right]$$

$$\eta_{n}(\varphi_{n}) = \frac{\mathbb{E}\left[\varphi_{n}(X_{n})\prod_{i=1}^{n-1}G_{i}(X_{i})\right]}{\mathbb{E}\left[\prod_{i=1}^{n-1}G_{i}(X_{i})\right]} \qquad \widehat{\eta}_{n} = \frac{\mathbb{E}\left[\varphi_{n}(X_{n})\prod_{i=1}^{n}G_{i}(X_{i})\right]}{\mathbb{E}\left[\prod_{i=1}^{n-1}G_{i}(X_{i})\right]}$$

$$=\gamma_{n}(\varphi_{n})/\gamma_{n}(\mathbf{1}) \qquad =\widehat{\gamma}_{n}(\varphi_{n})/\widehat{\gamma}_{n}(\mathbf{1})$$

Key property:

$$\eta_n(A_n) = \int_{E_1 \times \dots \times E_{n-1} \times A_n} \mathbb{Q}_n(dx_{1:n})$$
$$\widehat{\eta}_n(A_n) = \int_{E_1 \times \dots \times E_{n-1} \times A_n} \widehat{\mathbb{Q}}_n(dx_{1:n})$$

A Glimpse of the Theory

A Dynamic Systems View: How do the marginal distributions evolve? Don't worry about the details in these slides.

Some Recursive Relationships

► The unnormalized marginals obey:

$$\widehat{\gamma}_n(\varphi_n) = \gamma_n(\varphi_n \cdot G_n) \qquad \gamma_n(\varphi_n) = \widehat{\gamma}_{n-1}M_n(\varphi_n)$$

Whilst the normalized marginals satisfy:

$$egin{aligned} \widehat{\eta}_n(arphi_n) &= &rac{\widehat{\gamma}_n(arphi_n)}{\widehat{\gamma}_n(\mathbf{1})} & \eta_n(arphi_n) &= &rac{\gamma_n(arphi_n)}{\gamma_n(\mathbf{1})} \ &= &rac{\gamma_n(arphi_n\cdot G_n)}{\gamma_n(G_n)} &= &rac{\widehat{\gamma}_{n-1}M_n(arphi_n)}{\widehat{\gamma}_{n-1}M_n(\mathbf{1})} \ &= &rac{\widehat{\eta}_{n-1}M_n(arphi_n)}{\widehat{\eta}_{n-1}M_n(\mathbf{1})} \ &= &rac{\widehat{\eta}_{n-1}M_n(arphi_n)}{\widehat{\eta}_{n-1}M_n(arphi_n)} \end{aligned}$$

$$\widehat{\eta}_n = \frac{\widehat{\eta}_{n-1}M_n(\varphi_n \cdot G_n)}{\widehat{\eta}_{n-1}M_n(G_n)}$$

The Boltzmann-Gibbs Operator

• Given
$$\nu \in \mathcal{P}(E)$$
 and $G : E \to \mathbb{R}$:

$$\begin{aligned} \Psi_G : & \mathcal{P}(E) \to \mathcal{P}(E) \\ \Psi_G : & \nu \to \Psi_G(\nu) \end{aligned}$$

• The **Boltzmann-Gibbs** Operator Ψ_G is defined weakly by:

$$\forall \varphi \in \mathcal{C}_b : \qquad \Psi_G(\nu)(\varphi) = \frac{\nu(G \cdot \varphi)}{\nu(G)}$$

or equivalently, for all measurable sets A:

$$\Psi_{G}(A) = \frac{\nu(G \cdot \mathbb{I}_{A})}{\nu(G)}$$
$$= \frac{\int_{A} \nu(dx) G(x)}{\int_{E} \nu(dx') G(x')}$$

Example (Boltzmann-Gibbs Operators and Bayes' Rule)

- Let $\mu(dx) = f(x)\lambda(dx)$ be a prior measure.
- Let G(x) = g(y|x) be the likelihood.

► Then:

$$\Psi_{G}(\mu)(\varphi) = \frac{\mu(G \cdot \varphi)}{\mu(G)} = \frac{\int \mu(dx)G(x)\varphi(x)}{\int \mu(dx')G(x')}$$
$$= \frac{\int f(x)g(y|x)\varphi(x)\lambda(dx)}{\int f(x')g(y|x')\lambda(dx')}$$
$$= \int f(x|y)\varphi(x)\lambda(dx)$$

with

$$f(x|y) := \frac{f(x)g(y|x)}{\int f(x)g(y|x)\lambda(dx)}$$

► So: $\Psi_{g(y|\cdot)}$: Prior \rightarrow Posterior.

Markov Semigroups

- A semigroup S comprises:
 - A set, S.
 - An associative binary operation, ...
- A Markov Chain with homogeneous transition *M* has dynamic semigroup *M_n*:
 - $\blacktriangleright M_0(x, A) = \delta_x(A).$
 - $\blacktriangleright M_1(x, A) = M(x, A).$
 - $M_n(x, A) = \int M(x, dy) M_{n-1}(y, A).$
 - $(M_n \cdot M_m)(x, A) = \int M_n(x, dy) M_m(y, A) = M_{n+m}(x, A).$
- A linear semigroup.
- Key property:

$$\mathbb{P}(X_{n+m} \in A | X_m = x) = M_n(x, A).$$

Markov Semigroupoids

• A **semigroupoid**, S' comprises:

- A set, S.
- A partial associative binary operation, ...
- A Markov Chain with inhomogeneous transitions M_n has dynamic semigroupoid M_{p:q}:
 - $\blacktriangleright M_{p:p}(x, A) = \delta_x(A).$

•
$$M_{p:p+1}(x, A) = M_{p+1}(x, A).$$

- $M_{p:q}(x, A) = \int M_{p+1}(x, dy) M_{p+1:q}(y, A).$
- $(M_{p:q} \cdot M_{q:r})(x, A) = \int M_{p:q}(x, dy) M_{q:r}(y, A) = M_{p:r}(x, A).$
- A linear semigroupoid.
- Key property:

$$\mathbb{P}(X_{n+m} \in A | X_m = x) = M_{m,n+m}(x, A).$$

An Unnormalized Feynman-Kac Semigroupoid

We previously established:

$$\gamma_n = \widehat{\gamma}_{n-1} M_n$$
 $\widehat{\gamma}_n(\varphi_n) = \gamma_n(\varphi_n \cdot G_n)$

Defining

$$Q_p(x_{p-1}, dx_p) = G_{p-1}(x_{p-1})M_p(x_{p-1}, dx_p)$$

we obtain $\gamma_n = \gamma_{n-1}Q_n$.

• We can construct the dynamic semigroupoid $Q_{p:q}$:

$$Q_{p:p}(x, A) = \delta_x(A).$$

$$Q_{p:p+1}(x, A) = Q_{p+1}(x, A).$$

$$Q_{p:q}(x, A) = \int Q_{p+1}(x, dy) Q_{p+1:q}(y, A).$$

$$(Q_{p:q} \cdot Q_{q:r})(x, A) = \int Q_{p:q}(x, dy) Q_{q:r}(y, A) = Q_{p:r}(x, A).$$

► Just a Markov semigroupoid for general measures: $\forall p \leq q : \gamma_q = \gamma_p Q_{p:q}.$

A Normalised Feynman-Kac Semigroupoid

We previously established:

$$\eta_n = \widehat{\eta}_{n-1} M_n$$
 $\widehat{\eta}_n(\varphi) = \frac{\eta_n(\varphi_n \cdot G_n)}{\eta_n(G_n)}$

From the definition of Ψ_{G_n} : $\widehat{\eta}_n = \Psi_{G_n}(\eta_n)$.

• Defining $\Phi_n : \mathcal{P}(E_{n-1}) \to \mathcal{P}(E_n)$ as:

$$\Phi_n:\eta_{n-1}\to\Psi_{G_{n-1}}(\eta_{n-1})M_n$$

we have the recursion $\eta_n = \Phi_n(\eta_{n-1})$ and the nonlinear semigroupoid, $\Phi_{p:q}$:

•
$$\Phi_{p:p}(x, A) = \delta_x(A).$$

• $\Phi_{p:p+1}(x, A) = \Phi_{p+1}(x, A).$
• $\Phi_{p:q}(x, A) = \Phi_{p+1:q}(\Phi_{p+1}(\eta_p)) \text{ for } q > p+1.$
• $(\Phi_{p:q} \cdot \Phi_{q:r})(x, A) = \int \Phi_{q:r}(y, A) \Phi_{p:q}(x, dy) = \Phi_{p:r}(x, A).$

• Again: $\forall p \leq q$: $\eta_q = \eta_p \Phi_{p:q}$.

McKean Interpretations

Microscopic mass transport.

McKean Interpretations of Feynman-Kac Formulæ

- Families of Markov kernels consistent with FK Marginals.
- ► A collection $\{K_{n,\eta}\}_{n \in \mathbb{N}, \eta \in \mathcal{P}(E_{n-1})}$ is a McKean Interpretation if:

$$\forall n \in \mathbb{N}: \ \eta_n = \Phi_n(\eta_{n-1}) = \eta_{n-1}K_{n,\eta_{n-1}}.$$

Not unique...and not linear.

Selection/Mutation approach seems natural:

• Choose
$$S_{n,\eta}$$
 such that $\eta S_{n,\eta} = \Psi_{G_n}(\eta)$.

• Set
$$K_{n+1,\eta} = S_{n,\eta}M_{n+1}$$
.

Still not unique:

$$S_{n,\eta}(x_n, \cdot) = \Psi_{G_n}(\eta)$$

$$S_{n,\eta}(x_n, \cdot) = \epsilon_n G_n(x_n) \delta_{x_n}(\cdot) + (1 - \epsilon_n G_n(x_n)) \Psi_{G_n}(\eta)(\cdot)$$

Particle Interpretations

Stochastic discretisations.

Particle Interpretations of Feynman-Kac Formulæ I

Given a McKean interpretation, we can attach an N-particle model.

• Denote
$$\xi_n^{(N)} = (\xi_n^{(N,1)}, \xi_n^{(N,2)}, \dots, \xi_n^{(N,N)}) \in E_n^N$$
.

Allow

$$\left(\Omega^{N},\mathcal{F}^{N}=(\mathcal{F}_{n}^{N})_{n\in\mathbb{N}},\xi^{(N)},\mathbb{P}_{\eta_{0}}^{N}
ight)$$

to indicate a particle-set-valued Markov chain.

• Let
$$\eta_{n-1}^{(N)} = \frac{1}{N} \sum_{i=1}^{N} \delta_{\xi_{n-1}^{(N,i)}}$$
.

Allow the elementary transitions to be:

$$\mathbb{P}\left(\xi_{n}^{(N)} \in d\xi_{n}^{(N)}|\xi_{n-1}^{(N)}\right) = \prod_{p=1}^{N} K_{n,\eta_{n-1}^{(N)}}(\xi_{n-1}^{(N,p)}, d\xi_{n}^{(N,p)})$$

Particle Interpretations of Feynman-Kac Formulæ II

• Consider
$$K_{n,\eta} = S_{n-1,\eta} M_n$$

$$\mathbb{P}\left(\xi_{n}^{(N)} \in d\xi_{n}^{(N)} | \xi_{n-1}^{(N)}\right) = \prod_{p=1}^{N} S_{n-1,\eta_{n-1}^{(N)}} M_{n}(\xi_{n-1}^{(N,p)}, d\xi_{n}^{(N,p)})$$

Defining:

$$S_{n-1}^{(N)}(\xi_{n-1}^{(N)}, d\hat{\xi}_{n}^{(N)}) = \prod_{i=1}^{N} S_{n,\eta_{n-1}^{(N)}}(\xi_{n-1}^{(N,p)}, d\hat{\xi}_{n-1}^{(N,p)})$$
$$\mathcal{M}_{n}^{(N)}(\hat{\xi}_{n-1}^{(N)}, d\xi_{n}^{(N)}) = \prod_{i=1}^{N} M_{n}(\hat{\xi}_{n-1}^{(N,p)}, \xi_{n}^{(N,p)})$$

it is clear that:

$$\mathbb{P}\left(\xi_{n}^{(N)} \in d\xi_{n}^{(N)} | \xi_{n-1}^{(N)}\right) = \int_{E_{n-1}^{N}} S_{n-1,\eta_{n-1}^{(N)}}(\xi_{n-1}^{(N)}, d\widehat{\xi}_{n-1}^{(N)}) \mathcal{M}_{n}(\widehat{\xi}_{n-1}^{(N)}, d\xi_{n}^{(N)})$$

Selection, Mutation and Structure

A suggestive structural similarity:

$$\eta_{n-1} \in \mathcal{P}(E_{n-1}) \xrightarrow{S_{n-1,\eta_{n-1}}} \widehat{\eta}_n \in \mathcal{P}(E_{n-1}) \xrightarrow{M_n} \eta_n \in \mathcal{P}(E_n) \xi_{n-1}^{(N)} \in E_{n-1}^N \xrightarrow{\text{Select}} \widehat{\xi}_n^{(N)} \in E_{n-1}^N \xrightarrow{\text{Mutate}} \xi_n^{(N)} \in E_n^N$$

Selection:

$$S_{n-1,\eta_{n-1}^{(N)}} = \Psi_{G_{n-1}}(\eta_{n-1}^{(N)}) = \sum_{i=1}^{N} \frac{G_{n-1}(\xi_{n-1}^{(N,i)})}{\sum_{j=1}^{N} G_{n-1}(\xi_{n-1}^{(N,j)})} \delta_{\xi_{n-1}^{(N,i)}}$$
$$\hat{\xi}_{n-1}^{(N,i)} \sim \Psi_{G_{n-1}}(\eta_{n-1}^{(N)})$$

Mutation (conditionally independent):

$$\xi_n^{(N,i)} \sim M_n(\hat{\xi}_{n-1}^{(N,i)}, d\xi_n^{(N,i)})$$

Semigroupoid

$$\mathbb{P}^{N}(\xi_{n}^{(N)} \in dx_{n}^{(N)} | \xi_{n-1}^{(N)}) = \prod_{i=1}^{N} \Phi_{n}(\eta_{n-1}^{(N)})(dx_{n}^{(N,i)})$$

Selected Results

Local Error Decomposition

53/94

Law of Large Numbers and Weak Convergence

Theorem (Del Moral 2004: Theorem 7.4.4) Under regularity conditions, for any $n \ge 1$, $p \ge 1$, $\varphi_n \in C_b(E_n)$:

$$\sqrt{N}\mathbb{E}\left[|\eta_n^N(\varphi_n) - \eta_n(\varphi_n)|^p\right]^{1/p} \leq c_{p,n}||\varphi_n||_{\infty}$$

By a Borel-Cantelli argument:

$$\lim_{N\to\infty}\eta_n^N(\varphi_n)\stackrel{a.s.}{\to}\eta_n(\varphi_n).$$

Central Limit Theorem

Proposition (Del Moral 2004: Proposition 9.4.2) Under regularity conditions, for any $n \ge 1$:

$$\sqrt{N}(\eta_n^N(\varphi_n) - \eta_n(\varphi_n)) \stackrel{d}{\rightarrow} \mathcal{N}(0, \sigma_n^2(\varphi_n))$$

where

$$\sigma_n^2(\varphi_n) = \sum_{q=1}^n \eta_q \left[(\bar{Q}_{q,n}(\varphi_n - \eta_n(\varphi_n)))^2 \right]$$

where

$$\bar{Q}_{q,n}(\varphi_n)(x_q) = Q_{q,n}(\varphi_n)(x_q)/\eta_q Q_{q,n}(\mathbf{1}).$$

Particle Filters

A Simple Application

Recall: The SIR Particle Filter

At iteration *n*, given {*W*⁽ⁱ⁾_{n-1}, *X*⁽ⁱ⁾_{1:n-1}}:
1. Resample, to obtain {¹/_N, *X*⁽ⁱ⁾_{1:n-1}}.
2. Sample *X*⁽ⁱ⁾_n ~ *q*_n(·|*X*⁽ⁱ⁾_{n-1}).
3. Set *X*⁽ⁱ⁾_{1:n-1} = *X*⁽ⁱ⁾_{1:n-1}.
4. Set *W*⁽ⁱ⁾_n = *f*(*X*⁽ⁱ⁾_{n-1})*g*(*y*_n|*X*⁽ⁱ⁾_n)/*q*_n(*X*⁽ⁱ⁾_{n-1}).
Feynman-Kac formulation?
Generally *W*⁽ⁱ⁾_n depends upon *X*⁽ⁱ⁾_{n-1}.

(At least) 2 solutions exist.

The Bootstrap SIR Filter (Gordon, Salmond and Smith, 1993)

The bootstrap particle filter:

- Proposal: $q(x_{n-1}, x_t) = f(x_n | x_{n-1})$
- Weight: $w(x_n) \propto g(y_n|x_n)$
- Feynman-Kac model:
 - Mutation: $M_n(x_{n-1}, dx_n) = f(x_n|x_{n-1})dx_t$.
 - Potential: $G_n(x_n) = g(y_n|x_n)$.
- McKean interpretation:
 - McKean transitions: $K_{n+1,\eta} = S_{n,\eta}M_{n+1}$.
 - Selection operation: $S_{n,\eta} = \Psi_{G_n}(\eta)$.

Bootstrap Particle Filter Results

LLN

$$\lim_{N \to \infty} \frac{\sum_{i=1}^{N} W_n^{(i)} \varphi_n(X_n^{(i)})}{\sum_{j=1}^{N} W_n^{(j)}} \stackrel{\text{a.s.}}{\to} \int \varphi_n(x_n) p(x_n | y_{1:n}) dx_n$$
CLT

$$\sqrt{N} \left(\frac{\sum_{i=1}^{N} W_n^{(i)} \varphi_n(X_n^{(i)})}{\sum_{j=1}^{N} W_n^{(j)}} - \int \varphi_n(x_n) p(x_n | y_{1:n}) dx_n \right) \stackrel{\text{d}}{\to} \mathcal{N} \left(0, \sigma_{BS,n}^2 (\varphi_n) \right)$$

Bootstrap Particle Filter: Asymptotic Variance

$$\begin{aligned} \sigma_{BS,n}^{2}(\varphi_{n}) &= \\ &\int \frac{p(x_{1}|y_{1:n})^{2}}{p(x_{1})} \left(\int \varphi_{n}(x_{n})p(x_{n}|y_{2:n},x_{1})dx_{n} - \bar{\varphi}_{n} \right)^{2} dx_{1} \\ &+ \sum_{k=2}^{t-1} \int \frac{p(x_{k}|y_{1:n})^{2}}{\mathbf{p}(\mathbf{x}_{k}|\mathbf{y}_{1:k-1})} \left(\int \varphi_{n}(x_{n})p(x_{n}|y_{k+1:n},x_{k})dx_{n} - \bar{\varphi}_{n} \right)^{2} dx_{1:k} \\ &+ \int \frac{p(x_{n}|y_{1:n})^{2}}{\mathbf{p}(\mathbf{x}_{n}|\mathbf{y}_{1:n-1})} \left(\varphi_{n}(x_{n}) - \bar{\varphi}_{n} \right)^{2} dx_{n}. \end{aligned}$$

with

$$\bar{\varphi}_n = \int p(x_n|y_{1:n})\varphi_n(x_n)dx_n.$$

Extended Spaces: General SIR Particle Filter

• At iteration *n*, given $\{W_{n-1}^{(i)}, X_{1:n-1}^{(i)}\}$: 1. Resample, to obtain $\{\frac{1}{N}, \widetilde{X}_{1:n-1}^{(i)}\}$. Selection 2. Sample $X_n^{(i)} \sim q_n(\cdot | \widetilde{X}_{n-1}^{(i)})$. Mutation 3. Set $X_{1:n-1}^{(i)} = \widetilde{X}_{1:n-1}^{(i)}$. 4. Set $W_n^{(i)} = f(X_n^{(i)}|X_{n-1}^{(i)})q(y_n|X_n^{(i)})/q_n(X_n^{(i)}|X_{n-1}^{(i)})$. ▶ But $W_n^{(i)}$ depends upon $X_{n-1}^{(i)}$ \blacktriangleright Let $\tilde{E}_n = E_{n-1} \times E_n$. • Define $Y_n = (X_{n-1}, X_n)$. \blacktriangleright Now $W_n = \tilde{G}_n(Y_n)$. • Set $\tilde{M}_n(y_{n-1}, dy_n) = \delta_{y_{n-1}}(dy_{n,1})q(y_{n-1,2}, dy_{n,1})$. A Feynman-Kac representation.

SIR Asymptotic Variance

$$\sigma_{SIR,n}^{2}(\varphi_{n}) = \int \frac{p(x_{1}|y_{1:n})^{2}}{q_{1}(x_{1})} \left(\int \varphi_{n}(x_{n})p(x_{n}|y_{2:n},x_{1})dx_{n} - \bar{\varphi}_{n} \right)^{2} dx_{1} \\ + \sum_{k=2}^{t-1} \int \frac{p(x_{1:k}|y_{1:n})^{2}}{\mathbf{p}(\mathbf{x}_{1:k-1}|\mathbf{y}_{1:k-1})q_{k}(x_{k}|x_{k-1})} \\ \left(\int \varphi_{n}(x_{n})p(x_{:n}|y_{k+1:n},x_{k})dx_{n} - \bar{\varphi}_{n} \right)^{2} dx_{1:k} \\ + \int \frac{p(x_{1:n}|y_{1:n})^{2}}{\mathbf{p}(\mathbf{x}_{1:n-1}|\mathbf{y}_{1:n-1})q_{n}(x_{n}|x_{n-1})} \left(\varphi_{n}(x_{n}) - \bar{\varphi}_{n} \right)^{2} dx_{1:n}.$$

One Novel Use of SMC

Solving Fredholm Equations of the First Kind Joint work with Francesca R. Crucinio and Arnaud Doucet

A particle method for solving Fredholm integral equations of the first kind. ArXiv mathematics e-print 2009.09974, 2020.

Fredholm Equations of the First Kind

$$h(y) = \int g(y \mid x) f(x) \ dx$$

- applications in: density deconvolution, (medical) image processing, epidemiology, PDEs, nonlinear regression settings, ...
- inverse ill-posed problem

Applications I

$$h(y) = \int g(y-x)f(x) \ dx$$

- density deconvolution: recover the density of X from noisy observations Y = X + ε
- epidemiology: recover incidence curve from observed death/hospitalization counts

Applications II

constant speed horizontal motion

Why Monte Carlo methods?

Standard Techniques

- require discretisation of the domain and/or make strong assumptions on f
- require discretisation of h
- impractical as dimension increases

Monte Carlo

- f, h probability densities, g density of a Markov kernel
- naturally implemented when we only have samples from h
- standard Monte Carlo rate $N^{-1/2}$

Regularisation

Approximating the solution of

$$h(y) = \int g(y \mid x) f(x) \, dx$$

by

$$f^{\star} = \operatorname{argmin} \operatorname{KL}(h, fg) := \int h(y) \log \left(\frac{h(y)}{\int g(y \mid x) f(x) \, dx} \right) \, dy$$

corresponds to maximum likelihood estimation.

Expectation Maximisation¹

$$f_{n+1}(x) = f_n(x) \int \frac{h(y)g(y \mid x)}{\int g(y \mid z)f_n(z)dz} dy$$

and its brute-force discretisation

$$f_i^{(n+1)} = f_i^{(n)} \sum_{j=1}^{B_h} \left(\frac{h_j g_{ij}}{\sum_{k=1}^{B_f} g_{kj} f_k^{(n)}} \right) \qquad i = 1, \dots, B_f.$$

¹Kondor, Method of convergent weights, Nuclear Instruments and Methods in Physics Research (1983)

Inconsistency of MLE

Expectation Maximisation Smoothing²

Obtain smoother reconstructions by addition of a smoothing step

$$f_{n+1}(x) = \int K(x', x) f_n(x') \int \frac{g(y \mid x')}{\int g(y \mid z) f_n(z) \, dz} h(y) \, dy \, dx',$$

and its brute-force discretisation

 $\mathbf{f}^{(n+1)} = \mathbf{K}\mathbf{f}^{(n+1)}.$

 $^2 {\rm Silverman}$ et al., A smoothed EM approach to indirect estimation problems, JRSSB (1990)

Expectation Maximisation Smoothing (EMS)

- 1. Require discretisation of the domain of f
- 2. Assume f is piecewise constant
- 3. Impractical as dimension increases
- 4. What if we only have samples from h?

Recall Key Points of SMC

- a class of Monte Carlo methods that sequentially approximate a sequence of target probability densities {η_n(x_{1:n})} of increasing dimension³
- the evolution of the sequence is described by alternating reweighting and proposing a new state

 $\eta_{n+1}(x_{1:n+1}) \propto \eta_n(x_{1:n}) G_n(x_n) M_{n+1}(x_{n+1} \mid x_n)$

³We called these \mathbb{Q}_n earlier...

SMC-EMS

- 1. Approximate f through a population of weighted samples
- 2. Provides an adaptive stochastic discretisation of the EMS recursion
- 3. Naturally deals with samples from h

SMC-EMS

Connect EMS with SMC:

$$f_{n+1}(x_{n+1}) = \int K(x_n, x_{n+1}) f_n(x_n) \int \frac{g(y_n \mid x_n)}{\int g(y_n \mid z) f_n(z) \, dz} h(y_n) \, dy_n \, dx_n,$$

Augment the density $\eta_n(x, y) = f_n(x)h(y)$

$$\eta_{n+1}(x_{n+1}, y_{n+1}) = \int \int \eta_n(x_n, y_n) \mathcal{K}(x_n, x_{n+1}) \frac{g(y_n \mid x_n) h(y_{n+1})}{\int g(y_n \mid z) f_n(z) \, dz} \, dy_n \, dx_n$$

Remove the integral

$$\eta_{n+1}(x_{1:n+1}, y_{1:n+1}) = \eta_n(x_{1:n}, y_{1:n}) \mathcal{K}(x_n, x_{n+1}) h(y_{n+1}) \frac{g(y_n \mid x_n)}{\int g(y_n \mid z) \eta_n(z) dz}$$

SMC-EMS — Idealised Version

Evolve a population of particles using the Markov kernels

$$M_{n+1}((x_{n+1}, y_{n+1}) | (x_n, y_n)) = K(x_n, x_{n+1})h(y_{n+1}),$$

the weight functions

$$G_n(x_n, y_n) = \frac{g(y_n \mid x_n)}{\int g(y_n \mid z)\eta_n(z) \, dz}$$

and a resampling mechanism.

Obtain an approximation f_{n+1}^N of f_{n+1} using kernel density estimation + smoothing with K.

SMC-EMS — Practical Version

Evolve a population of particles using the Markov kernels

$$M_{n+1}((x_{n+1}, y_{n+1}) | (x_n, y_n)) = K(x_n, x_{n+1})h(y_{n+1}),$$

the weight functions

$$G_n^N(x_n, y_n) = \frac{g(y_n \mid x_n)}{\int g(y_n \mid z) \eta_n^N(dz)}$$

and a resampling mechanism.

Obtain an approximation f_{n+1}^N of f_{n+1} using kernel density estimation + smoothing with K.

It works!

Density Deconvolution

$$h(y) = \int g(y-x)f(x) \, dx$$

 Recover the density of X from noisy observations Y = X + ε
 Estimators with optimal convergence rate exist: deconvolution kernel density estimators (DKDE)

Density Deconvolution — Results

Density Deconvolution — Smoothness

Model constant speed motion in the horizontal direction with

$$g(y_1, y_2 \mid x_1, x_2) = \mathcal{N}(y_2; x_2, \sigma^2)$$
Uniform $_{[-b/2, b/2]}(x_1 - y_1)$

where *b* is the velocity and σ^2 is small.

Motion Deblurring

Positron Emission Tomography

The reconstruction of a cross-section of the brain (a) from the data image provided by PET scanners (b) is described by a 2D Fredholm integral equation of the first kind.

(a) 128-pixels Shepp-Logan phantom

(b) Sinogram + noise

Positron Emission Tomography

Iteration 20

Iteration 50

Iteration 100

Reference Image

Effect of Dimension

Consider the simple toy example:

$$f(x_1, \dots, x_{d_{\mathbb{X}}}) = \prod_{i=1}^{d_{\mathbb{X}}} \left(\frac{1}{3} \mathcal{N}(x_i; 0.3, 0.07^2) + \frac{2}{3} \mathcal{N}(x_i; 0.7, 0.1^2) \right),$$

$$g\left((y_1, \dots, y_{d_{\mathbb{X}}}) | (x_1, \dots, x_{d_{\mathbb{X}}}) \right) = \prod_{i=1}^{d_{\mathbb{X}}} \mathcal{N}(y_i; x_i, 0.15^2),$$

$$h(y_1, \dots, y_{d_{\mathbb{X}}}) = \prod_{i=1}^{d_{\mathbb{X}}} \left(\frac{1}{3} \mathcal{N}(x_i; 0.3, 0.07^2 + 0.15^2) + \frac{2}{3} \mathcal{N}(x_i; 0.7, 0.1^2 + 0.15^2) \right)$$

with $\mathbb{X}=\mathbb{Y}=\mathbb{R}^{d_{\mathbb{X}}}.$

Results

 10^2 to 100^2 . Runtime and accuracy are reported too.

	mean	variance	$\mathbb{P}(\Box)$	$\mathbb{P}(\bigcirc)$	runtime
					\log_{10} s
$d_{\mathbb{X}}=2$					
EMS - <i>B</i> = 10	1.38e-04	4.96e-05	5.30e-02	7.04e-03	-1.71
SMC - $N = 10^{2}$	3.87e-04	1.26e-05	4.70e-02	1.46e-02	-2.02
EMS - $B = 32$	1.42e-04	5.31e-05	5.17e-02	5.86e-03	1.28
SMC - $N = 10^{3}$	4.29e-05	5.81e-06	3.02e-02	8.29e-03	0.94
EMS - <i>B</i> = 100	1.42e-04	5.38e-05	5.15e-02	6.11e-03	5.31
SMC - $N = 10^4$	3.84e-06	4.51e-06	2.77e-02	8.57e-03	5.11
$d_{\mathbb{X}}=3$					
EMS - $B = 5$	2.53e-04	1.26e-04	1.46e-01	8.59e-03	-1.47
SMC - $N = 10^{2}$	3.76e-04	3.23e-05	7.41e-02	7.56e-03	-2.06
EMS - <i>B</i> = 10	2.00e-04	5.75e-05	9.00e-02	2.42e-03	1.40
SMC - $N = 10^{3}$	4.62e-05	8.50e-06	7.00e-02	1.54e-03	1.08
EMS - $B = 22$	2.04e-04	6.12e-05	8.83e-02	1.64e-03	5.66
SMC - $N = 10^4$	3.53e-0 6	6.68e-06	6.61e-02	9.38e-04	5.30

	mean	variance	$\mathbb{P}(\Box)$	$\mathbb{P}(\bigcirc)$	runtime
					\log_{10} s
$d_{\mathbb{X}} = 4$					
EMS - B = 4	1.98e-04	1.55e-05	1.22e-01	1.16e-03	-0.65
SMC - $N = 10^{2}$	4.77e-04	9.77e-05	6.85e-02	5.48e-03	-2.08
EMS - B = 6	2.43e-04	4.02e-05	1.09e-01	7.80e-04	1.70
SMC - $N = 10^{3}$	3.45e-05	1.80e-05	8.68e-02	7.21e-04	0.95
EMS - <i>B</i> = 10	2.60e-04	6.59e-05	1.03e-01	5.54e-04	5.32
SMC - $N = 10^4$	4.10e-06	8.59e-06	8.95e-02	2.22e-04	5.12
$d_{\mathbb{X}} = 5$					
EMS - $B = 3$	5.66e-05	2.67e-04	2.12e-01	1.27e-02	-0.56
SMC - $N = 10^{2}$	6.59e-04	1.34e-04	3.89e-02	1.41e-02	-1.96
EMS - B = 4	2.42e-04	2.08e-05	1.29e-01	7.59e-04	1.51
SMC - $N = 10^{3}$	5.57e-05	4.54e-05	7.49e-02	9.10e-04	1.14
EMS - B = 7	2.82e-04	5.71e-05	1.36e-01	2.09e-04	6.63
SMC - $N = 10^4$	3.39e-06	1.27e-05	8.62e-02	5.73e-05	5.36

Theoretical Guarantees

Assumptions

- f has compact support
- g is continuous, bounded above and below
- K has bounded density

The Monte Carlo algorithm has standard convergence rate $N^{-1/2}$

The estimator is well-founded:

$$\lim_{N \to \infty} \int |f_{n+1}^N(x) - f_{n+1}(x)| dx \stackrel{\text{a.s.}}{=} 0$$

$$\lim_{N \to \infty} \mathbb{E} \left[\int |f_{n+1}^N(x) - f_{n+1}(x)|^2 dx \right] = 0$$

Conclusions: SMC-EMS

- SMC-EMS is a novel method to solve Fredholm integral equations of the first kind based on a stochastic discretisation of EMS
- This method performs better that the state of the art on some toy and realistic examples
- The scheme inherits many convergence properties from SMC and KDE.

Summary

- SMC provides a mechanism for approximating (sequences of) probability distributions via importance sampling and resampling.
- There is still scope to further develop (and understand) SMC Methodology as the Fredholm equation example illustrates.
- My own current interests include:
 - Divide-and-conquer approaches to efficient distributed implementation.
 - ► The interaction with Generalized Bayesian Inference.
 - Automatic optimization of SMC algorithms.

Some References

Some approachable SMC References A. Doucet and A. M. Johansen. A tutorial on particle filtering and smoothing: Fiteen years later. In D. Crisan and B. Rozovsky, editors, *The Oxford Handbook of Nonlinear Filtering*, pages 656–704. 2011.

N. Chopin and O. Papaspiliopoulos. An introduction to Sequential Monte Carlo. Springer. 2020. See: SpringerLink.

SMC for Fredholm Equation of the 1st kind:

F.R. Crucinio, A. Doucet, and A.M. Johansen. A particle method for solving Fredholm integral equations of the first kind. ArXiv mathematics e-print 2009.09974, 2020.

MCMC for Fredholm Equations of the 2nd kind:

A. Doucet, A. M. Johansen, and V. B. Tadić. On solving integral equations using Markov Chain Monte Carlo. *Applied Mathematics and Computation*, 216:2869–2889, 2010.

