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Rare Event Estimation/Simulation

A Motivating Problem



Context

I Given a probability space (Ω,F ,P),

I and a random element X : (Ω,F)→ (E , E),

I what is P(X ∈ A) = P ◦ X−1(A) = P({ω ∈ Ω : X (ω) ∈ A}),

I for some A ∈ E such that P(X ∈ A)� 1?

X(Ω)

Ω

X(ω)ω

X

X

AX−1(A)
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Some Simple Examples
1. A really simple problem.

I Let

f (x) =
1√
2π

exp

(
−

x2

2

)
.

I What is P(X ∈ A) if A = [a,∞) for a� 1?
I Simple semi-analytic solution 1− Φ(a).

2. A somewhat harder problem:
I Let

f (x) =
1√
|2πΣ|

exp

(
−

1

2
xTΣ−1x

)
.

I What is P(X ∈ A) if A = ⊗di=1[ai , bi ]?
I What can we say about Law(X )|A

3. Getting more interesting:
I Let dXt = a(Xt)dt + b(Xt)dBt .
I What is P(ζ(X[0,T ]) ∈ A)?
I What is P(Xσ ∈ A) if σ = inf{t : Xt ∈ A ∪ R}?
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Sampling Approaches



The Monte Carlo Method
I Given a probability density, f , and ϕ : E → R

I =

∫
E

ϕ(x)f (x)dx

I Simple Monte Carlo solution:

I Sample X1, . . . ,XN
i.i.d.∼ f .

I Estimate Î = 1
N

N∑
i=1

ϕ(Xi ).

Justified by the law of large numbers. . .

and the central limit theorem.

I Can also be viewed as approximating π(dx) = f (x)dx with

π̂N(dx) =
1

N

N∑
i=1

δXi (dx).

Justified by Glivenko-Cantelli type results.
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The Monte Carlo Method and Rare Events

I Use P(X ∈ A) ≡ E[IA(X )] = I (IA).

I Then, directly:

P(X ∈ A) ≈ În(IA) =
|A ∩ {X1, . . . ,Xn}|

n
.
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Simple Monte Carlo and the Toy Problem

a log(Î10k (I[a,∞))) log

k 1 2 3 4 5 6 7 1− Φ(a)

1 -2.30 -1.66 -1.80 -1.82 -1.83 -1.84 -1.84 -1.84

2 -3.91 -3.73 -3.76 -3.78 -3.79 -3.79 -3.78

3 -6.91 -6.81 -6.59 -6.60 -6.61 -6.61

4 -10.12 -10.26 -10.42 -10.36

5 -14.73 -15.06

6 -20.74
Simple calculations reveal:

I E[̂In(I[a,∞))] = P(X ∈ [a,∞))

I Var[̂In(I[a,∞))] = 1
nP(X ∈ [a,∞))(1− P(X ∈ [a,∞)))

I So the relative standard deviation is ∼ (nP(X ∈ [a,∞)))−1/2.
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Variance Reduction

I Want p̂n such that p̂n ≈ P(X ∈ A) =: p:
I Ideally, with E[p̂n] = p.
I Such that Var(p̂n)� p2.
I For modest n.

I Controlling variance is the key issue.
I Importance Sampling.
I Splitting.
I Interacting Particle Systems.
I Sequential Monte Carlo.
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The Importance–Sampling Identity
I Given g, such that

I f (x) > 0⇒ g(x) > 0
I and f (x)/g(x) <∞,

define w(x) = f (x)/g(x) and:∫
ϕ(x)f (x)dx =

∫
ϕ(x)f (x)g(x)/g(x)dx =

∫
ϕ(x)w(x)g(x)dx .

I This suggests the importance sampling estimator:

I Sample X1, . . . ,XN
i.i.d.∼ g.

I Estimate Î = 1
N

N∑
i=1

w(Xi )ϕ(Xi ).

I Can also be viewed as approximating π(dx) = f (x)dx with

π̂N(dx) =
1

N

N∑
i=1

w(Xi)δXi (dx).
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Importance Sampling Example
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Importance Sampling Variance

The variance of this estimator is:

Var

[
1

n

n∑
i=1

w(Yi)ϕ(Yi)

]

=
1

n
Var [w(Y1)ϕ(Y1)]

=
1

n

{
E
[
(w(Y1)ϕ(Y1))2

]
− E [w(Y1)ϕ(Y1)]2

}
=

1

n

{∫
(w(y)ϕ(y))2 g(dy)−

(∫
w(y)ϕ(y)g(dy)

)2
}

=
1

n

{∫
w(y)ϕ2(y)f (dx)− E[ϕ(X )]2

}

14/86



Optimal Importance Sampling

Proposition

Let X ∼ f , where f (dx) = f (x)dx, with values in (E , E) and let

φ : R→ (0,∞) a function of interest. The proposal which

minimizes the variance of the importance sampling estimator of

E[ϕ(X )] is g(x)dx, where:

g(x) =
f (x)ϕ(x)∫
f (y)ϕ(y)dy

Note: if E ⊃ A ⊃ supp ϕ(x), it suffices for f |A � g|A.

15/86



Importance Sampling and the Toy Problem

a k log(Î10k (I[a,∞))) log

1 2 3 4 5 6 7 1− Φ(a)

1 -1.72 -1.84 -1.83 -1.84 -1.84 -1.84 -1.84 -1.84

2 -3.63 -3.78 -3.79 -3.78 -3.78 -3.78 -3.78 -3.78

3 -6.43 -6.59 -6.63 -6.60 -6.61 -6.61 -6.61 -6.61

4 -10.16 -10.34 -10.40 -10.35 -10.36 -10.36 -10.36 -10.36

5 -14.85 -15.04 -15.12 -15.06 -15.07 -15.06 -15.06 -15.06

6 -20.51 -20.72 -20.81 -20.73 -20.73 -20.74 -20.74 -20.74

7 -27.16 -27.37 -27.46 -27.38 -27.39 -27.38 -27.38 -27.38

8 -34.79 -35.01 -35.10 -35.02 -35.01 -35.01 -35.01 -35.01

9 -43.41 -43.64 -43.73 -43.63 -43.63 -43.63 -43.62 -43.63

Using g(x) = exp(−(x − a))I[a,∞)(x).
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Self-Normalised Importance Sampling

I Often, f is known only up to a normalising constant.

I If v(x) = cf (x)/g(x) = cw(x), then

Eg(vϕ)

Eg(v1)
=
Eg(cwϕ)

Eg(cw1)
=

cEf (ϕ)

cEf (1)
= Ef (ϕ).

I Estimate the numerator and denominator with the same

sample:

Î =

N∑
i=1

v(Xi)ϕ(Xi)

N∑
i=1

v(Xi)

.

I Biased for finite samples, but consistent.

I Typically reduces variance.
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Discrete Time Markov Processes and Rare Events
I Often rare events are described in terms of a process.

I In discrete time, say

X1 ∼ p1(x1)dx1 Xn|X1:n−1 ∼ pn(xn|xn−1)dxn

where each Xi takes values in a space E .
I Questions might be of the form what is P(ξ(X1:n) ∈ A) for
ξ : En → R and A ⊂ R:
I E.g. If E = R, p1(x1) ∝ exp(−x2

1/2) and

pn(xn|xn−1) ∝ exp(−(xn − x2
n−1)/2) and A = [a,∞).

I If p1, . . . characterizes the evolution of differential group delay

in a fibre optic cable A = [a,∞) and

ξ(x1:n) = max

{
||
q∑
p=1

ξ′(xq)|| : q ≤ n

}
where ξ′ is essentially a projection of the underlying state one

arrives at a real engineering problem.

I We’ll return to continuous time processes later.
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Importance Sampling for DTMPs

I Sample {X (i)
1:n} at time n from qn(x1:n), define

wn(x1:n) ∝
pn(x1:n)

qn(x1:n)

where pn(x1:n) = p1(x1)
∏n
m=2 p(mxm|xm−1).

I set W
(i)
n = wn(X

(i)
1:n)/

∑
j wn(X

(j)
1:n),

I then {W (i)
n ,X

(i)
n } is a consistently weighted sample.

I This seems inefficient.
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Sequential Importance Sampling (SIS) I

I Importance weight

wn(x1:n) ∝
p1(x1)

∏n
m=2 pm(xm|xm−1)

qn(x1:n)

=
p1(x1)

qn(x1)

n∏
m=2

pm(xm|xm−1)

qn(xm|x1:m−1)

I Given {W (i)
n−1,X

(i)
1:n−1} targetting pn−1(x1:n−1)

I Let qn(x1:n−1) = qn−1(x1:n−1),

I sample X
(i)
n

i.i.d.∼ qn(·|X (i)
1:n−1) or even qn(·|X (i)

n−1).
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Sequential Importance Sampling (SIS) II

I And update the weights:

wn(x1:n) =wn−1(x1:n−1)
p(xn|xn−1)

qn(xn|xn−1)

W
(i)
n =wn(X

(i)
1:n)

=wn−1(X
(i)
1:n−1)

p(X
(i)
n |X (i)

n−1)

qn(X
(i)
n |X (i)

n−1)

=W
(i)
n−1

p(X
(i)
n |X (i)

n−1)

qn(X
(i)
n |X (i)

n−1)

I If
∫

p(x1:n|y1:n)dxn ≈ p(x1:n−1|y1:n−1) this makes sense.

I We only need to store {W (i)
n ,X

(i)
n−1:n}.

I Same computation every iteration.
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Importance Sampling on Huge Spaces Doesn’t Work

I It’s said that IS breaks the curse of dimensionality:

√
N

[
1

N

N∑
i=1

w(Xi)ϕ(Xi)−
∫
ϕ(x)f (x)dx

]
d→ N (0,Varg [wϕ])

I This is true.

I But it’s not enough.

I Varg [wϕ] increases (often exponentially) with dimension.

I Eventually, an SIS estimator (of p(x1:n)) will fail.

I But p(xn) =
∫

p(x1:n)dx1:n−1 is a fixed-dimensional

distribution. . . which has implications which we will revisit.
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Multilevel Splitting

Returning to continuous time processes



Splitting

An insight dating back to the 1950s:

A

B

B1
B2 B3

Allowing σBi = inf{t : Xt ∈ Bi ∪ A}:

P(XσB ∈ B) = P(XσB1
∈ B1)

m∏
i=2

P(XσBi ∈ Bi |XσBi−1
∈ Bi−1)

where B1 ⊂ B2 ⊂ · · · ⊂ Bm = B and A is positive recurrent for X .

We can estimate each term separately.
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The Discrete Skeleton of MLS

Algorithmically, this idealised algorithm reduces a continuous-time

problem to a discrete-time on:

I Let λ denote the initial distribution: X (0) ∼ λ.

I Define Ui =
(
σBi ,XBi (σi)

)
, i = 1, . . . ,m

I Let Mi : (R≥0 × Rd)× S → [0, 1] denote the Markov kernels

of this discrete-time process 1.

I Define Gi : R≥0 × Rd → {0, 1} as:

Gi(t, x) =

{
1, if x ∈ Bi ,

0, otherwise.

1Where S be the Borel sigma algebra associated with R≥0 × Rd
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The Algorithm

Algorithm Idealised Multilevel Splitting

Given λ; G1, . . . ,Gm; M1, . . . ,Mm; N0; and R1, . . . ,Rm−1:

1. For j = 1, . . . ,N0, draw independently:

X j1(0) ∼ λ and U j1 ∼ M1

((
0,X j1(0)

)
, ·
)
.

2. Let S1 = {U j1 : G1(U j1) = 1} be the survivors, and N1 = |S1|.
3. For i = 2, . . . ,m:

3.1 If Ni−1 = 0, return p̂ = 0.

3.2 Given Si−1 = {Ū ji−1}
Ni−1

j=1 , for all

(j , k) ∈ {(j ′, k ′) : 1 ≤ j ′ ≤ Ni−1, 1 ≤ k ′ ≤ Ri−1} sample

independently U j ,ki ∼ Mi (Ū ji−1, ·).

3.3 Let Si = {U j ,ki : Gi (U j ,ki ) = 1}, and Ni = |Si |.
4. Return p̂ = Nm

N0
∏m−1
i=1 Ri

.

Requires the choice of R1, . . . ,Rm−1 and samples from

M1, . . . ,Mm.
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Beyond Idealised Multilevel Splitting
Fixed-effort Splitting Addresses the first issue.

I Rather than fixing Ri , fix Ni .
I Sample Ni times with replacement from the

survivors from the previous iteration.
I Or something motivated by similar

considerations.
I Can be analysed directly, but it can also be

viewed as a particular instance of sequential

Monte Carlo.

Multilevel Splitting with Couplings Addresses the second.
I Avoid sampling from M1, . . . ,Mm.
I Instead sample from a more tractable

transition.
I Utilizes ε-strong simulation from the law of

diffusion processes.
I And an additional modification to make the

algorithm tractable.
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SMC: Sequential Importance
Resampling



Resampling

I We can produce unweighted samples from weighted ones.

I Given {Wi ,Xi}Ni=1 an unbiased resampling {X̃i}Ni=1 is such

that

E

[
1

N

N∑
i=1

ϕ(X̃i)

∣∣∣∣∣ {Wi ,Xi}Ni=1

]
=

N∑
i=1

Wiϕ(Xi)

for any continuous bounded ϕ.

I Simplest option: sample from empirical distribution

X̃1, . . . , X̃N
iid∼

N∑
j=1

WjδXj (·)

I Other approaches reduce the additional variance.
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The SIR[esampling] Algorithm

I Problem: variance of the weights in SIS builds up over time.

I Solution? Given {W (i)
n−1,X

(i)
1:n−1}:

1. Resample, to obtain { 1
N , X̃

(i)
1:n−1}.

2. Sample X
(i)
n ∼ qn(·|X̃ (i)

n−1).

3. Set X
(i)
1:n−1 = X̃

(i)
1:n−1.

4. Set W
(i)
n ∝ pn(X

(i)
n |X (i)

n−1)/qn(X
(i)
n |X (i)

n−1) with
∑
i W

(i)
n = 1.

I And continue as with SIS.

I Actually, we only need to be able to evaluate up to a

normalizing constant: see step 4.

I There is a cost, but this really works. . .

at least for some problems.
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Iteration 2
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Iteration 3
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Iteration 4
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Iteration 5
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Iteration 7
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Iteration 8
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Iteration 9
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Iteration 10
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What Are the Target and Proposal for Splitting?

I Let

q1(τ1, x1) =

∫
λ(dx0)M1((0, x0), ·)

qi =

∫
Mi((σi , xi), ·) i = 2, . . . ,m

I Let Gi(τi , xi) = IBi (xi)

I Set

γi(d(τj , xj)
i
j=1) =q1(τ1, x1)G1(τ1, x1)

i∏
j=1

qi((τi−1, xi−1), d(τi , xi))

pi ∝γi

I In sampling we only need γi and can recover estimates of its

normalizing constant.
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Feynman-Kac Formulæ

A Probabilistic Perspective

This entire section can be skipped and the rest of
the presentation should remain accessible, it’s
here only for those who are interested in the
probabilistic foundations of these algorithms.



Feynman-Kac Formulæ

I A natural description for measure-valued stochastic

processes.

I Model for:
I Particle motion in absorbing environments.
I Classes of branching particle system.
I Simple genetic algorithms.
I Particle filters and related algorithms.

Elements of this framework:

I Probabilistic Construction

I Semigroup[oid] Structure

I McKean Interpretations

I Particle Approximations

I Selected Results
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Probabilistic Construction

Following Del Moral (2004)



The Canonical Markov Chain

I Consider the filtered probability space:

(Ω,F , {Fn}n∈N,Pµ)

I Let {Xn}n∈N be a Markov chain such that for any n ∈ N:

Pµ(X1:n ∈ dx1:n) =µ(dx1)

n∏
i=2

Mi(xi−1, dxi)

Xi : Ω→Ei µ ∈P(E1) Mi : Ei−1 →P(Ei)

I (Ei , Ei) are measurable spaces.

I The Xi are Ei/Fi -measurable.

I Using Kolmogorov’s/Tulcea’s extension theorem there exists

a unique process-valued extension.
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Some Operator Notation

Given two measurable spaces, (E , E) and (F ,F), a measure µ on

(E , E) and a Markov kernel, K : E → P(F ), define:

µ(ϕE ) :=

∫
µ(dx)ϕE (x)

µK (ϕF ) :=

∫
µ(dx)K (x , dy)ϕF (y) µK ∈ P(F )

K (ϕF )(x) :=

∫
K (x , dy)ϕF (y) K (ϕF ) : E → R

with ϕE , ϕF suitably measurable functions.

Given two functions, g, h : E → R, define g · h : E → R via

(g · h)(x) = g(x)h(x).

Given e : E → R and f : F → R, let (e ⊗ f )(x , y) := e(x)f (y).
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The Feynman-Kac Formulæ
I Given Pµ and potential functions:

{Gi}i∈N Gi : Ei →[0,∞)

I Define two path measures weakly:

Qn (ϕ1:n) =

E
[
ϕ1:n(X1:n)

n−1∏
i=1

Gi(Xi)

]
E
[
n−1∏
i=1

Gi(Xi)

]

Q̂n (ϕ1:n) =

E
[
ϕ1:n(X1:n)

n∏
i=1

Gi(Xi)

]
E
[
n∏
i=1

Gi(Xi)

]

where ϕ1:n : ⊗ni=1Ei → R.
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Example (Filtering via FK Formulæ: Prediction)

I Let µ(x1) = f (x1), Mn(xn−1, dxn) = f (xn|xn−1)dxn.

I Let Gn(xn) = g(yn|xn).

I Then:

Qn (ϕ1:n) =E

[
ϕ1:n(X1:n)

n−1∏
i=1

Gi(Xi)

]/
E

[
n−1∏
i=1

Gi(Xi)

]

=E

[
ϕ1:n(X1:n)

n−1∏
i=1

g(yi |Xi)

]/
E

[
n−1∏
i=1

g(yi |Xi)

]

=

∫ [
f (x1)

n∏
i=2

f (xi |xi−1)

][
n−1∏
j=1

g(yj |xj)

]
ϕ1:n(x1:n)dx1:n

∫ [
f (x1)

n∏
i=2

f (xi |xi−1)

][
n−1∏
j=1

g(yj |xj)

]
dx1:n

=

∫
p(x1:n|y1:n−1)ϕ1:n(x1:n)dx1:n
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Example (Filtering via FK Formulæ: Update/Filtering)

I Whilst:

Q̂n (ϕ1:n) =E

[
ϕ1:n(X1:n)

n∏
i=1

Gi(Xi)

]/
E

[
n∏
i=1

Gi(Xi)

]

=E

[
ϕ1:n(X1:n)

n∏
i=1

g(yi |Xi)

]/
E

[
n∏
i=1

g(yi |Xi)

]

=

∫ [
f (x1)

n∏
i=2

f (xi |xi−1)

] [
n∏
j=1

g(yj |xj)

]
ϕ1:n(x1:n)dx1:n

∫ [
f (x1)

n∏
i=2

f (xi |xi−1)

][
n∏
j=1

g(yj |xj)

]
dx1:n

=

∫
p(x1:n|y1:n)ϕ1:n(x1:n)dx1:n
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Feynman-Kac Marginal Measures
We are typically interested in marginals:

“Predicted” “Updated”

γn(ϕn) =E

[
ϕn(Xn)

n−1∏
i=1

Gi(Xi)

]
γ̂n(ϕn) =E

[
ϕn(Xn)

n∏
i=1

Gi(Xi)

]

ηn(ϕn) =

E
[
ϕn(Xn)

n−1∏
i=1

Gi(Xi)

]
E
[
n−1∏
i=1

Gi(Xi)

] η̂n =

E
[
ϕn(Xn)

n∏
i=1

Gi(Xi)

]
E
[
n∏
i=1

Gi(Xi)

]
=γn(ϕn)/γn(1) =γ̂n(ϕn)/γ̂n(1)

Key property:

ηn(An) =

∫
E1×...En−1×An

Qn(dx1:n)

η̂n(An) =

∫
E1×...En−1×An

Q̂n(dx1:n)
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A Glimpse of the Theory

A Dynamic Systems View:

How do the marginal distributions evolve?

Don’t worry about the details in these slides.



Some Recursive Relationships
I The unnormalized marginals obey:

γ̂n(ϕn) =γn(ϕn · Gn) γn(ϕn) =γ̂n−1Mn(ϕn)

I Whilst the normalized marginals satisfy:

η̂n(ϕn) =
γ̂n(ϕn)

γ̂n(1)
ηn(ϕn) =

γn(ϕn)

γn(1)

=
γn(ϕn · Gn)
γn(Gn)

=
γ̂n−1Mn(ϕn)

γ̂n−1Mn(1)

=
ηn(ϕn · Gn)
ηn(Gn)

=
η̂n−1Mn(ϕn)

η̂n−1Mn(1)

=η̂n−1Mn(ϕn)

I So:

η̂n =
η̂n−1Mn(ϕn · Gn)
η̂n−1Mn(Gn)
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The Boltzmann-Gibbs Operator

I Given ν ∈ P(E ) and G : E → R:

ΨG : P(E )→P(E )

ΨG : ν →ΨG (ν)

I The Boltzmann-Gibbs Operator ΨG is defined weakly by:

∀ϕ ∈ Cb : ΨG (ν) (ϕ) =
ν(G · ϕ)

ν(G )

I or equivalently, for all measurable sets A:

ΨG (A) =
ν (G · IA)

ν(G )

=

∫
A ν(dx)G (x)∫
E ν(dx ′)G (x ′)
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Example (Boltzmann-Gibbs Operators and Bayes’ Rule)

I Let µ(dx) = f (x)λ(dx) be a prior measure.

I Let G (x) = g(y |x) be the likelihood.

I Then:

ΨG (µ) (ϕ) =
µ(G · ϕ)

µ(G )
=

∫
µ(dx)G (x)ϕ(x)∫
µ(dx ′)G (x ′)

=

∫
f (x)g(y |x)ϕ(x)λ(dx)∫

f (x ′)g(y |x ′)λ(dx ′)

=

∫
f (x |y)ϕ(x)λ(dx)

with

f (x |y) :=
f (x)g(y |x)∫

f (x)g(y |x)λ(dx)

I So: Ψg(y |·) : Prior→ Posterior.
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Markov Semigroups

I A semigroup S comprises:
I A set, S .
I An associative binary operation, ·.

I A Markov Chain with homogeneous transition M has
dynamic semigroup Mn:
I M0(x ,A) = δx (A).
I M1(x ,A) = M(x ,A).
I Mn(x ,A) =

∫
M(x , dy)Mn−1(y ,A).

I (Mn ·Mm)(x ,A) =
∫

Mn(x , dy)Mm(y ,A) = Mn+m(x ,A).

I A linear semigroup.

I Key property:

P (Xn+m ∈ A|Xm = x) = Mn(x ,A).
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Markov Semigroupoids

I A semigroupoid, S ′ comprises:
I A set, S .
I A partial associative binary operation, ·.

I A Markov Chain with inhomogeneous transitions Mn has
dynamic semigroupoid Mp:q:
I Mp:p(x ,A) = δx (A).
I Mp:p+1(x ,A) = Mp+1(x ,A).
I Mp:q(x ,A) =

∫
Mp+1(x , dy)Mp+1:q(y ,A).

I (Mp:q ·Mq:r )(x ,A) =
∫

Mp:q(x , dy)Mq:r (y ,A) = Mp:r (x ,A).

I A linear semigroupoid.

I Key property:

P (Xn+m ∈ A|Xm = x) = Mm,n+m(x ,A).
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An Unnormalized Feynman-Kac Semigroupoid

I We previously established:

γn =γ̂n−1Mn γ̂n(ϕn) =γn(ϕn · Gn)

I Defining

Qp(xp−1, dxp) = Gp−1(xp−1)Mp(xp−1, dxp)

we obtain γn = γn−1Qn.

I We can construct the dynamic semigroupoid Qp:q:
I Qp:p(x ,A) = δx (A).
I Qp:p+1(x ,A) = Qp+1(x ,A).
I Qp:q(x ,A) =

∫
Qp+1(x , dy)Qp+1:q(y ,A).

I (Qp:q ·Qq:r )(x ,A) =
∫

Qp:q(x , dy)Qq:r (y ,A) = Qp:r (x ,A).

I Just a Markov semigroupoid for general measures:

∀p ≤ q : γq = γpQp:q.
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A Normalised Feynman-Kac Semigroupoid

I We previously established:

ηn =η̂n−1Mn η̂n(ϕ) =
ηn(ϕn · Gn)
ηn(Gn)

I From the definition of ΨGn : η̂n = ΨGn(ηn).

I Defining Φn : P(En−1)→ P(En) as:

Φn : ηn−1 → ΨGn−1
(ηn−1)Mn

we have the recursion ηn = Φn(ηn−1) and the nonlinear
semigroupoid, Φp:q:
I Φp:p(x ,A) = δx (A).
I Φp:p+1(x ,A) = Φp+1(x ,A).
I Φp:q(x ,A) = Φp+1:q(Φp+1(ηp)) for q > p + 1.
I (Φp:q · Φq:r )(x ,A) =

∫
Φq:r (y ,A)Φp:q(x , dy) = Φp:r (x ,A).

I Again: ∀p ≤ q : ηq = ηpΦp:q.
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McKean Interpretations

Microscopic mass transport.



McKean Interpretations of Feynman-Kac Formulæ

I Families of Markov kernels consistent with FK Marginals.

I A collection {Kn,η}n∈N,η∈P(En−1) is a McKean

Interpretation if:

∀n ∈ N : ηn = Φn(ηn−1) = ηn−1Kn,ηn−1 .

I Not unique. . . and not linear.

I Selection/Mutation approach seems natural:
I Choose Sn,η such that ηSn,η = ΨGn(η).
I Set Kn+1,η = Sn,ηMn+1.

I Still not unique:
I Sn,η(xn, ·) = ΨGn(η)
I Sn,η(xn, ·) = εnGn(xn)δxn(·) + (1− εnGn(xn))ΨGn(η)(·)
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Particle Interpretations

Stochastic discretisations.



Particle Interpretations of Feynman-Kac Formulæ I

Given a McKean interpretation, we can attach an N-particle

model.

I Denote ξ
(N)
n = (ξ

(N,1)
n , ξ

(N,2)
n , . . . , ξ

(N,N)
n ) ∈ ENn .

I Allow (
ΩN ,FN = (FNn )n∈N, ξ

(N),PNη0

)
to indicate a particle-set-valued Markov chain.

I Let η
(N)
n−1 = 1

N

∑N
i=1 δξ(N,i)n−1

.

I Allow the elementary transitions to be:

P
(
ξ
(N)
n ∈ dξ

(N)
n |ξ

(N)
n−1

)
=

N∏
p=1

K
n,η

(N)
n−1

(ξ
(N,p)
n−1 , dξ

(N,p)
n )
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Particle Interpretations of Feynman-Kac Formulæ II
I Consider Kn,η = Sn−1,ηMn

P
(
ξ
(N)
n ∈ dξ

(N)
n |ξ

(N)
n−1

)
=

N∏
p=1

S
n−1,η

(N)
n−1

Mn(ξ
(N,p)
n−1 , dξ

(N,p)
n )

I Defining:

S(N)n−1(ξ
(N)
n−1, d ξ̂

(N)
n ) =

N∏
i=1

S
n,η

(N)
n−1

(ξ
(N,p)
n−1 , d ξ̂

(N,p)
n−1 )

M(N)
n (ξ̂

(N)
n−1, dξ

(N)
n ) =

N∏
i=1

Mn(ξ̂
(N,p)
n−1 , ξ

(N,p)
n )

it is clear that:

P
(
ξ
(N)
n ∈ dξ

(N)
n |ξ(N)n−1

)
=

∫
ENn−1

S
n−1,η

(N)
n−1

(ξ
(N)
n−1, d ξ̂

(N)
n−1)Mn(ξ̂

(N)
n−1, dξ

(N)
n )
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Selection, Mutation and Structure
I A suggestive structural similarity:

ηn−1 ∈P(En−1)
Sn−1,ηn−1−→ η̂n ∈P(En−1)

Mn−→ ηn ∈P(En)

ξ
(N)
n−1 ∈ENn−1

Select−→ ξ̂
(N)
n ∈ENn−1

Mutate−→ ξ
(N)
n ∈ENn

I Selection:

S
n−1,η

(N)
n−1

=ΨGn−1
(η

(N)
n−1) =

N∑
i=1

Gn−1(ξ
(N,i)
n−1 )∑N

j=1 Gn−1(ξ
(N,j)
n−1 )

δ
ξ
(N,i)
n−1

ξ̂
(N,i)
n−1

i.i.d.∼ ΨGn−1
(η

(N)
n−1)

I Mutation (conditionally independent):

ξ
(N,i)
n ∼Mn(ξ̂

(N,i)
n−1 , dξ

(N,i)
n )

I Semigroupoid

PN(ξ
(N)
n ∈ dx

(N)
n |ξ

(N)
n−1) =

N∏
i=1

Φn(η
(N)
n−1)(dx

(N,i)
n )
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Selected Results



Local Error Decomposition

η1 → η2 =Φ2(η1) → η3 =Φ1:3(η1) → . . . →Φ1:n(η1)

⇓
ηN1 → Φ2(ηN1 ) → Φ1:3(ηN1 ) → . . . →Φ1:n(η

N
1 )

⇓
ηN2 → Φ3(ηN2 ) → . . . →Φ2:n(η

N
2 )

⇓
ηN3 → . . . →Φ3:n(η

N
3 )

...
⇓

ηNn−1 →Φn(η
N
n−1)

⇓
ηNn

Formally: ηNn − ηn =

n∑
p=1

Φp,n(η
N
p )− Φp,n(Φp(η

N
p−1))
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Some Unbiasesness

Theorem (Del Moral 2004: Theorem 7.4.2)

Under mild regularity conditions, for any n ∈ N and some

bounded, measurable ϕn:

E
[
ηN(ϕn)

]
= γn(ϕn).

N.B. Typically the corresponding result does not hold for

normalised measures:

E
[
ηNn (ϕn)

]
6= ηn(ϕn).

although it does asymptotically with bias O(N−1).
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Law of Large Numbers and Weak Convergence

Theorem (Del Moral 2004: Theorem 7.4.4)

Under regularity conditions, for any n ≥ 1, p ≥ 1, ϕn ∈ Cb(En):

√
NE

[
|ηNn (ϕn)− ηn(ϕn)|p

]1/p ≤ cp,n||ϕn||∞

By a Borel-Cantelli argument:

lim
N→∞

ηNn (ϕn)
a.s.→ ηn(ϕn).
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Central Limit Theorem

Proposition (Del Moral 2004: Proposition 9.4.2)

Under regularity conditions, for any n ≥ 1:

√
N(ηNn (ϕn)− ηn(ϕn))

d→ N
(

0, σ2
n(ϕn)

)
where

σ2
n(ϕn) =

n∑
q=1

ηq
[
(Q̄q,n(ϕn − ηn(ϕn)))2

]
where

Q̄q,n(ϕn)(xq) = Qq,n(ϕn)(xq)/ηqQq,n(1).
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Exact Estimation of
Rare Events in Continuous Time

Recent work with James Hodgson
and Murray Pollock



So What’s The Difficulty?

A fundamental problem remains. We cannot typically sample from

the discrete time kernel associated with a stochastic process.

I We can exactly sample a broad class of scalar volatility SDEs

at finite numbers of time points using exact simulation

methods.

I We can constrain such paths to arbitrary finite tolerances

using ε-strong methods.

I We cannot identify the stopping times σi even with these

methods.

I We can identify whether Xσi ∈ Bi and the value of XTi for

some types of random Ti ≥ σi .
I And that’s the basis of the following method.
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ε-strong Methods

An ε-strong algorithm jointly constructs of X together with a

family of processes X̃ ε indexed by ε > 0 over [s, t] such that:

1. supr∈[s,t] ‖X (r)− X̃ ε(r)‖
a.s.
≤ ε for an appropriate norm ‖ · ‖;

2. X̃ ε is piece-wise constant and left-continuous on [s, t] with

a.s. finitely many jump;

3. X̃ ε can be simulated exactly; and

4. Given ε1 > ε2 > · · · > εm > 0, for 1 ≤ `1 < `2 ≤ m it holds

a.s. ∀r ∈ [s, t] that

{x : ‖X̃ ε`2 (r)− x‖ ≤ ε`2
} ⊂ {x : ‖X̃ ε`1 (r)− x‖ ≤ ε`1

},

and moreover it is possible to sample explicitly X̃ ε`2

conditional on X̃ ε`1 .
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x0

ε1ε1

ε1

X̃

X̃

T

0
ε2

X

X0

T

Figure: An schematic illustration of ε-strong simulation. The top row

shows shows the ε-strong process X̃ developing as conditional samples

are made first with tolerance ε1, followed with ε2 < ε1. The bottom row

shows the fixed target path X , and how the ε-strong constraints relate

to it. Pale circles indicate superseded constraints from the previous step.
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A
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A

B

A
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A
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Figure: Determining crossings with ε-strong algorithms.

The first row shows: a realisation of X over a finite time horizon, an

initial ε-strong simulation and a refinement which is sufficient to show

the process crossing into B.

The second row shows an alternative sample path consistent with the

same initial ε-strong simulation, an inconclusive refinement and a further

refinement sufficient to conclude that the process has crossed into A.
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Halfway There. . .

I To implement MLS we need to be able to sample from:

Mi((σi−1, xi−1), ·)

and evaluate

Gi(σi , xi) = IBi (xi).

I We can now sample and evaluate Gi(σi , xi) without knowing

σi or xi explicitly.

I We cannot sample from Mi .

I We can determine if crossings occur, but not when or

where.

I The next insight is that we do not need to.
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An Idea

I Splitting relies on sampling at step i several times from the

law of the process given the point at which it hit Bi−1.

I Traditionally, it does this independently.

I It doesn’t have to do it independently.

I Any coupling of the sample paths with the correct marginals

would be valid.

I We could use a coupling which makes the simulation problem

tractable.
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The Underlying Picture

A

B

x0

B1
B2 B3

Figure: An illustration of Idealised Splitting with Couplings for a single

particle system. The particle begins at the node labelled x0. Level

crossings are indicated by empty nodes, whereas splittings occur at the

filled nodes. Between any empty node and the following filled node, the

particle trajectories are coupled identically.
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The Gory Details I

I Define the bounding random time:

σ̃i = T ·min{m ∈ N : mT ≥ σi},

I Similarly, let τ̃i be the corresponding upper bound on the first

hitting time of Bi .

I Rather than split these paths into independent copies at

times τi , from time τi until time τ̃i , the “split” paths are set

to be identically equal, and after this time they evolve

conditionally independently given Xτ̃i .

I For i = 1, . . . ,m, let M̃i denote the transition kernels for the

discrete time quadruple process Vi = (σi , σ̃i ,X (σi), X̃ (σ̃i)).

I Define also G̃i(Vi) = IBi (X (σi)).

I Call the estimator for p resulting from this algorithm p̃.
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Algorithm Idealised Splitting with Coupling

Given λ together with G̃i , M̃i for i = 1, . . . ,m, an initial number

of particles N0, and splitting ratios R1, . . . ,Rm−1:

1. For j = 1, . . . ,N0:

1.1 Draw X j1(0) ∼ λ, V j1 ∼ M̃1

((
0, 0,X j1(0),X j1(0)

)
, ·
)

.

2. Let S1 = {V j1 : G̃1(V j1) = 1} be a list of the the surviving

paths, and N1 = |S1|.
3. For i = 2, . . . ,m:

3.1 If Ni−1 = 0, return p̃ = 0.

3.2 Otherwise given Si−1 = {V ji−1}
Ni−1

j=1 , for each

(j , k) ∈ {(j ′, k ′) : 1 ≤ j ′ ≤ Ni−1, 1 ≤ k ′ ≤ Ri−1}:
3.2.1 Sample V

(j ,k)
i ∼ M̃i(V ji−1, ·)

3.3 Let Si = {V j ,ki : G̃i (V j ,ki ) = 1}, and set Ni = |Si |.
4. Estimate

p̃ =
Nm

N0

∏m−1
i=1 Ri

.
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Remark
It is not possible to implement this Algorithm as written: we

cannot simulate full paths of X , nor make splits at times τi .

But the construction of MLS with couplings means that an

algorithm which simply splits paths at the tractable time τ̃i
instead produces identical estimators for pi .

Proposition (Hodgson, J. & Pollock (in press))

p̃ is an unbiased estimator for p: E[p̃] = p.

Proof.
Mirrors the proof for standard MLS, using the fact that the

marginal law of particles between barriers is indentical to that

under the simpler scheme.
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A Toy Example: Univariate Brownian Motion

I A setting in which the exact solution is known.

I We choose A = (−∞, 0], B = [318,∞), Bi = [3i ,∞) for

i = 1, . . . , 17, with initial point x0 = 1.

I As is well-known that for real 0 < a < b, the probability that

a Brownian path started at a reaches b before 0 is a/b:

p = 3−18 ≈ 2.58× 10−9.
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Slightly More Challenging: Bivariate Brownian Motion

I The random process is again taken to be Brownian motion

initialised at W0 = ( 1
2 ,

1
2 ).

I The reaction co-ordinate is chosen to be ξ(x , y) = min(x , y),

and the levels are chosen to be A = ξ−1((−∞, 0)),B =

ξ−1((2
21
2 ,∞)),Bi = ξ−1(2

1
2
(i+1),∞)) for i = 1, . . . , 18.

I We are not aware of any simple means by which the rare

event probability can be analytically obtained in this case.
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Summary

I SMC provides a mechanism for approximating (sequences of)

probability distributions via importance sampling and

resampling.

I There is still scope to further develop (and understand) SMC

methodology.

I There are still unsolved problems in rare event simulation and

estimation.

I My own current interests include:
I Divide-and-conquer approaches to efficient distributed

implementation.
I The interaction with Generalized Bayesian Inference.
I Automatic optimization of SMC algorithms.
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