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Outline

I Sequential Importance Sampling / Sequential Monte Carlo

(SMC)

I SMC to Divide and Conquer SMC

(D&C-SMC; Lindsten et al. (2017))

I Some Theoretical Properties of D&C-SMC

(Kuntz et al., 2021)

I Illustrative Application: Hierarchical Fusion

(Chan et al., 2021)

I Conclusions and Some (Open) Questions
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Part I

Sequential Monte Carlo and Divide-and-Conquer Implementations

See Lindsten et al. (2017)
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Essential Problem

The Abstract Problem

I Given a density,

µ(x) =
ρ(x)

Z
,

I such that ρ(x) can be evaluated pointwise,

I how can we approximate µ

I and how about Z ?

I Can we do so robustly?

I In a distributed setting?
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Sequential Importance Resampling

Ingredients:

I Sequence of unnormalized (path space) targets ρt on

Et = ⊗ts=0Es .

I Normalizing constants Zt = ρt(Et)

I Normalized counterparts µt = ρt/Zt .

I Proposals Kt : conditional laws over Et given xt−1 ∈ Et−1.

I Importance weights / potential functions:

wt =
dρt

dρt−1 ⊗ Kt
.

Algorithm: iterative importance sampling and resampling.
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Sequential Importance Resampling

1: Propose: for n ≤ N, draw Xn,N0 independently from K0.

2: Correct: compute ρN0 := N−1
∑N
n=1 w0(Xn,N0 )δXn0

, where

w0 := dρ0/dK0, ZN0 = ρN0 (E0) and µN0 := ρN0 /ZN0 .

3: for t = 1, . . . ,T do

4: Resample: for n ≤ N, draw Xn,Nt− independently from µNt−1.

5: Mutate: for n ≤ N, draw X n,Nt independently from

Kt(Xn,Nt− , dxt) and set Xn,Nt := (X n,Nt ,Xn,Nt− ).

6: Correct: compute

ρNt =
ZNt−1

N

N∑
i=1

wt(Xn,Nt )δXn,Nt
,

ZNt = ρNt (Et) and µNt := ρNt /ZNt .

7: end for
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SIR Example: Simple Particle Filters

x1 x2 x3 x4 x5 x6

y1 y2 y3 y4 y5 y6

I Unobserved Markov chain {Xn} transition f .

I Observed process {Yn} conditional density g.
I The joint density is available:

p(x1:n, y1:n|θ) = f θ1 (x1)gθ(y1|x1)

n∏
i=2

f θ(xi |xi−1)gθ(yi |xi ).

I Natural SIR target distributions:

µθn(x1:n) :=p(x1:n|y1:n, θ) ∝ p(x1:n, y1:n|θ) =: ρθn(x1:n)

Z θ
n =

∫
p(x1:n, y1:n|θ)dx1:n = p(y1:n|θ)
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Bootstrap PFs and Similar

I Choosing

µθn(x1:n) :=p(x1:n|y1:n, θ) ∝ p(x1:n, y1:n|θ) =: ρθn(x1:n)

Z θ
n =

∫
p(x1:n, y1:n|θ)dx1:n = p(y1:n|θ)

I and Kp(xp|x1:p−1) = f θ(xp|xp−1) yields the bootstrap particle

filter of Gordon et al. (1993),

I whereas Kp(xp|x1:p−1) = p(xp|xp−1, yp, θ) yields the “locally

optimal” particle filter.

I Note: Many alternative particle filters are SIR algorithms

with other targets. Cf. J. and Doucet (2008); Doucet and J.

(2011).
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Sequential Monte Carlo Samplers: Another SIR Class

Given a sequence of targets µ̄1, . . . , µ̄n on arbitrary spaces, Del

Moral et al. (2006) extend the space:

µn(x1:n) =µ̄n(xn)

1∏
p=n−1

Lp(xp+1, xp)

ρn(x1:n) =ρ̄n(xn)

1∏
p=n−1

Lp(xp+1, xp)

Zn =

∫
ρn(x1:n)dx1:n

=

∫
ρ̄n(xn)

1∏
p=n−1

Lp(xp+1, xp)dx1:n =

∫
ρ̄n(xn)dxn = Z̄n
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SIR: Theoretical Justification — Some Of

Under regularity conditions we have:

unbiasedness

E[ẐNn ] = Zn

slln

lim
N→∞

π̂Nn (ϕ)
a.s.
= πn(ϕ)

clt For a normal random variable Wn of appropriate

variance:

lim
N→∞

√
N[π̂Nn (ϕ)− πn(ϕ)]

d
= Wn

although establishing this requires a little work (cf., e.g. Del

Moral (2004).

Divide-and-Conquer SMC
Adam M. Johansen

Sequential Monte Carlo
Divide-and-Conquer SMC

Theoretical Properties
Illustrative Applications



Auxiliary sequential importance resampling
Ingredients:

I Sequence of unnormalized (path space) targets ρt on

Et = ⊗ts=0Es .

I Sequences of auxiliary targets γt− and γt := γt− ⊗ Kt .

I Normalizing constants Zt = ρt(Et)

I Auxiliary normalizing constants Zt = γt(Et)

I Normalized counterparts µt = ρt/Zt .

I Normalized auxiliary targets πt = γt/Zt .
I Proposal kernels Kt : conditional laws over Et given Et−1.

I Importance weights / potential functions:

wt =
dγt−

dγt−1
.

Algorithm: iterative importance sampling and resampling

targeting auxiliary targets and an extra importance sampling

correction.
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Auxiliary sequential importance resampling

1: Propose: for n ≤ N, draw Xn,N0 independently from K0.

2: Compute: γN0 := N−1
∑N
n=1 δXn,N0

.

3: for t = 1, . . . ,T do

4: Correct: compute γNt−(dxt−1) := wt−(xt−1)γNt−1(dxt−1) and

πNt− := γNt−/γ
N
t−(Et−1).

5: Resample: for n ≤ N, draw Xn,Nt− independently from πNt− .

6: Mutate: for n ≤ N, draw X n,Nt independently from

Kt(Xn,Nt− , dxt) and set Xn,Nt := (X n,Nt ,Xn,Nt− ).

7: Compute: γNt :=
ZNt
N

∑N
n=1 δXn,Nt

where ZNt := γNt−(Et−1).

8: end for
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Auxiliary Particle Filters

In the filtering setting, take:

I γt−(dxt−1) = p(xt−1, yt−1)p̂(yt |xt−1)

I πt− = γt−/γt−(Et−1).

and one recovers the auxiliary particle filter of Pitt and Shephard

(1999).
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Bayesian Inference via SMC

(Chopin, 2001;Del Moral et al., 2006)

In a Bayesian context:

I Given a prior p(θ) and likelihood l(θ; y1:m)

I One could specify:

Data Tempering ρ̄p(θ) = p(θ)l(θ; y1:mp) for

m1 = 0 < m2 < · · · < mT = m

Likelihood Tempering ρ̄p(θ) = p(θ)l(θ; y1:m)βp for

β1 = 0 < β2 < · · · < βT = 1

Something else?

I Here ZT =
∫

p(θ)l(θ; y1:n)dθ and ρ̄T (θ) ∝ p(θ|y1:n).

I Specifying (m1, . . . ,mT ), (β1, . . . , βT ) or (γ1, . . . , γT ) is

hard.
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Illustrative Sequences of Targets
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One Adaptive Scheme (Zhou, J. & Aston, 2016)+Refs

Resample When ESS(W 1:N
n ) =

(∑N
i=1(W i

n)
2
)−1

is below a

threshold.

Likelihood Tempering At iteration n: Set βn such that:

N(
∑N
j=1 W

(j)
n−1w

(j)
n )2∑N

k=1 W
(k)
n−1(w

(k)
n )2

= CESS?

which controls χ2-discrepancy between successive

distributions.

Proposals Follow (Jasra et al., 2010): adapt to keep

acceptance rate about right.

Question

Are there better, practical approaches to specifying a sequence of

distributions?
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Divide-and-Conquer (Lindsten et al., 2017)

Many models admit natural decompositions:

Level 2:

Level 1:

Level 0:

y1 y2 y3

x1 x2 x3

y1 y2 y3

x1 x2 x3

x4

y1 y2 y3

x1 x2 x3

x4

x5

To which we can apply a divide-and-conquer strategy:

µc1 µcC

. . . . . .

µt
. . .

µr
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A few formalities. . .
I Use a tree, T of models (with rootward variable inclusion):

µc1 µcC

. . . . . .

µt
. . .

µr

I Let t ∈ T denote a node; r ∈ T is the root.
I Let Ct = {c1, . . . , cC} denote the children of t.
I Let Et denote the space of variables included in t but not its

children.
I Let Et = Et ×⊗c∈C(t)Ec be the space of all variables

included in Tt : the subtree rooted at t.
I dc-smc can be viewed as a recursion over this tree.
I NB. The tree of models can be constructed even for models

which are not tree-like.
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dac smc(u) for u in T.

1: if u is a leaf (i.e. u ∈ T∂) then

2: Propose: for n ≤ N, draw Xn,Nu independently from Ku.

3: Return: γNu := N−1
∑N
n=1 δXn,Nu

.

4: else

5: for v in Cu do

6: Recurse: set γNv := dac smc(v).

7: end for

8: Correct: compute γNu− and πNu− := γNu−/γ
N
u−(ECu ).

9: Resample: for n ≤ N, draw Xn,Nu− independently from πNu− .

10: Mutate: for n ≤ N, draw X n,Nu independently from

Ku(Xn,Nu− , dxu) and set Xn,Nu := (X n,Nu ,Xn,Nu− ).

11: Return: γNu := N−1ZNu
∑N
n=1 δXn,Nu

where ZNu := γNu−(ECu ).

12: end if
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Part II

Theoretical Properties

See Kuntz et al. (2021)
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Theoretical Properties: Regularity Assumptions I

Assumption (1. Absolute Continuity)

For all u in T and v in T6∂ , ρu is absolutely continuous w.r.t. γu,

γv− is absolutely continuous w.r.t. γCv , and the Radon-Nikodym

derivatives wu := dρu/dγu and wv− := dγv−/dγCv are positive

everywhere.

Assumption (2. Boundedness)

For all u in T6∂ and v in T, wu− = dγu−/dγCu and wv = dρv/dγv
are bounded: ||wu− ||∞ <∞ and ||wv ||∞ <∞.
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Theoretical Properties I

Lp Error Bounds (Kuntz et al., 2021, Theorem 5)

If Assumptions 1–2 hold, then, for each p ≥ 1 and u in T, then

there exist constants C ρ
u ,Cµ

u <∞ such that

E
∣∣ρNu (ϕ)− ρ(ϕ)

∣∣p 1
p ≤

C ρ
u ||ϕ||∞
N1/2

,

E
∣∣µNu (ϕ)− µu(ϕ)

∣∣p 1
p ≤

Cµ
u ||ϕ||∞
N1/2

,

for all N > 0 and ϕ in Bb(Eu). In particular,

E[|ZNu − Zu|p]1/p ≤ C ρ
u /N1/2

for all N > 0.
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Theoretical Properties II

Strong Law of Large Numbers (Kuntz et al., 2021, Theorem 1)

If Assumptions 1–2 are satisfied, u belongs to T, and ϕ belongs

to Bb(Eu), then

lim
N→∞

ρNu (ϕ) = ρu(ϕ), lim
N→∞

µNu (ϕ) = µ(ϕ), lim
N→∞

ZNu = Zu,

almost surely.

Strong Law of Large Numbers (Kuntz et al., 2021, Theorem 2)

If, in addition to Assumptions 1–2, the spaces (Eu)u∈T are Polish

and (Eu)u∈T are the corresponding Borel sigma algebras, then

ρNu ⇀ ρu, µNu ⇀ µu, almost surely,

for each u in T, where ⇀ denotes weak convergence as N →∞.
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Theoretical Properties III

Central Limit theorem (Kuntz et al., 2021, Theorem 6)

If Assumptions 1–2 hold, then, as N →∞,

N1/2
(
ρNu (ϕ)− ρu(ϕ)

)
⇒ N (0, σ2

ρu (ϕ)),

N1/2
(
µNu (ϕ)− µu(ϕ)

)
⇒ N (0, σ2

µu (ϕ)),

for any given u in T and ϕ in Bb(Eu), where ⇒ denotes

convergence in distribution,

σ2
ρu (ϕ) :=

∑
v∈Tu

πv ([ZvΓv ,u[wuϕ]− ρu(ϕ)]2),

σ2
µu (ϕ) :=

∑
v∈Tu

πv ([ZvΓv ,u[wuZ−1
u [ϕ− µu(ϕ)]]]2).
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Theoretical Properties IV

More on the CLT

In particular, N1/2
(

ZNu − Zu
)
⇒ N (0, σ2

Zu
) as N →∞ with

σ2
Zu := Z 2

u

∑
v∈Tu

πv

([
dµvu
dπv

− 1

]2
)
, (1)

where µvu denotes the Ev -marginal of µu (i.e.

µvu(A) := µu(A× ETu\Tv ) for all A in Ev ).

Unbiasedness of NC Estimates (Kuntz et al., 2021, Theorem 3)

If Assumptions 1–2 hold, then for all u ∈ T:

E
[
ρNu (ϕ)

]
= ρu(ϕ), E

[
ZNu
]

= Zu, ∀N > 0, ϕ ∈ Bb(Eu).
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Theoretical Properties V

One Key Ingredient: Multinomial Expansion

Fix any u in T6∂ and ϕ in Bb(ECu ). Note that,

γNCu − γCu =
∏
v∈Cu

[γNv − γv + γv ]− γCu =
∑
∅6=A⊆Cu

∆NA × γ
6A
Cu , (2)

where ∆NA :=
∏
v∈A(γNv − γv ) and γ 6ACu := γCu\A for all subsets A

of Cu.
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Some (Importance) Extensions

1. (Lightweight) Mixture Resampling [with Rejection Sampling]

2. Tempering (Del Moral et al, 2006)

3. Adaptation (Zhou, J. and Aston, 2016)
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Part III

Illustrative Application: Hierarchical Monte Carlo Fusion

See Chan et al. (2021)
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Hierarchical Monte Carlo Fusion (Chan et al., 2001) I

Objective: combine approximations of “subposteriors”:

f (x) ∝
∏
c∈C

fc(x), (3)

Proposition (Dai et al. (2019))

Suppose that pc is the transition density of a Markov chain on Rd
with a stationary probability density proportional to f 2

c . Then the

(|C|+ 1)d-dimensional probability density proportional to the

integrable function

gC
(
~x(C), y(C)

)
:=
∏
c∈C

[
f 2
c

(
x(c)
)
· pc
(
y(C)

∣∣x(c)) · 1

fc(y(C))

]
, (4)

admits marginal density f (C) ∝
∏
c∈C fc over y(C) ∈ Rd .
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Hierarchical Monte Carlo Fusion (Chan et al., 2001) II
This can be exploited by taking a proposal distribution

proportional to:

hC

(
~x(C), y(C)

)
:=
∏
c∈C

fc

(
x(c)
)
· exp

{
−

(y(C) − x̃(C))ᵀΛ−1
C (y(C) − x̃(C))

2T

}
,

where

x̃(C) :=

(∑
c∈C

Λ−1
c

)−1(∑
c∈C

Λ−1
c x(c)

)
, Λ−1

C :=
∑
c∈C

Λ−1
c .
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Hierarchical Monte Carlo Fusion (Chan et al., 2001) III

Proposition

If pc
(
y(C)|x(c)

)
is the transition density of a suitable Langevin diffusion

gC(~x
(C), y(C))

hC(~x(C), y(C))
∝ρ0(~x(C)) · ρ1(~x(C), y(C)),

ρ0(~x(C)) := exp

{
−
∑
c∈C

(x̃(C) − x(c))ᵀΛ−1
c (x̃(C) − x(c))

2T

}
,

ρ1(~x(C), y(C)) :=
∏
c∈C
EWΛc

[
exp

{
−
∫ T

0

φc

(
X

(c)
t

)
dt

}]
,

φc(x) :=
1

2

(
∇ log fc(x)ᵀΛc∇ log fc(x) + Tr(Λc∇2 log fc(x))

)
,

where Tr(·) denotes the trace of a matrix, and WΛc denotes the law of

a Brownian bridge {X(c)
t , t ∈ [0,T ]} with X

(c)
0 := x(c), X

(c)
T := y(C) and

covariance matrix Λc .
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D&C Fusion I

general.fusion(C, {{x(c)
0,i ,w

(c)
i }Mi=1,Λc}c∈C,N,T )

Input: Samples {x(c)0,i ,w
(c)
i }

M
i=1 for c ∈ C, matrices, {Λc : c ∈ C},

particle count, N, and time horizon, T > 0.

1. Partial proposal: Compose samples {~x(C)0,j , ~wj}
M
j=1 where

~wj :=
(∏

c∈C w
(c)
j

)
· ρ0(~x

(C)
0,j ) for j ∈ {1, . . . ,M}.

2. For i in 1 to N,

2.1 ~x
(C)
0,i : Sample I ∼ categorical(~w1:M) and set ~x

(C)
0,i := ~x

(C)
0,I .

2.2 Complete proposal: Simulate y
(C)
i ∼ Nd

(
x̃
(C)
i ,T ΛC

)
.

2.3 ρ̃
(C)
1,i : Compute importance weight ρ̃

(C)
1,i := ρ̃

(b)
1

(
~x
(C)
0,i , y

(C)
i

)
.

3. For i in 1 to N compute w
(C)
i = ρ̃

(C)
1,i /

∑N
k=1 ρ̃

(C)
1,k .

Output:
{
~x
(C)
0,i , y

(C)
i ,w

(C)
i

}N
i=1

.
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D&C Fusion II

f

f1f2

···

88

· · · fC−1fC

···

hh

f1

;;

f2

OO

· · · fC−1

OO

fC

dd

A balanced-binary tree. f∏C−1
c=1 fc

33

f1f2

···
33

f1

88

f2

OO

· · · fC−1

OO

fC

OO

A progressive tree.
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D&C Fusion III

d&c.fusion(v ,N,T )

Given: Sub-posteriors, {fu}u∈Leaf(T), and preconditioning

matrices {Λu}u∈T.

Input: Node in tree, v , the number of particles N, and time

horizon T > 0.

1. For u ∈ Ch(v),

1.1
{

x
(u)
i , y

(u)
i ,w

(u)
i

}N
i=1
← d&c.fusion(u,N,T ).

2. If v ∈ Leaf(T),

2.1 For i = 1, . . . ,N, sample y
(v)
i ∼ fv (y).

2.2 Output: {∅, y(v)
i , 1

N }
N
i=1.

3. If v /∈ Leaf(T),

3.1 Output: Call

general.fusion(Ch(v), {{y(u)
i ,w

(u)
i }Ni=1,Λu}u∈Ch(v),N,T ).
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Illustrative comparison of the effect of using different hierarchies,

with f ∝
∏C
c=1 fc , where fc ∼ N (0,C ) for c = 1, . . . ,C

(averaged over 50 runs).
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Comparison of methods [CMC=Consensus Monte Carlo;

KDEMC=kernel density averaging approach of Neiswanger et al.

(2014); WRS=Weierstrass Rejection Sampler] applied to a

logistic regression problem with credit card data*.

* The ‘Default of credit card clients’ data set available from

https://archive.ics.uci.edu/ml/datasets. The data set comprised

m = 30000 records of response: whether a default had occurred

and binary covariates Gender and Education.
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Part IIIb

Some Other Examples
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An Ising Model

I k indexes V ∈ V ⊂ Z2

I xk ∈ {−1, 1}
I p(z) ∝ e−βE(z), β ≥ 0

I E (z) = −
∑

(k,l)∈E xkxl

We consider a grid of size 64× 64 with β = 0.4407 (the critical

temperature).
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A sequence of decompositions
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Summaries over 50 independent runs of each algorithm.
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New York Schools Maths Test: data

I Data organised into a tree T .

I A root-to-leaf path is: NYC (the root, denoted by r ∈ T ),

borough, school district, school, year.

I Each leaf t ∈ T comes with an observation of mt exam

successes out of Mt trials.

I Total of 278 399 test instances

I five borough (Manhattan, The Bronx, Brooklyn, Queens,

Staten Island),

I 32 distinct districts,

I 710 distinct schools.

Divide-and-Conquer SMC
Adam M. Johansen

Sequential Monte Carlo
Divide-and-Conquer SMC

Theoretical Properties
Illustrative Applications



New York Schools Maths Test: Bayesian Model

I Number of successes mt at a leaf t is Bin(Mt , pt).

I where pt = logistic(θt), where θt is a latent parameter.

I internal nodes of the tree also have a latent θt

I model the difference in θt along e = (t → t ′) as

θt ′ = θt + ∆e ,

I where, ∆e ∼ N(0, σ2
e ).

I We put an improper prior (uniform on (−∞,∞)) on θr .

I We also make the variance random, but shared across

siblings, σ2
t ∼ Exp(1).
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New York Schools Maths Test: Implementation

I The basic SIR-implementation of dc-smc.

I Using the natural hierarchical structure provided by the

model.

I Given σ2
t and the θt at the leaves, the other random variables

are multivariate normal.

I We instantiate values for θt only at the leaves.

I At internal node t ′, sample only σ2
t ′ and marginalize out θt ′ .

I Each step of dc-smc therefore is either:

i. At leaves sample pt ∼ Beta(1 + mt , 1 + Mt −mt) and set

θt = logit(pt).

ii. At internal nodes sample σ2
t ∼ Exp(1).

I Java implementation:
https://github.com/alexandrebouchard/multilevelSMC
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New York Schools Maths Test: Results

NY NY−Bronx NY−Kings NY−Manhattan NY−Queens NY−Richmond
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I D&C with 10 000 particles.

I Bronx County has the highest fraction (41%) of children

(under 18) living below poverty level.1

I Queens has the second lowest (19.7%),

I after Richmond (Staten Island, 16.7%).

I Staten Island contains a single school district so the posterior

distribution is much flatter for this borough.
1Statistics from the New York State Poverty Report 2013,

http://ams.nyscommunityaction.org/Resources/Documents/News/NYSCAAs˙2013˙Poverty˙Report.pdf
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Normalising Constant Estimates
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Distributed Implementation
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Xeon X5650 2.66GHz processors connected by a non-blocking

Infiniband 4X QDR network

Divide-and-Conquer SMC
Adam M. Johansen

Sequential Monte Carlo
Divide-and-Conquer SMC

Theoretical Properties
Illustrative Applications



Conclusions

I SMC ≈ SIR

I D&C-SMC ≈ SIR + Coalescence

I Distributed implementation is straightforward

I D&C strategy can improve even serial performance

I D&C-SMC inherits many theoretical guarantees from SMC

I Some questions remain unanswered:
I How can we construct (near) optimal tree-decompositions?

I Some other interesting applications:
I Parallel (in time) Smoothing (Ding and Gandy, 2018;

Corneflos et al., 2022)
I High-dimensional Filtering (Crucinio and Johansen, 2022)
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